Copyright & License	Definition
Copyright © 2007 Jason Underdown Some rights reserved.	statement
Real Analysis I	Real Analysis I
Definition	Definition
sentential connectives	negation
Real Analysis I	Real Analysis I
Definition	Definition
conjunction	disjunction
Real Analysis I	Real Analysis I
DEFINITION	Definition
implication or conditional	antecedant & consequent hypothesis & conclusion
Real Analysis I	Real Analysis I
Definition	Definition
equivalence	negation of a conjunction
Real Analysis I	Real Analysis I

A sentence that can unambiguously be classified as true or false.	These flashcards and the accompanying LATEX source code are licensed under a Creative Commons Attribution–NonCommercial–ShareAlike 3.0 License. For more information, see creativecommons.org. You can contact the author at: jasonu at physics utah edu File last updated on Thursday 2 nd August, 2007, at 02:18
Let p stand for a statement, then $\sim p$ (read not p) represents the logical opposite or negation of p .	not, and, or, if then, if and only if
If p and q are statements, then the statement p or q (called the disjunction of p and q and denoted $\mathbf{p} \lor \mathbf{q}$) is true unless both p and q are false. $\frac{p \mid q \mid p \lor q}{T \mid T \mid T}$ $\frac{T \mid F \mid T}{T \mid F \mid T}$ $\frac{F \mid F \mid F}{F \mid F \mid F}$	If p and q are statements, then the statement p and q (called the conjunction of p and q and denoted $\mathbf{p} \wedge \mathbf{q}$) is true only when both p and q are true, and false otherwise. $ \frac{p \mid q \mid p \wedge q}{T \mid T \mid T} $ $ \frac{p \mid q \mid p \wedge q}{T \mid F \mid F} $ $ \frac{F \mid F \mid F}{F \mid F} $
If p , then q . In the above, the statement p is called the antecedant or hypothesis , and the statement q is called the consequent or conclusion .	A statement of the form if p then q is called an implication or conditional . $ \frac{p \mid q \mid p \Rightarrow q}{T \mid T \mid T} $ $ \frac{p \mid q \mid p \Rightarrow q}{T \mid T \mid T} $ $ \frac{p \mid T \mid T \mid T}{T \mid F \mid F} $ $ \frac{p \mid T \mid T \mid T}{F \mid F \mid T} $
$\sim (p \land q) \Leftrightarrow (\sim p) \lor (\sim q)$	A statement of the form " p if and only if q " is the conjunction of two implications and is called an equiva- lence.

Definition	Definition
negation of a disjunction	negation of an implication
Real Analysis I	Real Analysis I
Definition	Definition
tautology	universal quantifier
Real Analysis I	Real Analysis I
DEFINITION	Definition
existential quantifier	contrapositive
Real Analysis I	Real Analysis I
Definition	Definition
converse	inverse
Real Analysis I	Real Analysis I
Definition	Definition
contradiction	subset
Real Analysis I	Real Analysis I

$\sim (p \Rightarrow q) \Leftrightarrow p \land (\sim q)$	$\sim (p \lor q) \Leftrightarrow (\sim p) \land (\sim q)$
$\forall x, p(x)$ In the above statement, the universal quantifier denoted by \forall is read "for all", "for each", or "for every".	A sentence whose truth table contains only T is called a tautology . The following sentences are examples of tautologies ($c \equiv \text{contradiction}$): $(p \Leftrightarrow q) \Leftrightarrow (p \Rightarrow q) \land (q \Rightarrow p)$ $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$ $(p \Rightarrow q) \Leftrightarrow [(p \land \sim q) \Rightarrow c]$
The implication $p \Rightarrow q$ is logically equivalent with its contrapositive: $\sim q \Rightarrow \sim p$	$\exists x \ni p(x)$ In the above statement, the existential quantifier denoted by \exists is read "there exists", "there is at least one". The symbol \ni is just shorthand for "such that".
Given the implication $p \Rightarrow q$ then its inverse is $\sim p \Rightarrow \sim q$ An implication is <i>not</i> logically equivalent to its inverse. The inverse is the contrapositive of the converse.	Given the implication $p \Rightarrow q$ then its converse is $q \Rightarrow p$ But they are <i>not</i> logically equivalent.
Let A and B be sets. We say that A is a subset of B if every element of A is an element of B. In symbols, this is denoted $A \subseteq B \text{ or } B \supseteq A$	A contradiction is a statement that is always false. Contradictions are symbolized by the letter c or by two arrows pointing directly at each other. $\Rightarrow \Leftarrow$

