Copyright © 2007 Jason Underdown

 Some rights reserved.
Calculus I

Definition

absolute value

Calculus I

Definition
equation of a line in various forms

Calculus I

Definition
\sin , \cos , \tan

Calculus I

Definition

Formula
quadratic formula

Calculus I

Theorem
properties of absolute values

Definition
equation of a circle

Definition
$\mathrm{sec}, \mathrm{csc}, \tan , \cot$

Definition

The solutions or roots of the quadratic equation $a x^{2}+b x+c=0$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

1. $|a b|=|a||b|$
2. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$
3. $|a+b| \leq|a|+|b|$
4. $|a-b| \geq||a|-|b||$

The equation of a circle centered at (h, k) with radius r is:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

$$
\begin{aligned}
& \sec \theta=\frac{1}{\cos \theta} \quad \csc \theta=\frac{1}{\sin \theta} \\
& \tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

A function is a mapping that associates with each object x in one set, which we call the domain, a single value $f(x)$ from a second set which we call the range.

These flashcards and the accompanying $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ source code are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License. For more information, see creativecommons.org. You can contact the author at:
jasonu at physics utah edu
File last updated on Sunday $8^{\text {th }}$ July, 2007, at 17:15

$$
|x|= \begin{cases}x & x \geq 0 \\ -x & x<0\end{cases}
$$

Form	Equation
point-slope	$y-y_{1}=m\left(x-x_{1}\right)$
slope-intercept	$y=m x+b$
two point	$y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
standard	$\sin \theta=\frac{\text { opp }}{\text { hyp }}$ $\cos \theta=\frac{\operatorname{adj}}{\text { hyp }}$ copp
$\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$	

If $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ are two points, then the midpoint of the line segment that joins these two points is given by:

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

main limit theorem (part 2)
squeeze theorem

Calculus I
two special trigonometric limits

Theorem
Definition
point-wise continuity
composition limit theorem

If a function $f(x)$ is defined on an open interval containing c, except possibly at c, then the
limit of $f(x)$ as x approaches c equals L is denoted

$$
\lim _{x \rightarrow c} f(x)=L
$$

The above equality holds if and only if for any $\varepsilon>0$ there exists a $\delta>0$ such that

$$
0<|x-c|<\delta \Rightarrow|f(x)-L|<\varepsilon
$$

$$
\lim _{x \rightarrow c} f(x)=L \Leftrightarrow \lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)=L
$$

Let f, g be functions that have limits at c, and let n be a positive integer.
7. $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$ if $\lim _{x \rightarrow c} g(x) \neq 0$
8. $\lim _{x \rightarrow c}[f(x)]^{n}=\left[\lim _{x \rightarrow c} f(x)\right]^{n}$
9. $\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow c} f(x)}$ provided that $\lim _{x \rightarrow c} f(x)>0$ when n is even.

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0
\end{gathered}
$$

If $\lim _{x \rightarrow c} g(x)=L$ and f is continuous at L, then

$$
\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)=f(L)
$$

even $\quad f(-x)=f(x)$ for all $x \quad$ e.g. $x^{2}, \cos (x)$
odd $\quad f(-x)=-f(x) \quad$ for all $x \quad$ e.g. $x, \sin (x)$

right-handed limit

$$
\lim _{x \rightarrow c^{+}} f(x)=L
$$

iff for any $\varepsilon>0$ there exists a δ such that

$$
0<x-c<\delta \Rightarrow|f(x)-L|<\varepsilon
$$

Let k be a constant, and f, g be functions that have limits at c.

1. $\lim _{x \rightarrow c} k=k$
2. $\lim _{x \rightarrow c} x=c$
3. $\lim _{x \rightarrow c} k f(x)=k \lim _{x \rightarrow c} f(x)$
4. $\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)$
5. $\lim _{x \rightarrow c}[f(x)-g(x)]=\lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} g(x)$
6. $\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)$

Suppose f, g and h are functions which satisfy the inequality $f(x) \leq g(x) \leq h(x)$ for all x near c, (except possibly at c). Then

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L \Rightarrow \lim _{x \rightarrow c} g(x)=L
$$

Let f be defined on an open interval containing c, then we say that f is point-wise continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

continuity on an interval

Calculus I
derivative

Calculus I

Definition
equivalent form for the derivative

Calculus I

Theorem
constant and power rules

Calculus I

Theorem
derivatives of trig functions

Calculus I

Theorem
generalized power rule
Definition
notation for higher-order derivatives

The derivative of a function f is another function f^{\prime} (read "f prime") whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists and is not ∞ or $-\infty$.

If the function f is differentiable at c, then f is continuous at c.

Let f and g be functions of x and k a constant.

