DEFINITION	DEFINITION
reduced row–echelon form	rank
Linear Algebra	Linear Algebra
Definition & Theorem	DEFINITION
number of solutions of a linear system	linear combination
Linear Algebra	Linear Algebra
Definition	Theorem
subspaces of \mathbb{R}^n	image and kernel are subspaces
Linear Algebra	Linear Algebra
DEFINITION	DEFINITION
linear independence	basis
Linear Algebra	Linear Algebra
Theorem	Algorithm
number of vectors in a basis	constructing a basis of the image
Linear Algebra	Linear Algebra

The $rank$ of a matrix A , is the number of leading 1s in $rref(A)$.	 A matrix is in reduced row-echelon form if all of the following conditions are satisfied: 1. If a row has nonzero entries, then the first nonzero entry is 1. 2. If a column contains a leading 1, then all other entries in that column are zero. 3. If a row contains a leading 1, then each row above contains a leading 1 further to the left.
A linear combination is a vector in \mathbb{R}^n created by adding together scalar multiples of other vectors in \mathbb{R}^n . For example, if c_1, \ldots, c_m are in \mathbb{R} , then $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_m \vec{v}_m$ is a linear combination. We say \vec{x} is a linear combination of $\vec{v}_1, \ldots, \vec{v}_m$.	If a system has at least one solution, then it is said to be consistent. If a system has no solutions, then it is said to be inconsistent (overdetermined). A consistent system has either • infinitely many solutions (underdetermined) • exactly one solution (exactly determined)
If $T(\vec{x}) = A\vec{x}$ is a linear transformation from \mathbb{R}^m to \mathbb{R}^n , then • $ker(T) = ker(A)$ is a subspace of \mathbb{R}^m • $im(T) = im(A)$ is a subspace of \mathbb{R}^n	 A subset W of Rⁿ is called a subspace of Rⁿ if it has the following three properties: 1. W contains the zero vector for Rⁿ. 2. W is closed under addition (if w
Consider vectors $\vec{v}_1, \ldots, \vec{v}_m$ from a subspace V of \mathbb{R}^n . These vectors are said to form a basis of V , if they meet the following two requirements: 1. they span V 2. they are linearly independent	Consider vectors $\vec{v}_1, \ldots, \vec{v}_m$ in \mathbb{R}^n . These vectors are said to be <i>linearly independent</i> if none of them is a linear combination of the preceding vectors. One way to think of this is that none of the vectors is redundant. Otherwise the vectors are said to be <i>linearly dependent</i> .
To construct a basis of the image of A , pick those column vectors of A that correspond to the columns of $rref(A)$ that contain leading 1s.	All bases of a subspace V of \mathbb{R}^n consist of the same number of vectors. In other words, they all have the same dimension.

DEFINITION	THEOREM
linear relations	rank-nullity theorem
Linear Algebra	Linear Algebra
DEFINITION	DEFINITION
dimension	linear transformation
Linear Algebra	Linear Algebra
THEOREM	Theorem
line arity	$det(A^T) =$
Linear Algebra	Linear Algebra
Theorem	Theorem
ker(A) =	$(imA)^{\perp} =$
Linear Algebra	Linear Algebra
THEOREM	DEFINITION
$(AB)^T =$	symmetric and skew-symmetric matrices
Linear Algebra	Linear Algebra