DEFINITION	Definition
proper subset	set equality
Real Analysis I	Real Analysis I
Definition	Definition
union, intersection, complement, disjoint	indexed family of sets
Real Analysis I	Real Analysis I
Definition	Definition
pairwise disjoint	ordered pair
Real Analysis I	Real Analysis I
Definition	Definition
Cartesian product	relation
Real Analysis I	Real Analysis I
DEFINITION	Definition
equivalence relation	equivalence class
Real Analysis I	Real Analysis I

Let A and B be sets. We say that A is a equal to B if A is a subset of B and B is a subset of A. $A = B \Leftrightarrow A \subseteq B \text{ and } B \subseteq A$	Let A and B be sets. A is a proper subset of B if A is a subset of B and there exists an element in B that is not in A .
If for each element j in a nomempty set J there corresponds a set A_j , then $\mathscr{A} = \{A_j : j \in J\}$ is called an indexed family of sets with J as the index set.	Let A and B be sets. $A \cup B = \{x : x \in A \text{ or } x \in B\}$ $A \cap B = \{x : x \in A \text{ and } x \in B\}$ $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$ If $A \cap B = \emptyset$ then A and B are said to be disjoint .
The ordered pair (a, b) is the set whose members are $\{a\}$ and $\{a, b\}$. $(a, b) = \{\{a\}, \{a, b\}\}$	If \mathscr{A} is a collection of sets, then \mathscr{A} is called pairwise disjoint if $\forall A, B \in \mathscr{A}$, where $A \neq B$ then $A \cap B = \varnothing$
Let A and B be sets. A relaton between A and B is any subset R of $A \times B$. $a Rb \Leftrightarrow (a, b) \in R$	If A and B are sets, then the Cartesian product or cross product of A and B is the set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$. $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$
The equivalence class of $x \in S$ with respect to an equivalence relation R is the set $E_x = \{y \in S : y Rx\}$	A relation R on a set S is an equivalence relation if for all $x, y, z \in S$ it satisfies the following criteria: 1. $x Rx$ reflexivity 2. $x Ry \Rightarrow y Rx$ symmetry 3. $x Ry$ and $y Rz \Rightarrow x Rz$ transitivity

Theorem	Definition
partition	function between A and B
Real Analysis I	Real Analysis I
DEFINITION	Definition
domain	range & codomain
Real Analysis I	Real Analysis I
DEFINITION	Definition
surjective or onto	injective or 1–1
Real Analysis I	Real Analysis I
Definition	Definition
bijective	characteristic or indicator function
Real Analysis I	Real Analysis I
DEFINITION	Definition
image and pre-image	composition of functions
Real Analysis I	Real Analysis I

Let A and B be sets. A function between A and B is a nonempty relation $f \subseteq A \times B$ such that $[(a,b) \in f \text{ and } (a,b') \in f] \Longrightarrow b = b'$	 A partition of a set S is a collection 𝒫 of nonempty subsets of S such that 1. Each x ∈ S belongs to some subset A ∈ 𝒫. 2. For all A, B ∈ 𝒫, if A ≠ B, then A ∩ B = Ø A member of a set 𝒫 is called a piece of the partition.
Let A and B be sets, and let $f \subseteq A \times B$ be a function between A and B. The range of f is the set of all second elements of members of f. rng $f = \{b \in B : \exists a \in A \ni (a, b) \in f\}$ The set B is referred to as the codomain of f.	Let A and B be sets, and let $f \subseteq A \times B$ be a function between A and B. The domain of f is the set of all first elements of members of f. dom $f = \{a \in A : \exists b \in B \ni (a, b) \in f\}$
The function $f : A \to B$ is injective or (1–1) if: $\forall a, a' \in A, f(a) = f(a') \Longrightarrow a = a'$	The function $f : A \to B$ is surjective or onto if $B = \operatorname{rng} f$. Equivalently, $\forall b \in B, \exists a \in A \ni b = f(a)$
Let A be a nonempty set and let $S \subseteq A$, then the characteristic function $\chi_S : A \to \{0, 1\}$ is defined by $\chi_S(a) = \begin{cases} 0 & a \notin S \\ 1 & a \in S \end{cases}$	A function $f : A \to B$ is said to be bijective if f is both surjective and injective.
Suppose $f : A \to B$ and $g : B \to C$, then the composition of g with f denoted by $g \circ f : A \to C$ is given by $(g \circ f)(x) = g(f(x))$ In terms of ordered pairs this means $g \circ f = \{(a, c) \in A \times C : \exists b \in B \ni (a, b) \in f \land (b, c) \in g\}$	Suppose $f : A \to B$, and $C \subseteq A$, then the image of C under f is $f(C) = \{f(x) : x \in C\}$ If $D \subseteq B$ then the pre-image of D in f is $f^{-1}(D) = \{x \in A : f(x) \in D\}$

