Copyright & License	Formula
Copyright © 2007 Jason Underdown Some rights reserved.	quadratic formula
Calculus	I Calculus I
Definition	Theorem
absolute value	properties of absolute values
Calculus	I Calculus I
Definition	Definition
equation of a line in various forms	equation of a circle
Calculus	I Calculus I
Definition	DEFINITION
\sin, \cos, \tan	\sec, \csc, \tan, \cot
Calculus	I Calculus I
Definition	Definition
midpoint formula	function
Calculus	I Calculus I

The solutions or roots of the quadratic equation $ax^2 + bx + c = 0$ are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	These flashcards and the accompanying LATEX source code are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License. For more information, see creativecommons.org. You can contact the author at: jasonu at physics utah edu File last updated on Sunday 8 th July, 2007, at 17:15
1. $ ab = a b $ 2. $\left \frac{a}{b}\right = \frac{ a }{ b }$ 3. $ a+b \le a + b $ 4. $ a-b \ge a - b $	$ x =\left\{egin{array}{cc} x & x\geq 0\ -x & x<0 \end{array} ight.$
The equation of a circle centered at (h, k) with radius r is: $(x - h)^2 + (y - k)^2 = r^2$	FormEquationpoint-slope $y - y_1 = m(x - x_1)$ slope-intercept $y = mx + b$ two point $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$ standard $Ax + By + C = 0$
$\sec \theta = \frac{1}{\cos \theta} \csc \theta = \frac{1}{\sin \theta}$ $\tan \theta = \frac{\sin \theta}{\cos \theta} \cot \theta = \frac{\cos \theta}{\sin \theta}$	$\sin \theta = \frac{\text{opp}}{\text{hyp}}$ $\frac{\text{hyp}}{\text{opp}} \qquad \cos \theta = \frac{\text{adj}}{\text{hyp}}$ $\tan \theta = \frac{\text{opp}}{\text{adj}}$
A function is a mapping that associates with each object x in one set, which we call the domain , a single value $f(x)$ from a second set which we call the range .	If $P(x_1, y_1)$ and $Q(x_2, y_2)$ are two points, then the mid- point of the line segment that joins these two points is given by: $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Definition	Definition
even and odd functions	limit
Calculus	S I CALCULUS I
DEFINITION	Theorem
one–sided limit	limit exists iff both the right–handed and left–handed limits exist and are equal
Calculus	S I CALCULUS I
Theorem	Theorem
main limit theorem (part 1)	main limit theorem (part 2)
Calculus	S I CALCULUS I
Theorem	Theorem
$squeeze \ theorem$	two special trigonometric limits
Calculus	I CALCULUS I
Definition	Theorem
point-wise continuity	composition limit theorem
Calculus	S I CALCULUS I