For any $n \times m$ matrix A the following equation holds: $dim(im(A)) + dim(ker(A)) = m$ Alternatively, if we define the $dim(ker(A))$ to be the $nullity$ of A , then we can rewrite the above as: $rank(A) + nullity(A) = m$ Some mathemeticians refer to this as the fundamental theorem of linear algebra.	Consider vectors $\vec{v}_1, \ldots, \vec{v}_m$ in \mathbb{R}^n . An equation of the form $c_1\vec{v}_1, + \ldots + c_m\vec{v}_m = \vec{0}$ is called a <i>linear relation</i> among the vectors $\vec{v}_1, \ldots, \vec{v}_m$. The <i>trivial relation</i> with $c_1, \ldots, c_m = 0$ is always true. Non-trivial relations (where at least one of the coefficients c_i is nonzero) may or may not exist among the vectors.
A function T that maps vectors from \mathbb{R}^m to \mathbb{R}^n is called a $linear\ transformation$ if there is an $n\times m$ matrix A such that $T(\vec{x})=A\vec{x}$ for all \vec{x} in \mathbb{R}^m .	For any subspace V of \mathbb{R}^n , the number of vectors in a basis of V is called the $dimension$ of V and is denoted by $dim(V)$.
$det(A^T) = det(A)$	A transformation T is $linear$ iff (if and only if), for all vectors \vec{v}, \vec{w} and all scalars k • $T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$ • $T(k\vec{v}) = kT(\vec{v})$
$(imA)^{\perp} = ker(A^T)$	$ker(A) = ker(A^T A)$
Square matrix A is $symmetric \Leftrightarrow A^T = A$ Square matrix A is $skew\text{-}symmetric \Leftrightarrow A^T = -A$	$(AB)^T = B^T A^T$

DEFINITION	Theorem
$orthogonal\ complement$	properties of orthogonal matrices
Linear Algebra	Linear Algebra
Theorem	Theorem
determinants of similar matrices	determinant of an inverse
Linear Algebra	Linear Algebra
Theorem	Theorem
the determinant in terms of the columns	elementary row operations and determinants
Linear Algebra	Linear Algebra
DEFINITION	Theorem
eigenvectors and eigenvalues	eigenvalues and characteristic equation
Linear Algebra	Linear Algebra
Definition	Theorem
trace	characteristic equation of a 2×2 matrix
Linear Algebra	Linear Algebra

Consider an $n \times n$ matrix A. The following statements are equivalent:

- 1. A is an orthogonal matrix
- 2. The columns of A form an orthonormal basis of \mathbb{R}^n
- 3. $A^T A = I_n$
- 4. $A^{-1} = A^T$
- 5. $\forall \vec{x} \in \mathbf{R}^n \quad ||A\vec{x}|| = ||\vec{x}|| \quad \text{(preserves length)}$

Consider a subspace V of \mathbb{R}^n . The orthogonal complement V^{\perp} of V is the set of those vectors \vec{x} in \mathbb{R}^n that are orthogonal to all vectors in V:

$$V^{\perp} = \{ \vec{x} : \vec{v} \cdot \vec{x} = 0, \forall \vec{v} \in V \}$$

Note that V^{\perp} is the kernel of the orthogonal projection onto V.

$$det(A^{-1}) = (det A)^{-1} = \frac{1}{det(A)}$$

$$A \sim B \Rightarrow det(A) = det(B)$$

For any $n \times n$ matrix A, and any scalar k:

Elementary row op	Effect on determinant
scalar multiplication	$det(A) \to k \cdot det(A)$
row swap	$det(A) \rightarrow -det(A)$
multiple of one row	$det(A) \to det(A)$
added to another	

Analogous results hold for column operations.

If A is an $n \times n$ matrix with columns, $\vec{v}_1, \dots \vec{v}_n$, then,

$$|det(A)| = ||\vec{v}_1|| ||\vec{v}_2^{\perp}|| \cdots ||\vec{v}_n^{\perp}||$$

where $\vec{v}_1^\perp, \dots \vec{v}_n^\perp$ are defined as in the Gram-Schmidt process.

The eigenvalues of an $n \times n$ matrix A correspond to the solutions of the *characteristic equation* given by:

$$|A - \lambda I| = 0$$

Consider an $n \times n$ matrix A. A **nonzero** vector \vec{v} in \mathbb{R}^n is called an *eigenvector* of A if $A\vec{v}$ is a scalar multiple of \vec{v} . That is, if

$$A\vec{v} = \lambda \vec{v}$$

for some scalar λ . Note that this scalar may be zero. This scalar λ is called the *eigenvalue* associated with the eigenvector \vec{v} .

Given a 2×2 matrix A:

$$det(A - \lambda I) = \lambda^2 - tr(A)\lambda + det(A) = 0$$

The sum of the diagonal entries of a square matrix A is called the *trace* of A, and is denoted by tr(A).