Definition	Definition
inverse function	identity function
Real Analysis I	Real Analysis I
DEFINITION	Definition
equinumerous	finite & infinite sets
Real Analysis I	Real Analysis I
Definition	Definition
cardinal number & transfinite	denumerable
Real Analysis I	Real Analysis I
Definition	Definition
countable & uncountable	power set
Real Analysis I	Real Analysis I
DEFINITION	Definition
continuum hypothesis	algebraic & transcendental
Real Analysis I	Real Analysis I

A function that maps a set A onto itself is called the identity function on A , and is denoted i_A . If $f: A \to B$ is a bijection, then $f^{-1} \circ f = i_A$ $f \circ f^{-1} = i_B$	Let $f : A \to B$ be bijective. The inverse function of f is the function $f^{-1} : B \to A$ given by $f^{-1} = \{(y, x) \in B \times A : (x, y) \in f\}$
A set S is said to be finite if $S = \emptyset$ or if there exists an $n \in \mathbb{N}$ and a bijection $f : \{1, 2, \dots, n\} \to S.$ If a set is not finite, it is said to be infinite .	Two sets S and T are equinumerous , denoted $S \sim T$, if there exists a bijection from S onto T .
A set S is said to be denumerable if there exists a bijection $f:\mathbb{N}\to S$	Let $I_n = \{1, 2,, n\}$. The cardinal number of I_n is n . Let S be a set. If $S \sim I_n$ then S has n elements. The cardinal number of \emptyset is defined to be 0. Finally, if a cardinal number is not finite, it is said to be transfinite .
Given any set S , the power set of S denoted by $\mathscr{P}(S)$ is the collection of all possible subsets of S .	If a set is finite or denumerable, then it is countable . If a set is not countable, then it is uncountable .
A real number is said to be algebraic if it is a root of a polynomial with integer coefficients. If a number is not algebraic, it is called transcenden- tal .	Given that $ \mathbb{N} = \aleph_0$ and $ \mathbb{R} = c$, we know that $c > \aleph_0$, but is there any set with cardinality say λ such that $\aleph_0 < \lambda < c$? The conjecture that there is no such set was first made by Cantor and is known as the continuum hypothesis .

Γ

Ахіом	Definition
well–ordering property of $\mathbb N$	basis for induction, induction step, induction hypothesis
Real Analysis I	Real Analysis I
Definition	Ахіом
recursion relation or recurrence relation	field axioms
Real Analysis I	Real Analysis I
Ахіом	Definition
order axioms	absolute value
Real Analysis I	Real Analysis I
Theorem	Definition
triangle inequality	ordered field
Real Analysis I	Real Analysis I
DEFINITION	Definition
irrational number	upper & lower bound
Real Analysis I	Real Analysis I

