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Definition

gradient
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the vector operator ∇
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divergence
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curl
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Definition

5 species of second derivatives

Electrodynamics

Theorem

curl–less or irrotational fields

Electrodynamics

Theorem

divergence–less or solenoidal fields

Electrodynamics

Theorem

gradient theorem
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Green’s theorem
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The gradient ∇T points in the direction of maximum
increase of the function T .

∇T ≡ x̂
∂T
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The magnitude |∇T | is the slope along this direction.
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The divergence is a measure of how much the vector
function v spreads out from the point in question.
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By applying∇ twice we can construct five species of second
derivatives.

1. divergence of a gradient ∇ · (∇T ) = ∇2 (Laplacian)

2. curl of a gradient ∇× (∇T ) = 0 (always)

3. gradient of a divergence ∇(∇ · v) (seldom occurs)

4. divergence of a curl ∇ · (∇× v) = 0 (always)

5. curl of a curl ∇× (∇× v) = ∇(∇ · v)−∇2v
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The curl is a measure of how much the vector field
“curls around” the point in question.

For a given vector field F the following statements are
equivalent, i.e. each implies the others.

1. ∇ · F = 0 everywhere

2.
∫

F · da is independent of surface

3.
∮

F · da = 0 over any closed surface

4. F = ∇×A for some vector potential A

For a given vector field F the following statements are
equivalent, i.e. each implies the others.

1. ∇× F = 0 everywhere

2.
∫ b

a
F · dl is path independent

3.
∮

F · dl = 0 on any closed loop

4. F = −∇V for some scalar potential V

∫
(∇ ·A)dV =

∮
A · da

∫ b

a

(∇f) · dl = f(b)− f(a)



Theorem

Stokes’ theorem
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∫
(∇×A) · da =

∮
A · dl


