DEFINITION		Definition	
reduced row–echelon form		rank	
LII DEFINITION & THEOREM	near Algebra	Definition	Linear Algebra
number of solutions of a linear system		linear combination	
LI	near Algebra	Theorem	Linear Algebra
subspaces of \mathbb{R}^n		image and kernel are subspaces	
LIN	near Algebra	Definition	Linear Algebra
linear independence		basis	
Lin	near Algebra	Algorithm	Linear Algebra
number of vectors in a basis		constructing a basis of	the image

The rank of a matrix A, is the number of leading 1s in rref(A).

A linear combination is a vector in \mathbb{R}^n created by adding together scalar multiples of other vectors in \mathbb{R}^n . For example, if c_1, \ldots, c_m are in \mathbb{R} , then

$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_m \vec{v}_m$$

is a linear combination. We say \vec{x} is a linear combination of $\vec{v}_1, \ldots, \vec{v}_m$.

If $T(\vec{x}) = A\vec{x}$ is a linear transformation from \mathbb{R}^m to \mathbb{R}^n , then

- ker(T) = ker(A) is a subspace of \mathbb{R}^m
- im(T) = im(A) is a subspace of \mathbb{R}^n

A matrix is in *reduced row–echelon form* if all of the following conditions are satisfied:

- 1. If a row has nonzero entries, then the first nonzero entry is 1.
- 2. If a column contains a leading 1, then all other entries in that column are zero.
- 3. If a row contains a leading 1, then each row above contains a leading 1 further to the left.

If a system has at least one solution, then it is said to be *consistent*. If a system has no solutions, then it is said to be *inconsistent* (*overdetermined*).

A consistent system has either

- infinitely many solutions (underdeterminied)
- exactly one solution (*exactly determined*)

A subset W of \mathbb{R}^n is called a *subspace* of \mathbb{R}^n if it has the following three properties:

- 1. W contains the zero vector for \mathbb{R}^n .
- 2. W is closed under addition (if $\vec{w_1}$ and $\vec{w_2}$ are both in W, then so is $\vec{w_1} + \vec{w_2}$).
- 3. W is closed under scalar multiplication (if \vec{w} is in W and k is any scalar, then $k\vec{w}$ is also in W).

Consider vectors $\vec{v}_1, \ldots, \vec{v}_m$ from a subspace V of \mathbb{R}^n . These vectors are said to form a *basis* of V, if they meet the following two requirements:

- 1. they span V
- 2. they are linearly independent

Consider vectors $\vec{v}_1, \ldots, \vec{v}_m$ in \mathbb{R}^n . These vectors are said to be *linearly independent* if none of them is a linear combination of the preceding vectors. One way to think of this is that none of the vectors is redundant.

Otherwise the vectors are said to be *linearly dependent*.

To construct a basis of the image of A, pick those column vectors of A that correspond to the columns of rref(A) that contain leading 1s. All bases of a subspace V of \mathbb{R}^n consist of the same number of vectors. In other words, they all have the same dimension.

 $(AB)^T =$

symmetric and skew-symmetric matrices

LINEAR ALGEBRA

LINEAR ALGEBRA

LINEAR ALGEBRA

DEFINITION

dimension

LINEAR ALGEBRA

linearity

LINEAR ALGEBRA

Theorem

ker(A) =

LINEAR ALGEBRA

Theorem

Theorem

DEFINITION

linear relations

linear transformation

rank-nullity theorem

LINEAR ALGEBRA

LINEAR ALGEBRA

Theorem

 $det(A^T) =$

 $(imA)^{\perp} =$

DEFINITION

Theorem

Theorem

LINEAR ALGEBRA

For any $n \times m$ matrix A the following equation holds:

$$\dim(im(A)) + \dim(ker(A)) = m$$

Alternatively, if we define the dim(ker(A)) to be the *nullity* of A, then we can rewrite the above as:

$$rank(A) + nullity(A) = m$$

Some mathemeticians refer to this as the fundamental theorem of linear algebra.