In the Principle of Mathematical Induction, part (1) which refers to $P(1)$ being true is known as the basis for induction . Part (2) where one must show that $\forall k \in \mathbb{N}, P(k) \Rightarrow P(k+1)$ is known as the induction step . Finally, the assumption in part (2) that $P(k)$ is true is known as the induction hypothesis .	If S is a nonempty subset of N, then there exists an element $m \in S$ such that $\forall k \in S \ m \leq k$.
A1 Closure under addition A2 Addition is commutative A3 Addition is associative A4 Additive identity is 0 A5 Unique additive inverse of x is $-x$ M1 Closure under multiplication M2 Multiplication is commutative M3 Multiplication is associative M4 Multiplicative identity is 1 M5 If $x \neq 0$, then the unique multiplicative inverse is $1/x$ DL $\forall x, y, z \in \mathbb{R}, x(y+z) = xy + xz$	A recurrence relation is an equation that defines a sequence recursively: each term of the sequence is defined as a function of the preceding terms. The Fibonacci numbers are defined using the linear recurrence relation: $F_n = F_{n-2} + F_{n-1}$ $F_1 = 1$ $F_2 = 1$
If $x \in \mathbb{R}$, then the absolute value of x , is denoted $ x $ and defined to be $ x = \begin{cases} x & x \ge 0\\ -x & x < 0 \end{cases}$	$\begin{array}{l} \text{O1 } \forall x, y \in \mathbb{R} \text{ exactly one of the relations} \\ x = y, x < y, x > y \text{ holds. (trichotomy)} \\ \text{O2 } \forall x, y, z \in \mathbb{R}, x < y \text{ and } y < z \Rightarrow x < z. \\ (\text{transitivity}) \\ \text{O3 } \forall x, y, z \in \mathbb{R}, x < y \Rightarrow x + z < y + z \\ \text{O4 } \forall x, y, z \in \mathbb{R}, x < y \text{ and } z > 0 \Rightarrow xz < yz. \end{array}$
If S is a field and satisfies (O1–O4) of the order axioms, then S is an ordered field .	Let $x, y \in \mathbb{R}$ then $ x+y \le x + y $ alternatively, $ a-b \le a-c + c-b $
Let S be a subset of \mathbb{R} . If there exists an $m \in \mathbb{R}$ such that $m \geq s \forall s \in S$, then m is called an upper bound of S. Similarly, if $m \leq s \forall s \in S$, then m is called a lower bound of S.	Suppose $x \in \mathbb{R}$. If $x \neq \frac{m}{n}$ for some $m, n \in \mathbb{Z}$, then x is irrational .

Г

Definition	Definition
bounded	maximum & minimum
Real Analysis I	Real Analysis I
Definition	Definition
supremum	infimum
Real Analysis I	Real Analysis I
Ахюм	Definition
Completeness Axiom	Archimedean ordered field
Real Analysis I	Real Analysis I
DEFINITION	Definition
dense	extended real numbers
Real Analysis I	Real Analysis I
DEFINITION	Definition
neighborhood & radius	deleted neighborhood
Real Analysis I	Real Analysis I

If m is an upper bound of S and also in S , then m is called the maximum of S .	A set S is said to be bounded if it is bounded above
Similarly, if m is a lower bound of S and also in S , then m is called the minimum of S .	and bounded below.
Let S be a nonempty subset of \mathbb{R} . If S is bounded	Let S be a nonempty subset of \mathbb{R} . If S is bounded
below, then the greatest lower bound is called the	above, then the least upper bound is called the
infimum , and is denoted inf S.	supremum , and is denoted sup S.
$m = \inf S \Leftrightarrow$	$m = \sup S \Leftrightarrow$
(a) $m \leq s, \forall s \in S$ and	(a) $m \ge s, \forall s \in S$ and
(b) if $m' > m$, then $\exists s' \in S \ni s' < m'$	(b) if $m' < m$, then $\exists s' \in S \ni s' > m'$
An ordered field F has the Archimedean property	Every nonempty subset S of \mathbb{R} that is bounded above
if	has a least upper bound. That is, sup S exists and is
$\forall x \in F \exists n \in \mathbb{N} \ni x < n$	a real number.
For convenience, we extend the set of real numbers with two symbols ∞ and $-\infty$, that is $\mathbb{R} \cup \{\infty, -\infty\}$. Then for example if a set S is not bounded above, then we can write $\sup S = \infty$	A set S is dense in a set T if $\forall t_1, t_2 \in T \exists s \in S \ni t_1 < s < t_2$
Let $x \in \mathbb{R}$ and $\varepsilon > 0$, then a deleted neighborhood	Let $x \in \mathbb{R}$ and $\varepsilon > 0$, then a neighborhood of x is
of x is	$N(x;\varepsilon) = \{y \in \mathbb{R} : y - x < \varepsilon\}$
$N^*(x;\varepsilon) = \{y \in \mathbb{R} : 0 < y - x < \varepsilon\}$	The number ε is referred to as the radius of $N(x;\varepsilon)$.