If a function
$$f(x)$$
 is defined on an open interval containing c , except possibly at c , then the
limit of $f(x)$ as a approaches c equals L is denoted
$$\lim_{x \to c} f(x) = L$$
even $f(-x) = f(x)$ for all $x = ag, x^2, cos(x)$
odd $f(-x) = -f(x)$ for all $x = ag, x^2, cos(x)$
odd $f(-x) = -f(x)$ for all $x = ag, x^2, cos(x)$
odd $f(-x) = -f(x)$ for all $x = ag, x^2, cos(x)$
odd $f(-x) = -f(x)$ for all $x = ag, x^2, cos(x)$ Image: $f(x) = L \Leftrightarrow \lim_{x \to c^+} f(x) = \lim_{x \to c^+} f(x) = L$ right handed limit
 $\lim_{x \to c^+} f(x) = L$ Image: $f(x) = L \Leftrightarrow \lim_{x \to c^+} f(x) = \lim_{x \to c^+} f(x) = L$ right handed limit
 $\lim_{x \to c^+} f(x) = L$ Let f_1g be functions that have limits at c , and let n
be a positive integer.Let k be a constant, and f_1g be functions that have limits at c . $0 < x - c < \delta \Rightarrow |f(x) - L| < \varepsilon$ Image: $f(x) = \lim_{x \to -c} f(x)$
 $1 \lim_{x \to -c} f(x)$ Image: $f(x) = \lim_{x \to -c} f(x)$
 $2 \lim_{x \to -c} f(x) = \lim_{x \to -c} f(x)$ $0 \lim_{x \to -c} f(x) = \lim_{x \to -c} f(x)$
 $1 \lim_{x \to -c} f(x)$ Image: $f(x) = \lim_{x \to -c} f(x)$
 $3 \lim_{x \to -c} f(x)$ Image: $f(x) = \lim_{x \to -c} f(x) + \lim_{x \to -c} g(x)$ $0 \lim_{x \to -c} f(x) = 0$ when n is even.Suppose f_1g and h are functions which satisfy the
inequality $f(x) : g(x) = \lim_{x \to -c} f(x) + \lim_{x \to -c} g(x)$ $\lim_{x \to 0} \frac{\sin x}{x} = 1$
 $\lim_{x \to 0} \frac{\sin x}{x} = 0$ Let f be defined on an open interval containing c , then
we say that f is point-vise continuous at c if
 $\lim_{x \to 0} f(g(x)) = f(\lim_{x \to 0} g(x)) = f(L)$ If $\lim_{x \to 0} f(g(x)) = f(\lim_{x \to 0} g(x)) = f(L)$ Let f be defined on an open interval containing c , then
we say that f is point-vise continuous at c if
 $\lim_{x \to 0} f(x) = f(c)$

Definition	Definition
continuity on an interval	derivative
Calculus I	Calculus I
DEFINITION	Theorem
equivalent form for the derivative	differentiability and continuity
Calculus I	Calculus I
Theorem	Theorem
constant and power rules	differentiation rules
Calculus I	Calculus I
Theorem	Theorem
derivatives of trig functions	chain rule
Calculus I	Calculus I
Theorem	Definition
generalized power rule	notation for higher-order derivatives
Calculus I	Calculus I

The derivative of a function f is another function f' (read "f prime") whose value at x is $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ provided the limit exists and is not ∞ or $-\infty$.	A function f is said to be continuous on an open inteval iff f is continuous at every point of the open interval. A function f is said to be continuous on a closed interval $[a, b]$ iff 1. f is continuous on (a, b) and 2. $\lim_{x\to a^+} f(x) = f(a)$ and 3. $\lim_{x\to b^-} f(x) = f(b)$
If the function f is differentiable at c , then f is continuous at c .	$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$
Let f and g be functions of x and k a constant. 1. scalar product rule $(kf)' = kf'$ 2. sum rule $(f + g)' = f' + g'$ 3. difference rule $(f - g)' = f' - g'$ 4. product rule $(fg)' = f'g + fg'$ 5. quotient rule $\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}$	$f(x) = k \qquad f'(x) = 0$ $f(x) = x \qquad f'(x) = 1$ $f(x) = x^n \qquad f'(x) = nx^{n-1}$
Let $u = g(x)$ and $y = f(u)$. If g is differentiable at x , and f is differentiable at $u = g(x)$, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x and $(f \circ g)'(x) = f'(g(x))g'(x)$ In Leibniz notation $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	$(\sin x)' = \cos x$ $(\cos x)' = -\sin x$ $(\tan x)' = \sec^2 x$ $(\cot x)' = -\csc^2 x$ $(\sec x)' = \sec x \tan x$ $(\csc x)' = -\csc x \cot x$
Derivative $f'(x)$ y' D Leibnizfirst $f'(x)$ y' $D_x y$ $\frac{dy}{dx}$ second $f''(x)$ y'' $D_x^2 y$ $\frac{d^2 y}{dx^2}$ third $f'''(x)$ y''' $D_x^3 y$ $\frac{d^3 y}{dx^3}$ fourth $f^{(4)}(x)$ $y^{(4)}$ $D_x^4 y$ $\frac{d^4 y}{dx^4}$ \vdots \vdots \vdots \vdots \vdots nth $f^{(n)}(x)$ $y^{(n)}$ $D_x^n y$ $\frac{d^n y}{dx^n}$	If f is a differentiable function and n is an integer, then the power of the function $y = [f(x)]^n$ is differentiable and $\frac{dy}{dx} = n [f(x)]^{n-1} f'(x)$

