Chapter 1	Chapter 1
Density	Significant Figures: Multiplication
Mechanics	Mechanics
Chapter 1	Chapter 2
Significant Figures: Addition	Displacement
Mechanics	Mechanics
Chapter 2	Chapter 2
Average velocity	Average speed
Mechanics	Mechanics
Chapter 2	Chapter 2
Instantaneous velocity	Average acceleration
Mechanics	Mechanics
Chapter 2	Chapter 2
Instantaneous acceleration	Velocity as a function of time
Mechanics	Mechanics

When multiplying several quantities, the
number of significant figures in the final
answer is the same as the number of sig-
microat figures in quantity having the
lowest number of significant figures. The
same rule applies to division.
$$\rho = \frac{m}{V}$$
$$\Delta x = x_f - x_i$$

or
Displacement = area under the v_x - t graphWhen numbers are added or subtracted,
the number of decimal places in the result
should equal the samilest number of doci-
mal places of any term in the sum.
$$\Delta x = x_f - x_i$$

or
Displacement = area under the v_x - t graphWhen numbers are added or subtracted,
the number of doci-
mal places of any term in the sum.
$$\Delta verage speed = \frac{\text{total distance}}{\text{total time}}$$
 $v_x = \frac{\Delta x}{\Delta t}$
$$\bar{\sigma}_x = \frac{\Delta r_x}{\Delta t} - \frac{v_{xf} - v_{xf}}{t_f - t_i}$$
 $v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} - \frac{dx}{dt}$
$$\bar{\sigma}_x = \frac{\Delta r_x}{\Delta t} - \frac{v_{xf} - v_{xf}}{t_f - t_i}$$
 $u_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} - \frac{dv_x}{dt}$
$$\bar{\sigma}_x = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} = \frac{dv_x}{dt}$$
 $u_x = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} = \frac{dv_x}{dt}$

٦

Г

Chapter 2	Chapter 2
Position as a function of velocity and time	Position as a function of time
Mechanics	Mechanics
Chapter 2	Chapter 3
Velocity as a function of position	$Polar \Longrightarrow Cartesian$
Mechanics	Mechanics
Chapter 3	Chapter 3
$Cartesian \Longrightarrow Polar$	Scalar quantity
Mechanics	Mechanics
Chapter 3 Vector quantity	CHAPTER 4 Velocity vector as a function of time
Mechanics	Mechanics
Chapter 4	Chapter 4
Position vector as a function of time	Centripetal acceleration
Mechanics	Mechanics

$$x_{f} = x_{i} + v_{x}t + \frac{1}{2}a_{x}t$$
(constant acceleration)
$$x_{f} = x_{i} + \frac{1}{2}(v_{x} + v_{x}f)t$$
(constant acceleration)
$$x_{f} = r\cos\theta$$
(constant acceleration)
$$v_{x}^{2} = r\cos\theta$$
(constant acceleration)
$$v_{x}^{2} = r\sin\theta$$

$$r_{x}^{2} + 2a_{x}(x_{f} - x_{i})$$
(constant acceleration)
$$r_{x} = \sqrt{u^{2} + v^{2}}$$
(constant acceleration)
$$r_{x} = \sqrt{u^{2} + v^{2}}$$

$$tor \theta = \frac{y}{x}$$

$$v_{f} = v_{i} + at$$

$$a_{r} = \frac{v^{2}}{r}$$

$$r_{f} = r_{i} + v_{i}t + \frac{1}{2}at^{2}$$

Chapter 4	Chapter 4
Period of circular motion	Total acceleration
Mechanics	Mechanics
Chapter 4	Chapter 5
Galilean Transformation	Newton's First Law
Mechanics	Mechanics
Chapter 5	Chapter 5
Newton's Second Law	Newton's Third Law
Mechanics	Mechanics
Chapter 6	Chapter 6
Force causing centripetal acceleration	Nonuniform circular motion
Mechanics	Mechanics
Chapter 7	Chapter 7
Scalar, dot or inner product	Work done by a constant force
Mechanics	Mechanics

$$a = a_{0} + a_{r} = \frac{d |\mathbf{v}|}{dt} \hat{\theta} - \frac{v^{2}}{r} \hat{r}$$

$$T = \frac{2\pi r}{v}$$
In the absence of external forces, when
viewed from an inertial reference frame, an
object in motion orthonic in motion with a constant
speed in a straight fact.
When no force acts on an object, the
acceleration of the object is zero
If two objects interact, the force \mathbf{F}_{12} are
magnitude and opposite in direction to the
force \mathbf{F}_{21} exerted by object 1 on object 2 on object 1:
 $\mathbf{F}_{12} = -\mathbf{F}_{21}$

$$\sum \mathbf{F} = m\mathbf{a}$$

$$\sum \mathbf{F} = m\mathbf{a}$$

$$W = F \Delta r \cos \theta$$

$$\mathbf{W} = F \Delta r \cos \theta$$

$$\mathbf{W} = F \Delta r \cos \theta$$

$$\mathbf{A} \cdot \mathbf{B} = -A_{E}B \cos \theta$$

$$\mathbf{A} \cdot \mathbf{B} = -A_{E}B \cos \theta$$

Chapter 7	Chapter 7
Work done by a varying force	Spring force
Mechanics	Mechanics

$$F_{s} = -kx$$

$$W = \int_{s_{1}}^{s_{1}} F_{s} dx$$