Definition	Definition
interior point	boundary point
Real Analysis I	Real Analysis I
DEFINITION	Definition
closed and open sets	accumulation point
Real Analysis I	Real Analysis I
DEFINITION	Definition
isolated point	closure of a set
Real Analysis I	Real Analysis I
Definition	Definition
open cover	subcover
Real Analysis I	Real Analysis I
DEFINITION	DEFINITION
compact set	sequence
Real Analysis I	Real Analysis I

A point $x \in \mathbb{R}$ is a boundary point of S if $\forall \varepsilon > 0$, $N(x;\varepsilon) \cap S \neq \emptyset$ and $N(x;\varepsilon) \cap (\mathbb{R} \setminus S) \neq \emptyset$ In other words, every neighborhood of a boundary point must intersect the set S and the complement of S in \mathbb{R} . The set of all boundary points of S is denoted bd S .	Let $S \subseteq \mathbb{R}$. A point $x \in \mathbb{R}$ is an interior point of S if there exists a neigborhood $N(x; \varepsilon)$ such that $N \subseteq S$. The set of all interior points of S is denoted int S .
Suppose $S \subseteq \mathbb{R}$, then a point $x \in \mathbb{R}$ is called an accumulation point of S if $\forall \varepsilon > 0, N^*(x;\varepsilon) \cap S \neq \emptyset$ In other words, every deleted neighborhood of x con- tains a point in S. The set of all accumulation points of S is denoted S'.	Let $S \subseteq \mathbb{R}$. If bd $S \subseteq S$, then S is said to be closed . If bd $S \subseteq \mathbb{R} \setminus S$, then S is said to be open .
Let $S \subseteq \mathbb{R}$. The closure of S is defined by cl $S = S \cup S'$ In other words, the closure of a set is the set itself unioned with its set of accumulation points.	Let $S \subseteq \mathbb{R}$. If $x \in S$ and $x \notin S'$, then x is called an isolated point of S .
Suppose $\mathscr{G} \subseteq \mathscr{F}$ are both families of indexed sets that cover a set S , then since \mathscr{G} is a subset of \mathscr{F} it is called a subcover of S .	An open cover of a set S is a family or collection of sets whose union contains S . $S \subseteq \mathscr{F} = \{F_n : n \in \mathbb{N}\}$
A sequence s is a function whose domain is \mathbb{N} . How- ever, instead of denoting the value of s at n by $s(n)$, we denote it s_n . The ordered set of all values of s is denoted (s_n) .	A set S is compact iff <i>every</i> open cover of S contains a finite subcover of S . Note: This is a difficult definition to use because to show that a set is compact you must show that <i>every</i> open cover contains a finite subcover.

Г

DEFINITION	Definition
converge & diverge	bounded sequence
Real Analysis I	Real Analysis I
DEFINITION	Definition
diverge to $+\infty$	diverge to $-\infty$
Real Analysis I	Real Analysis I
Definition	Definition
nondecreasing, nonincreasing & monotone	increasing & decreasing
Real Analysis I	Real Analysis I
DEFINITION	Definition
Cauchy sequence	subsequence
Real Analysis I	Real Analysis I
DEFINITION	Definition
subsequential limit	lim sup & lim inf
Real Analysis I	Real Analysis I

A sequence is said to be bounded if its range $\{s_n : n \in \mathbb{N}\}$ is bounded. Equivalently if, $\exists M \ge 0$ such that $\forall n \in \mathbb{N}, s_n \le M$	A sequence (s_n) is said to converge to $s \in \mathbb{R}$, denoted $(s_n) \to s$ if $\forall \varepsilon > 0, \exists N \text{ such that } \forall n \in \mathbb{N},$ $n > N \Rightarrow s_n - s < \varepsilon$ If a sequence does not converge, it is said to diverge .
A sequence (s_n) is said to diverge to $-\infty$ if $\forall M \in \mathbb{R}, \exists N \text{ such that}$ $n > N \Rightarrow s_n < M$	A sequence (s_n) is said to diverge to $+\infty$ if $\forall M \in \mathbb{R}, \exists N \text{ such that}$ $n > N \Rightarrow s_n > M$
A sequence (s_n) is increasing if $s_n < s_{n+1} \forall n \in \mathbb{N}$ A sequence (s_n) is decreasing if $s_n > s_{n+1} \forall n \in \mathbb{N}$	A sequence (s_n) is nondecreasing if $s_n \leq s_{n+1} \forall n \in \mathbb{N}$ A sequence (s_n) is nonincreasing if $s_n \geq s_{n+1} \forall n \in \mathbb{N}$ A sequence is monotone if it is either nondecreasing or nonincreasing.
If (s_n) is any sequence and (n_k) is any strictly in- creasing sequence, then the sequence (s_{n_k}) is called a subsequence of (s_n) .	A sequence (s_n) is said to be a Cauchy sequence if $\forall \varepsilon > 0, \exists N \text{ such that}$ $m, n > N \Rightarrow s_n - s_m < \varepsilon$
Suppose S is the set of all subsequential limits of a sequence (s_n) . The lim sup (s_n) , shorthand for the limit superior of (s_n) is defined to be lim sup $(s_n) = \sup S$ The lim inf (s_n) , shorthand for the limit inferior of (s_n) is defined to be lim inf $(s_n) = \inf S$	A subsequential limit of a sequence (s_n) is the limit of some subsequence of (s_n) .

