Chapter 1 Density Mechanics	Chapter 1 Significant Figures: Multiplication Mechanics
Chapter 1 Significant Figures: Addition Mechanics	Chapter 2 Displacement
Chapter 2 Average velocity	Chapter 2 Average speed
Chapter 2 Instantaneous velocity Mechanics	Chapter 2 Average acceleration Mechanics
Chapter 2 Instantaneous acceleration Mechanics	Chapter 2 Velocity as a function of time

When multiplying several quantities, the number of significant figures in the final answer is the same as the number of significant figures in the quantity having the lowest number of significant figures. The same rule applies to division.

$$
\Delta x \equiv x_{f}-x_{i}
$$

or
Displacement $=$ area under the $v_{x}-t$ graph

When numbers are added or subtracted, the number of decimal places in the result should equal the smallest number of decimal places of any term in the sum.

Average speed $=\frac{\text { total distance }}{\text { total time }}$	
$\bar{a}_{x} \equiv \frac{\Delta v_{x}}{\Delta t}=\frac{v_{x f}-v_{x i}}{t_{f}-t_{i}}$	$\bar{v}_{x} \equiv \frac{\Delta x}{\Delta t}$
	$v_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}$
$($ constant acceleration $)$	
$v_{x f}=v_{x i}+a_{x} t$	$a_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}=\frac{d v_{x}}{d t}$

Chapter 2	Chapter 2
Position as a function of velocity and time	Position as a function of time
Mechanics	Mechanics
Chapter 2	Chapter 3
Velocity as a function of position	Polar \Longrightarrow Cartesian
Mechanics	Mechanics
Chapter 3	Chapter 3
Cartesian \Longrightarrow Polar	Scalar quantity
Mechanics	Mechanics
$\begin{array}{lc}\text { Chapter } 3 & \\ \\ & \text { Vector quantity }\end{array}$	Chapter 4
	Velocity vector as a function of time
Mechanics	Mechanics
Chapter 4	Chapter 4
Position vector as a function of time	Centripetal acceleration
Mechanics	Mechanics

$x_{f}=x_{i}+v_{x i} t+\frac{1}{2} a_{x} t$ (constant acceleration)	$x_{f}=x_{i}+\frac{1}{2}\left(v_{x i}+v_{x f}\right) t$ (constant acceleration)
$\begin{aligned} & x=r \cos \theta \\ & y=r \sin \theta \end{aligned}$	$v_{x f}^{2}=v_{x i}^{2}+2 a_{x}\left(x_{f}-x_{i}\right)$ (constant acceleration)
A value with magnitude only and no associated direction	$\begin{aligned} r & =\sqrt{x^{2}+y^{2}} \\ \tan \theta & =\underline{y} \end{aligned}$
$\mathbf{v}_{f}=\mathbf{v}_{i}+\mathbf{a} t$	A value that has both magnitude and direction
$a_{c}=\frac{v^{2}}{r}$	$\mathbf{r}_{f}=\mathbf{r}_{i}+\mathbf{v}_{i} t+\frac{1}{2} \mathbf{a} t^{2}$

Chapter 4Period of circular motion	Chapter 4
	Total acceleration
Mechanics	Mechanics
Chapter 4	Chapter 5
Galilean Transformation	Newton's First Law
Mechanics	Mechanics
Chapter 5	Chapter 5
Newton's Second Law	Newton's Third Law
Mechanics	Mechanics
Chapter 6	Chapter 6
Force causing centripetal acceleration	Nonuniform circular motion
Mechanics	Mechanics
Chapter 7	Chapter 7
Scalar, dot or inner product	Work done by a constant force
Mechanics	Mechanics

$$
T \equiv \frac{2 \pi r}{v}
$$

If two objects interact, the force \mathbf{F}_{12} exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force \mathbf{F}_{21} exerted by object 2 on object 1:

$$
\mathbf{F}_{12}=-\mathbf{F}_{21}
$$

$$
\mathbf{r}^{\prime}=\mathbf{r}-\mathbf{v}_{0} t
$$

$$
\mathbf{v}^{\prime}=\mathbf{v}-\mathbf{v}_{0}
$$

$$
\mathbf{a}=\mathbf{a}_{t}+\mathbf{a}_{r}=\frac{d|\mathbf{v}|}{d t} \hat{\theta}-\frac{v^{2}}{r} \hat{\mathbf{r}}
$$

In the absence of external forces, when viewed from an inertial reference frame, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a a straight line).
When no force acts on an object, the acceleration of the object is zero
$\mathbf{a}=\mathbf{a}_{t}+\mathbf{a}_{r}=\frac{d|\mathbf{v}|}{d t} \hat{\theta}-\frac{v^{2}}{r} \hat{\mathbf{r}}$

When viewed from an inertial reference frame, the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

$$
\sum \mathbf{F}=m \mathbf{a}
$$

$$
\sum \mathbf{F}=m a_{c}=m \frac{v^{2}}{r}
$$

$$
W \equiv F \Delta r \cos \theta
$$

$\mathbf{A} \cdot \mathbf{B}=A B \cos \theta$
$\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

CHAPTER 7	Chapter 7
Work done by a varying force	
Mechanics	

$F_{s}=-k x$	