Consider vectors $\vec{v}_1, \ldots, \vec{v}_m$ in \mathbb{R}^n . An equation of the form

$$c_1\vec{v}_1, +\ldots + c_m\vec{v}_m = 0$$

is called a *linear relation* among the vectors $\vec{v}_1, \ldots, \vec{v}_m$. The *trivial relation* with $c_1, \ldots, c_m = 0$ is always true. Non-trivial relations (where at least one of the coefficients c_i is nonzero) may or may not exist among the vectors.

A function T that maps vectors from \mathbb{R}^m to \mathbb{R}^n is called a *linear transformation* if there is an $n \times m$ matrix A such that

$$T(\vec{x}) = A\vec{x}$$

for all \vec{x} in \mathbb{R}^m .

For any subspace V of \mathbb{R}^n , the number of vectors in a basis of V is called the *dimension* of V and is denoted by dim(V).

A transformation T is linear iff (if and only if), for all vectors \vec{v},\vec{w} and all scalars k

•
$$T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$$

• $T(k\vec{v}) = kT(\vec{v})$

$$(imA)^{\perp} = ker(A^T)$$
 $ker(A) = ker(A^TA)$

Square matrix A is symmetric $\Leftrightarrow A^T = A$

Square matrix A is skew-symmetric $\Leftrightarrow A^T = -A$

$$(AB)^T = B^T A^T$$

 $det(A^T) = det(A)$

DEFINITION	Theorem	
orthogonal complement	properties of orthogonal matrices	
Linear Algebra Theorem	Linear Algebra Theorem	
determinants of similar matrices	determinant of an inverse	
Linear Algebra Theorem	Linear Algebra Theorem	
the determinant in terms of the columns	elementary row operations and determinants	
LINEAR ALGEBRA	Linear Algebra Theorem	
eigenvectors and eigenvalues	eigenvalues and characteristic equation	
Linear Algebra	Linear Algebra Theorem	
trace	characteristic equation of a 2×2 matrix	

Consider an $n \times n$ matrix A. The following statements are equivalent:

- 1. A is an orthogonal matrix
- 2. The columns of A form an orthonormal basis of \mathbb{R}^n
- 3. $A^T A = I_n$
- 4. $A^{-1} = A^T$
- 5. $\forall \vec{x} \in \mathbf{R}^n \quad ||A\vec{x}|| = ||\vec{x}|| \quad \text{(preserves length)}$

Consider a subspace V of \mathbb{R}^n . The orthogonal complement V^{\perp} of V is the set of those vectors \vec{x} in \mathbb{R}^n that are orthogonal to all vectors in V:

$$V^{\perp} = \{ \vec{x} : \vec{v} \cdot \vec{x} = 0, \forall \vec{v} \in V \}$$

Note that V^{\perp} is the kernel of the orthogonal projection onto V.

$$det(A^{-1}) = (detA)^{-1} = \frac{1}{det(A)}$$

$$A \sim B \Rightarrow det(A) = det(B)$$

For any $n \times n$ matrix A, and any scalar k:

Elementary row op	Effect on determinant
scalar multiplication	$det(A) \to k \cdot det(A)$
row swap	$det(A) \to -det(A)$
multiple of one row	$det(A) \to det(A)$
added to another	

Analogous results hold for column operations.

The eigenvalues of an $n \times n$ matrix A correspond to the solutions of the *characteristic equation* given by:

$$|A - \lambda I| = 0$$

If A is an $n \times n$ matrix with columns, $\vec{v}_1, \ldots, \vec{v}_n$, then,

$$|det(A)| = \|\vec{v}_1\| \|\vec{v}_2^{\perp}\| \cdots \|\vec{v}_n^{\perp}|$$

where $\vec{v}_1^{\perp}, \dots \vec{v}_n^{\perp}$ are defined as in the Gram-Schmidt process.

Consider an $n \times n$ matrix A. A **nonzero** vector \vec{v} in \mathbb{R}^n is called an *eigenvector* of A if $A\vec{v}$ is a scalar multiple of \vec{v} . That is, if

$$A\vec{v} = \lambda\vec{v}$$

for some scalar λ . Note that this scalar may be zero. This scalar λ is caled the *eigenvalue* associated with the eigenvector \vec{v} .

Given a 2×2 matrix A:

$$det(A - \lambda I) = \lambda^2 - tr(A)\lambda + det(A) = 0$$

The sum of the diagonal entries of a square matrix A is called the *trace* of A, and is denoted by tr(A).