Definition	Definition
oscillating sequence	limit of a function
Real Analysis I	Real Analysis I
Definition	Definition
sum, product, multiple, & quotient of functions	right–hand limit
Real Analysis I	Real Analysis I
DEFINITION	Definition
left–hand limit	continuous function at a point
Real Analysis I	Real Analysis I
Definition	Definition
continuous on S continuous	bounded function
Real Analysis I	Real Analysis I
DEFINITION	Definition
uniform continuity	extension of a function
Real Analysis I	Real Analysis I

Suppose $f : D \to \mathbb{R}$ where $D \subseteq \mathbb{R}$, and suppose c is an accumulation point of D . Then the limit of f at c is L is denoted by $\lim_{x \to c} f(x) = L$ and defined by $\forall \varepsilon > 0, \exists \delta > 0 \text{ such that}$ $ x - c < \delta \Rightarrow f(x) - L < \varepsilon$	If lim inf $(s_n) < \lim \sup (s_n)$, then we say that the sequence (s_n) oscillates.
Let $f : (a, b) \to \mathbb{R}$, then the right-hand limit of f at a is denoted $\lim_{x \to a^+} f(x) = L$ and defined by $\forall \varepsilon > 0, \exists \delta > 0 \text{ such that}$ $a < x < a + \delta \Rightarrow f(x) - L < \varepsilon$	Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$, then we define: 1. sum $(f+g)(x) = f(x) + g(x)$ 2. product $(fg)(x) = f(x)g(x)$ 3. multiple $(kf)(x) = kf(x)$ $k \in \mathbb{R}$ 4. quotient $\left(\frac{f}{g}\right) = \frac{f(x)}{g(x)}$ if $g(x) \neq 0$ $\forall x \in D$
Let $f : D \to \mathbb{R}$ where $D \subseteq \mathbb{R}$, and suppose $c \in D$, then f is continuous at c if $\forall \varepsilon > 0, \exists \delta > 0$ such that $ x - c < \delta \Rightarrow f(x) - f(c) < \varepsilon$	Let $f : (a, b) \to \mathbb{R}$, then the left-hand limit of f at b is denoted $\lim_{x \to b^{-}} f(x) = L$ and defined by $\forall \varepsilon > 0, \exists \delta > 0$ such that $b - \delta < x < b \Rightarrow f(x) - L < \varepsilon$
A function is said to be bounded if its range is bounded. Equivalently, $f: D \to \mathbb{R}$ is bounded if $\exists M \in \mathbb{R}$ such that $\forall x \in D, f(x) \leq M$	Let $f: D \to \mathbb{R}$ where $D \subseteq \mathbb{R}$. If f is continuous at each point of a subset $S \subseteq D$, then f is said to be continuous on S . If f is continuous on its entire domain D , then f is simply said to be continuous .
Suppose $f : (a, b) \to \mathbb{R}$, then the extension of f is denoted $\tilde{f} : [a, b] \to \mathbb{R}$ and defined by $\tilde{f}(x) = \begin{cases} u & x = a \\ f(x) & a < x < b \\ v & x = b \end{cases}$ where $\lim_{x \to a} f(x) = u$ and $\lim_{x \to b} f(x) = v$.	A function $f: D \to \mathbb{R}$ is uniformly continuous on D if $\forall \varepsilon > 0, \exists \delta > 0$ such that $ x - y < \delta \Rightarrow f(x) - f(y) < \varepsilon$

