Definition reduced row-echelon form	Definition rank Linear Algebra
Definition \& Theorem number of solutions of a linear system Linear Algebra	Definition linear combination Linear Algebra
Definition subspaces of \mathbb{R}^{n} Linear Algebra	Theorem image and kernel are subspaces
Definition linear independence Linear Algebra	Definition basis Linear Algebra
Theorem number of vectors in a basis	Algorithm constructing a basis of the image
Linear Algebra	Linear Algebra

The rank of a matrix A, is the number of leading 1 s in $\operatorname{rref}(A)$.

A linear combination is a vector in \mathbb{R}^{n} created by adding together scalar multiples of other vectors in \mathbb{R}^{n}. For example, if c_{1}, \ldots, c_{m} are in \mathbb{R}, then

$$
\vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{m} \vec{v}_{m}
$$

is a linear combination. We say \vec{x} is a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{m}$.

A matrix is in reduced row-echelon form if all of the following conditions are satisfied:

1. If a row has nonzero entries, then the first nonzero entry is 1 .
2. If a column contains a leading 1 , then all other entries in that column are zero.
3. If a row contains a leading 1 , then each row above contains a leading 1 further to the left.

If a system has at least one solution, then it is said to be consistent. If a system has no solutions, then it is said to be inconsistent (overdetermined).

A consistent system has either

- infinitely many solutions (underdeterminied)
- exactly one solution (exactly determined)

If $T(\vec{x})=A \vec{x}$ is a linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}, then

- $\operatorname{ker}(T)=\operatorname{ker}(A)$ is a subspace of \mathbb{R}^{m}
- $\operatorname{im}(T)=i m(A)$ is a subspace of \mathbb{R}^{n}

A subset W of \mathbb{R}^{n} is called a subspace of \mathbb{R}^{n} if it has the following three properties:

1. W contains the zero vector for \mathbb{R}^{n}.
2. W is closed under addition (if \vec{w}_{1} and \vec{w}_{2} are both in W, then so is $\vec{w}_{1}+\vec{w}_{2}$).
3. W is closed under scalar multiplication (if \vec{w} is in W and k is any scalar, then $k \vec{w}$ is also in $W)$.

Consider vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ from a subspace V of \mathbb{R}^{n}. These vectors are said to form a basis of V, if they meet the following two requirements:

1. they span V
2. they are linearly independent

To construct a basis of the image of A, pick those column vectors of A that correspond to the columns of $\operatorname{rref}(A)$ that contain leading 1 s .

Consider vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in \mathbb{R}^{n}. These vectors are said to be linearly independent if none of them is a linear combination of the preceding vectors. One way to think of this is that none of the vectors is redundant.

Otherwise the vectors are said to be linearly dependent.

All bases of a subspace V of \mathbb{R}^{n} consist of the same number of vectors. In other words, they all have the same dimension.

For any $n \times m$ matrix A the following equation holds:

$$
\operatorname{dim}(\operatorname{im}(A))+\operatorname{dim}(\operatorname{ker}(A))=m
$$

Alternatively, if we define the $\operatorname{dim}(\operatorname{ker}(A))$ to be the nullity of A, then we can rewrite the above as:

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=m
$$

Some mathemeticians refer to this as the fundamental theorem of linear algebra.

Consider vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in \mathbb{R}^{n}. An equation of the form

$$
c_{1} \vec{v}_{1},+\ldots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

is called a linear relation among the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$. The trivial relation with $c_{1}, \ldots, c_{m}=0$ is always true. Non-trivial relations (where at least one of the coefficients c_{i} is nonzero) may or may not exist among the vectors.

For any subspace V of \mathbb{R}^{n}, the number of vectors in a basis of V is called the dimension of V and is denoted by $\operatorname{dim}(V)$.
for all \vec{x} in \mathbb{R}^{m}.

$$
T(\vec{x})=A \vec{x}
$$

A function T that maps vectors from \mathbb{R}^{m} to \mathbb{R}^{n} is called a linear transformation if there is an $n \times m$ matrix A such that

A transformation T is linear iff (if and only if), for all vectors \vec{v}, \vec{w} and all scalars k

$$
\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)
$$

- $T(\vec{v}+\vec{w})=T(\vec{v})+T(\vec{w})$
- $T(k \vec{v})=k T(\vec{v})$

$$
(i m A)^{\perp}=\operatorname{ker}\left(A^{T}\right)
$$

Square matrix A is symmetric $\Leftrightarrow A^{T}=A$

Square matrix A is skew-symmetric $\Leftrightarrow A^{T}=-A$

Definition orthogonal complement Linear Algebra	Theorem properties of orthogonal matrices Linear Algebra
Theorem determinants of similar matrices Linear Algebra	Theorem determinant of an inverse Linear Algebra
Theorem the determinant in terms of the columns	Theorem elementary row operations and determinants Linear Algebra
Definition eigenvectors and eigenvalues Linear Algebra	Theorem eigenvalues and characteristic equation Linear Algebra
Definition ${ }^{\text {trace }} \mathrm{l}$	Theorem characteristic equation of a 2×2 matrix Linear Algebra

Consider an $n \times n$ matrix A. The following statements are equivalent:

1. A is an orthogonal matrix
2. The columns of A form an orthonormal basis of \mathbb{R}^{n}
3. $A^{T} A=I_{n}$
4. $A^{-1}=A^{T}$
5. $\forall \vec{x} \in \mathbf{R}^{n} \quad\|A \vec{x}\|=\|\vec{x}\| \quad$ (preserves length)

Consider a subspace V of \mathbb{R}^{n}. The orthogonal complement V^{\perp} of V is the set of those vectors \vec{x} in \mathbb{R}^{n} that are orthogonal to all vectors in V :

$$
V^{\perp}=\{\vec{x}: \vec{v} \cdot \vec{x}=0, \forall \vec{v} \in V\}
$$

Note that V^{\perp} is the kernel of the orthogonal projection onto V.

$$
\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{-1}=\frac{1}{\operatorname{det}(A)}
$$

For any $n \times n$ matrix A, and any scalar k :

Elementary row op	Effect on determinant
scalar multiplication	$\operatorname{det}(A) \rightarrow k \cdot \operatorname{det}(A)$
row swap	$\operatorname{det}(A) \rightarrow-\operatorname{det}(A)$
multiple of one row added to another	$\operatorname{det}(A) \rightarrow \operatorname{det}(A)$

If A is an $n \times n$ matrix with columns, $\vec{v}_{1}, \ldots \vec{v}_{n}$, then,

$$
|\operatorname{det}(A)|=\left\|\vec{v}_{1}\right\|\left\|\vec{v}_{2}^{\perp}\right\| \cdots\left\|\vec{v}_{n}^{\perp}\right\|
$$

where $\vec{v}_{1}^{\perp}, \ldots \vec{v}_{n}^{\perp}$ are defined as in the Gram-Schmidt process.
Analogous results hold for column operations.

The eigenvalues of an $n \times n$ matrix A correspond to the solutions of the characteristic equation given by:

$$
|A-\lambda I|=0
$$

Consider an $n \times n$ matrix A. A nonzero vector \vec{v} in \mathbb{R}^{n} is called an eigenvector of A if $A \vec{v}$ is a scalar multiple of \vec{v}. That is, if

$$
A \vec{v}=\lambda \vec{v}
$$

for some scalar λ. Note that this scalar may be zero. This scalar λ is caled the eigenvalue associated with the eigenvector \vec{v}.

Given a 2×2 matrix A :

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0
$$

The sum of the diagonal entries of a square matrix A is called the trace of A, and is denoted by $\operatorname{tr}(A)$.