1. scalar product rule $(k f)^{\prime}=k f^{\prime}$
2. sum rule $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
3. difference rule $(f-g)^{\prime}=f^{\prime}-g^{\prime}$
4. product rule $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
5. quotient rule $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-g^{\prime} f}{g^{2}}$

Let $u=g(x)$ and $y=f(u)$. If g is differentiable at x, and f is differentiable at $u=g(x)$, then the composite function $(f \circ g)(x)=f(g(x))$ is differentiable at x and

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

In Leibniz notation

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Derivative	$f^{\prime}(x)$	y^{\prime}	D	Leibniz
first	$f^{\prime}(x)$	y^{\prime}	$D_{x} y$	$\frac{d y}{d x}$
second	$f^{\prime \prime}(x)$	$y^{\prime \prime}$	$D_{x}^{2} y$	$\frac{d^{2} y}{d x^{2}}$
third	$f^{\prime \prime \prime}(x)$	$y^{\prime \prime \prime}$	$D_{x}^{3} y$	$\frac{d^{3} y}{d x^{3}}$
fourth	$f^{(4)}(x)$	$y^{(4)}$	$D_{x}^{4} y$	$\frac{d^{4} y}{d x^{4}}$
\vdots	\vdots	\vdots	\vdots	\vdots
nth	$f^{(n)}(x)$	$y^{(n)}$	$D_{x}^{n} y$	$\frac{d^{n} y}{d x^{n}}$

A function f is said to be continuous on an open inteval iff f is continuous at every point of the open interval.
A function f is said to be continuous on a closed interval $[a, b]$ iff

1. f is continuous on (a, b) and
2. $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ and
3. $\lim _{x \rightarrow b^{-}} f(x)=f(b)$

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

$$
\begin{array}{ll}
f(x)=k & f^{\prime}(x)=0 \\
f(x)=x & f^{\prime}(x)=1 \\
f(x)=x^{n} & f^{\prime}(x)=n x^{n-1}
\end{array}
$$

$$
\begin{aligned}
(\sin x)^{\prime} & =\cos x \\
(\cos x)^{\prime} & =-\sin x \\
(\tan x)^{\prime} & =\sec ^{2} x \\
(\cot x)^{\prime} & =-\csc ^{2} x \\
(\sec x)^{\prime} & =\sec x \tan x \\
(\csc x)^{\prime} & =-\csc x \cot x
\end{aligned}
$$

If f is a differentiable function and n is an integer, then the power of the function

$$
y=[f(x)]^{n}
$$

is differentiable and

$$
\frac{d y}{d x}=n[f(x)]^{n-1} f^{\prime}(x)
$$

extreme value theorem
critical point
stationary point
singular point
Definition

Theorem
monotonicity theorem

Theorem
concavity theorem

DEFINITION

Calculus I
intermediate value theorem

Definition

Calculus I

Calculus I
Theorem

Calculus I
increasing
decreasing
monotonic

CALCULUS I
Calculus I

Definition
concave up
concave down

Definition
inflection point

Calculus I

Theorem
first derivative test

If the function f is continuous on the closed interval $[a, b]$ and v is any value between the minimum and maximum of f on $[a, b]$, then f takes on the value v.

A function f defined on the interval I is

- increasing on $I \Leftrightarrow$ for every $x_{1}, x_{2} \in I$

$$
x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)
$$

- decreasing on $I \Leftrightarrow$ for every $x_{1}, x_{2} \in I$

$$
x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)
$$

The function f is said to be monotonic on I if f is either increasing or decreasing on I.

Suppose f is differentiable on an open interval I, then if f^{\prime} is increasing on I we say that f is concave up on I.

If f^{\prime} is decreasing on I we say that f is concave down on I.

Let f be continuous at c, then the ordered pair $(c, f(c))$ is called an inflection point of f if f is concave up on one side of c and concave down on the other side of c.

Let f be differentiable on an open interval (a, b) that contains c.

1. $f^{\prime}(x)>0 \forall x \in(a, c)$ and $f^{\prime}(x)<0 \forall x \in$ $(c, b) \Rightarrow f(c)$ is a local maximum of f.
2. $f^{\prime}(x)<0 \forall x \in(a, c)$ and $f^{\prime}(x)>0 \forall x \in$ $(c, b) \Rightarrow f(c)$ is a local minimum of f.
3. If $f^{\prime}(x)$ has the same sign on both sides of c , then $f(c)$ is not a local extremum.

If the function f is continuous on the closed interval $[a, b]$, then f has a maximum value and a minimum value on the interval $[a, b]$.

If f is a function defined on an open interval containing the point c, we call c a critical point of f iff either

- $f^{\prime}(c)=0$ or
- $f^{\prime}(c)$ does not exist

Furthermore when $f^{\prime}(c)=0$ we call c a stationary point of f, and when $f^{\prime}(c)$ does not exist we call c a singular point of f.

Suppose f is differentiable on an open interval I, then

- $f^{\prime}(x)>0$ for each $x \in I \Rightarrow f$ is increasing on I
- $f^{\prime}(x)<0$ for each $x \in I \Rightarrow f$ is decreasing on I

Let f be twice differentiable on the open interval I.

- $f^{\prime \prime}(x)>0$ for each $x \in I \Rightarrow$ f is concave up on I
- $f^{\prime \prime}(x)<0$ for each $x \in I \Rightarrow$ f is concave down on I

Let the function f be defined on an interval I containing c. We say f has a local maximum at c iff there exists an interval (a, b) containing c such that $f(x) \leq f(c)$ for all $x \in(a, b)$.

We say f has a local minimum at c iff there exists an interval (a, b) containing c such that $f(x) \geq f(c)$ for all $x \in(a, b)$.

A local extremum is either a local maximum or a local minimum.

Calculus I

Calculus I

Calculus I

Calculus I

Calculus I

Calculus I

If f is continuous on a closed interval $[a, b]$ and differentiable on its interior (a, b), then there is at least one point c in (a, b) such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

or equivalently

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Let f be twice differentiable on an open interval containing c, and suppose $f^{\prime}(c)=0$.

1. If $f^{\prime \prime}(c)<0$, then f has a local maximum at c.
2. If $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
3. If $f^{\prime \prime}(c)=0$, then the test fails.