DEFINITION	Definition
differentiable at a point	strictly increasing function strictly decreasing function
Real Analysis I	Real Analysis I
Definition	Definition
limit at ∞	tends to ∞
Real Analysis I	Real Analysis I
Definition	Definition
Taylor polynomials for f at x_0	Taylor series
Real Analysis I	Real Analysis I
Definition	Definition
partition of an interval refinement of a partition	upper sum
Real Analysis I	Real Analysis I
DEFINITION	Definition
lower sum	upper integral lower integral
Real Analysis I	Real Analysis I

Suppose $f: I \to \mathbb{R}$ where I is an interval containing A function $f: D \to \mathbb{R}$ is said to be strictly increasthe point c. Then f is **differentiable at** c if the limit ing if $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $\forall x_1, x_2 \in D, \quad x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ A function $f: D \to \mathbb{R}$ is said to be strictly decreasexists and is finite. Whenever this limit exists and is ing if finite, we denote the **derivative of** f at c by $\forall x_1, x_2 \in D, \quad x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ Suppose $f:(a,\infty)\to\mathbb{R}$, then we say f tends to ∞ Suppose $f:(a,\infty)\to\mathbb{R}$, then the limit at infinity as $x \to \infty$ and denote it by of f denoted $\lim_{x \to \infty} f(x) = L$ $\lim_{x \to \infty} f(x) = \infty$ iff iff $\forall \varepsilon > 0$. $\exists N > a$ such that $\forall M \in \mathbb{R}, \exists N > a \text{ such that}$ $x > N \Rightarrow |f(x) - L| < \varepsilon$ $x > N \Rightarrow f(x) > M$ If f has derivatives of all orders in a neighborhood $p_0(x) = f(x_0)$ of x_0 , then the limit of the Taylor polynomials is an $p_1(x) = f(x_0) + f'(x_0)(x - x_0)$ infinite series called the **Taylor series** of f at x_0 . $p_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$ $f(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ $= f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots \left| p_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots + \frac{f^{(n)}(x - x_0)}{n!}(x - x_0)^n + \dots + \frac{f^{(n)}(x$ Suppose f is a bounded function on [a, b] and P = $\{x_0, \ldots, x_n\}$ is a partition of [a, b]. For each $i \in \{1, \ldots, n\}$ let A **partition** of an interval [a, b] is a finite set of points $P = \{x_0, x_1, x_2, \dots, x_n\}$ such that $M_i(f) = \sup\{f(x) : x \in [x_{i-1}, x_i]\}.$ $a = x_0 < x_1 < \ldots < x_n = b$ We define the **upper sum** of f with respect to P to be If P and P' are two partitions of [a, b] where $P \subset P'$ $U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i$ then P' is called a **refinement** of P. where $\Delta x_i = x_i - x_{i-1}$. Suppose f is a bounded function on [a, b] and P =Suppose f is a bounded function on [a, b]. We define $\{x_0, \ldots, x_n\}$ is a partition of [a, b]. the **upper integral** of f on [a, b] to be For each $i \in \{1, \ldots, n\}$ let $U(f) = \inf\{U(f, P) : P \text{ any partition of } [a, b]\}.$ $m_i(f) = \inf\{f(x) : x \in [x_{i-1}, x_i]\}.$ Similarly, we define the **lower integral** of f on [a, b]We define the **lower sum** of f with respect to P to to be be $L(f) = \sup\{L(f, P) : P \text{ any partition of } [a, b]\}.$ $L(f,P) = \sum_{i=1}^{n} m_i \Delta x_i$ where $\Delta x_i = x_i - x_{i-1}$.

