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CaLcuLus I

DEFINITION

absolute value

CaLcuLus I

DEFINITION

equation of a line in various forms

CaLcuLus I

DEFINITION

sin, cos, tan
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DEFINITION

midpoint formula
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ForMuLA

quadratic formula
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THEOREM

properties of absolute values
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DEFINITION
equation of a circle
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DEFINITION
sec, ¢sc, tan, cot
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DEFINITION
function
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The solutions or roots of the quadratic equation
ax? 4 bx + ¢ = 0 are given by

b+ Vb2 —4dac
= 2a
L. |ab| = |al[b]
al _ |a|
2 fy-
bl [yl
3. la+b| < la] + [b]

>~

- Ja—b] = [|a] — [b]]

The equation of a circle centered at (h, k) with radius
7 is:

(=) + (g =) = r?

1 1
0 = 0=
sec cosf ¢ sin 6
in 0 0
tanf = S cotf = C?S
cos sin 6

A function is a mapping that associates with each
object z in one set, which we call the domain, a single
value f(z) from a second set which we call the range.
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= T x>0
Tl -z <0
Form Equation

point-slope y—y1 =m(x—x1)

slope—intercept y=mx—+b
two point Y-y = Lo (x — 1)
To — T1
standard Ax+By+C=0
. opp
sinf = —
hyp
hyp ad]
cosf =
opp hyp
] opp
adJ tan 9 = aid‘]

If P(x1,y1) and Q(x2, y2) are two points, then the mid-
point of the line segment that joins these two points is

given by:
r1+2x2 Y1ty
2 72



DEFINITION

even and odd functions
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DEFINITION

one—sided limit
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THEOREM

main limit theorem (part 1)
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THEOREM

squeeze theorem
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DEFINITION

point-wise continuity
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DEFINITION

limit
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THEOREM

limit exists iff both the right—-handed and
left—handed limits exist and are equal
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THEOREM

main limit theorem (part 2)
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THEOREM

two special trigonometric limits
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THEOREM

composition limit theorem
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If a function f(x) is defined on an open interval con-
taining ¢, except possibly at ¢, then the
limit of f(x) as x approaches ¢ equals L is denoted

lim f(x) =L

r—c

The above equality holds if and only if for any € > 0
there exists a § > 0 such that

O<|z—cl<d=|f(x)—L|<e

lim f(z) =L < lim+f(z): lim f(x)=1L

Tr—c Tr—C Tr—c—

Let f,g be functions that have limits at ¢, and let n
be a positive integer.

f(z) _ limg . f(x)
g(z)  limg_.g(x)

8. lim,_.[f(2)]" = [limy_. f(x)]"

9. lim, . {/f(z) = {/lim,—. f(x) provided that
lim, . f(z) > 0 when n is even.

7. limg,_.. if limg, . g(x) #0

. sinz
li =1
z—0 T
. 1—coszx
lim =
x—0 x

If lim, . g(x) = L and f is continuous at L, then

lim f(g(x)) = f(lim g(x)) = f(L)

xr—c r—cC

even f(—x)=f(z) forallz eg 22 cos()
odd f(—z)=—f(z) forallz e.g z,sin(z)
right—handed limit
lim f(z)=1L

r—ct
iff for any £ > 0 there exists a d such that

O<z—c<d=|f(z)—L|<e

Let k be a constant, and f, g be functions that have limits
at c.

1. limg,..k=k

2. limg ..z =c

3. limy—c kf(x) = klim,—. f(x)

4. limy—c[f(x) + g(2)] = limz—c f(z) + limy—.c g(z)
5. limg—c[f(z) — g(x)] = limy—. f(z) — lim,—.. g(x)
6. limy—c[f(z) - g(x)] = limg—c f(2) - limg—c g(x)

Suppose f, g and h are functions which satisfy the
inequality f(z) < g(z) < h(z) for all x near ¢, (except
possibly at ¢). Then

lim f(z) = lim h(z) = L = limg(x) = L

xr—c r—cC r—cC

Let f be defined on an open interval containing ¢, then
we say that f is point-wise continuous at c if

lim f(z) = f(c)

r—c



DEFINITION

continuity on an interval
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DEFINITION

equivalent form for the derivative
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THEOREM

constant and power rules
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THEOREM

derivatives of trig functions
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THEOREM

generalized power rule
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DEFINITION

derivative
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THEOREM

differentiability and continuity
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THEOREM
differentiation rules
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THEOREM
chain rule
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DEFINITION

notation for higher-order derivatives
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The derivative of a function f is another function f’
(read “f prime”) whose value at x is

i L@+ )~ S(@)

h—0 h

fiz) =

provided the limit exists and is not co or —oo.

If the function f is differentiable at ¢, then f is con-
tinuous at c.