Theorem		Theorem	
extreme value theorem	n	intermediate value theor	em
	Calculus I		Calculus I
DEFINITION		Definition	
critical point stationary point singular point		increasing decreasing monotonic	
	Calculus I		Calculus I
Theorem		Definition	
monotonicity theorem	1	concave up concave down	
	Calculus I		Calculus I
Theorem		Definition	
concavity theorem		inflection point	
	Calculus I		Calculus I
DEFINITION		Theorem	
local maximum local minimum local extremum		first derivative test	
	Calculus I		Calculus I

If the function f is continuous on the closed interval $[a, b]$ and v is any value between the minimum and maximum of f on $[a, b]$, then f takes on the value v .	If the function f is continuous on the closed interval $[a, b]$, then f has a maximum value and a minimum value on the interval $[a, b]$.
A function f defined on the interval I is • increasing on $I \Leftrightarrow$ for every $x_1, x_2 \in I$ $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ • decreasing on $I \Leftrightarrow$ for every $x_1, x_2 \in I$ $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ The function f is said to be monotonic on I if f is either increasing or decreasing on I .	 If f is a function defined on an open interval containing the point c, we call c a critical point of f iff either f'(c) = 0 or f'(c) does not exist Furthermore when f'(c) = 0 we call c a stationary point of f, and when f'(c) does not exist we call c a singular point of f.
Suppose f is differentiable on an open interval I , then if f' is increasing on I we say that f is concave up on I . If f' is decreasing on I we say that f is concave down on I .	 Suppose f is differentiable on an open interval I, then f'(x) > 0 for each x ∈ I ⇒ f is increasing on I f'(x) < 0 for each x ∈ I ⇒ f is decreasing on I
Let f be continuous at c , then the ordered pair $(c, f(c))$ is called an inflection point of f if f is concave up on one side of c and concave down on the other side of c .	 Let f be twice differentiable on the open interval I. f''(x) > 0 for each x ∈ I ⇒ f is concave up on I f''(x) < 0 for each x ∈ I ⇒ f is concave down on I
 Let f be differentiable on an open interval (a, b) that contains c. 1. f'(x) > 0 ∀x ∈ (a, c) and f'(x) < 0 ∀x ∈ (c, b) ⇒ f(c) is a local maximum of f. 2. f'(x) < 0 ∀x ∈ (a, c) and f'(x) > 0 ∀x ∈ (c, b) ⇒ f(c) is a local minimum of f. 3. If f'(x) has the same sign on both sides of c, then f(c) is not a local extremum. 	Let the function f be defined on an interval I con- taining c . We say f has a local maximum at c iff there exists an interval (a, b) containing c such that $f(x) \leq f(c)$ for all $x \in (a, b)$. We say f has a local minimum at c iff there exists an interval (a, b) containing c such that $f(x) \geq f(c)$ for all $x \in (a, b)$. A local extremum is either a local maximum or a local minimum.

Theorem	Theorem
second derivative test	mean value theorem
Calculus I	Calculus I
Calculus I	Calculus I
Calculus I	Calculus I
Calculus I	Calculus I
Calculus I	Calculus I

If f is continuous on a closed interval $[a, b]$ and differ- entiable on its interior (a, b) , then there is at least one point c in (a, b) such that $\frac{f(b) - f(a)}{b - a} = f'(c)$ or equivalently f(b) - f(a) = f'(c)(b - a)	 Let f be twice differentiable on an open interval containing c, and suppose f'(c) = 0. 1. If f''(c) < 0, then f has a local maximum at c. 2. If f''(c) > 0, then f has a local minimum at c. 3. If f''(c) = 0, then the test fails.