DEFINITION	Definition
Riemann integrable	monotone function
Real Analysis I	Real Analysis I
DEFINITION	Definition
proper integral	improper integral
Real Analysis I	Real Analysis I
Definition	Definition
integral convergence integral divergence	infinite series partial sum
Real Analysis I	Real Analysis I
Definition convergent series sum	DEFINITION divergent series diverge to $+\infty$
Real Analysis I	Real Analysis I
Definition	Definition
harmonic series	geometric series
Real Analysis I	Real Analysis I

A function is said to be monotone if it is either increasing or decreasing. A function is increasing if $x < y \Rightarrow f(x) \le f(y)$. A function is decreasing if $x < y \Rightarrow f(x) \ge f(y)$.	Let $f : [a, b] \to \mathbb{R}$ be a bounded function. If $L(f) = U(f)$, then we say f is Riemann integrable or just integrable . Furthermore, $\int_{a}^{b} f = \int_{a}^{b} f(x) dx = L(f) = U(f)$ is called the Riemann integral or just the integral of f on $[a, b]$.
An improper integral is the limit of a definite integral, as an endpoint of the interval of integration approaches either a specified real number or ∞ or $-\infty$ or, in some cases, as both endpoints approach limits.	When a function f is bounded and the interval over
Let $f: (a, b] \to \mathbb{R}$ be integrable on $[c, b] \forall c \in (a, b]$. If $\lim_{c \to a^+} \int_c^b f$ exists then	which it is integrated is bounded, then if the integral
$\int_a^b f = \lim_{c \to a^+} \int_c^b f$	exists it is called a proper integral .
Let (a_k) be a sequence of real numbers, then we can create a new sequence of numbers (s_n) where each s_n in (s_n) corresponds to the sum of the first n terms of (a_k) . This new sequence of sums is called an infinite series and is denoted by $\sum_{n=0}^{\infty} a_n$. The <i>n</i> -th partial sum of the series, denoted by s_n is defined to be $s_n = \sum_{k=0}^n a_k$	Suppose $f : (a, b] \to \mathbb{R}$ is integrable on $[c, b] \forall c \in (a, b]$, futhermore let $L = \lim_{c \to a^+} \int_c^b f$. If L is finite, then the improper integral $\int_a^b f$ is said to converge to L . If $L = \infty$ or $L = -\infty$, then the improper integral is said to diverge .
If a series does not converge then it is divergent .	If (s_n) converges to a real number say s , then we say
If the $\lim_{n\to\infty} s_n = +\infty$ then the series is said to diverge	that the series $\sum_{n=0}^{\infty} a_n = s$ is convergent .
to $+\infty$.	Furthermore, we call s the sum of the series.
The geometric series is given by	The harmonic series is given by
$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$ The geometric series converges to $\frac{1}{1-x}$ for $ x < 1$, and diverges otherwise.	$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ The harmonic series diverges to $+\infty$.

DEFINITION	Definition
converge absolutely converge conditionally	power series
Real Analysis I	Real Analysis I
Definition	Definition
radius of convergence	interval of convergence
Real Analysis I	Real Analysis I
Definition	Definition
converges pointwise	converges uniformly
Real Analysis I	Real Analysis I
Definition	Definition
Real Analysis I	Real Analysis I
Definition	DEFINITION
Real Analysis I	Real Analysis I

Given a sequence (a_n) of real numbers, then the series $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$ is called a power series . The number a_n is called the <i>n</i> th coefficient of the series.	If $\sum a_n $ converges then the series $\sum a_n$ is said to converge absolutely . If $\sum a_n$ converges, but $\sum a_n $ diverges, then the series $\sum a_n$ is said to converge conditionally .
The interval of convergence of a power series is the set of all $x \in \mathbb{R}$ such that $\sum_{n=0}^{\infty} a_n x^n$ converges. By theorem we see that (for a power series centered at 0) this set will either be $\{0\}$, \mathbb{R} or a bounded interval centered at 0.	The radius of convergence of a power series $\sum a_n x^n$ is an extended real number R such that (for a power series centered at x_0) $ x - x_0 < R \Rightarrow \sum a_n x^n$ converges. Note that R may be 0, $+\infty$ or any number between.
Let (f_n) be a sequence of functions defined on a subset S of \mathbb{R} . Then (f_n) converges uniformly on S to a function f defined on S if $\forall \varepsilon > 0, \exists N \text{ such that } \forall x \in S$ $n > N \Rightarrow f_n(x) - f(x) < \varepsilon$	Let (f_n) be a sequence of functions defined on a subset S of \mathbb{R} . Then (f_n) converges pointwise on S if for each $x \in S$ the sequence of numbers $(f_n(x))$ converges. If (f_n) converges pointwise on S , then we define $f : S \to \mathbb{R}$ by $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in S$, and we say that (f_n) converges to f pointwise on S .

Г