Let f and g be functions of x and k a constant.
1. scalar product rule (kf) = kf’
2. sumrule (f+g) =f+¢
3. difference rule (f —g)' = f' — ¢
4. product rule (fg) = f'g+ fg'

f>'_ fla—d'f

5. quotient rule ( 5
g g

Let u = g(z) and y = f(u). If g is differentiable at z,
and f is differentiable at u = g(x), then the composite
function (f o g)(z) = f(g(x)) is differentiable at z and

(fog)(x)=f(9(z))g'(x)

In Leibniz notation

dy  dydu
dr  dudzx
Derivative f(z) y’ D Leibniz

first f'(z) Yy Dazy dy
" " 2 d?
second ' (x) y Dzy dw—g
: ! /. 3 d>
third 7 (x) y"" D3y #
fourth  f®W(z) y@ Dby 4y

who fM@) Y™ Dpy

A function f is said to be continuous on an open
inteval iff f is continuous at every point of the open
interval.

A function f is said to be continuous on a closed
interval [a, D] iff

1. f is continuous on (a,b) and
2. lim,_ .+ f(z) = f(a) and
3. lim, - f(x) = f(b)

F(e)  tim £@) = 1)

x—cC xr—cC

fa) =k f(@) =0
@) =2 fl)=1
f(@) = J'(@) = na"!

If f is a differentiable function and n is an integer,
then the power of the function

y = [f(x)]"
is differentiable and
dy _ n—1 pr
L=l @) " @)



THEOREM

extreme value theorem

CavLcurus I
DEFINITION
critical point
stationary point
singular point
Cavrcurus I
THEOREM
monotonicity theorem
Cavrcurus I
THEOREM
concavity theorem
Cavrcurus I
DEFINITION

local maximum
local minimum
local extremum
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THEOREM

intermediate value theorem

Cavrcurus I
DEFINITION
increasing
decreasing
monotonic
Cavrcurus I
DEFINITION
concave up
concave down
Cavrcurus I
DEFINITION
inflection point
Cavrcurus I
THEOREM
first derivative test
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If the function f is continuous on the closed interval
[a,b] and v is any value between the minimum and
maximum of f on [a,b], then f takes on the value v.

A function f defined on the interval I is

e increasing on I < for every xq1,20 €
r1 < x2 = f(21) < f(22)

e decreasing on [ < for every z1,z0 € 1
r1 < x2 = f(21) > f(22)

The function f is said to be monotonic on [ if f is
either increasing or decreasing on I.

Suppose [ is differentiable on an open interval I, then
if f/ is increasing on I we say that f is concave up
on I.

If f/ is decreasing on I we say that f is concave
down on I.

Let f be continuous at ¢, then the ordered pair (¢, f(c))
is called an inflection point of f if f is concave up
on one side of ¢ and concave down on the other side of
c.

Let f be differentiable on an open interval (a,b) that
contains c.

1. f'(z) > 0 Vz € (a,c¢) and f'(x) < 0 Vz €
(¢,b) = f(c) is a local maximum of f.

2. f'(z) < 0 Vz € (a,c)and f'(z) > 0 Vz €
(¢,b) = f(c) is a local minimum of f.

3. If f'(x) has the same sign on both sides of ¢, then
f(c) is not a local extremum.

If the function f is continuous on the closed interval
[a,b], then f has a maximum value and a minimum
value on the interval [a, b].

If f is a function defined on an open interval containing
the point ¢, we call ¢ a critical point of f iff either

e f'(c)=0or
e f/(c) does not exist

Furthermore when f’(c¢) = 0 we call ¢ a stationary
point of f, and when f’(c) does not exist we call ¢ a
singular point of f.

Suppose f is differentiable on an open interval I, then
e f'(x) >0 for each x € [ = f is increasing on [

e f'(x) <0 for each x € I = f is decreasing on [

Let f be twice differentiable on the open interval I.

o f’(x)>0foreach z €l =
f is concave up on [

o f’(x) <0 foreach zel=
f is concave down on I

Let the function f be defined on an interval I con-
taining ¢. We say f has a local maximum at c iff
there exists an interval (a,b) containing ¢ such that
f(x) < f(e) for all z € (a,b).

We say f has a local minimum at ¢ iff there
exists an interval (a,b) containing ¢ such that

f(z) > f(c) for all z € (a,b).

A local extremum is either a local maximum
or a local minimum.



THEOREM THEOREM

second derivative test mean value theorem
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If f is continuous on a closed interval [a, b] and differ-
entiable on its interior (a,b), then there is at least one
point ¢ in (a,b) such that

f(0) = f(a)

1D o

or equivalently

Let f be twice differentiable on an open interval con-
taining ¢, and suppose f’(¢) = 0.

1. If f”(¢) < 0, then f has a local maximum at
c.

2. If f”(c) > 0, then f has a local minimum at c.

3. If f”(c) = 0, then the test fails.



