Copyright & License	Тнеопем
Copyright © 2007 Erin Chamberlain Some rights reserved.	Theorem 1
Real Analysis I	Real Analysis I
THEOREM	Theorem
Theorem 2	$Theorem \ 3$
Real Analysis I	Real Analysis I
THEOREM	THEOREM
$Theorem \ 4$	$Theorem \ 5$
Real Analysis I	Real Analysis I
Тнеопем	Тнеопем
Theorem 6	Theorem 7
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 8	Theorem 9
Real Analysis I	Real Analysis I

Theorem 1. Let f be a continuous function. If $\int_0^1 f(x) dx \neq 0$, then there exists a point x in the interval $[0,1]$ such that $f(x) \neq 0$.	These flashcards and the accompanying LATEX source code are licensed under a Creative Commons Attribution—NonCommercial—ShareAlike 3.0 License. For more information, see creativecommons.org. File last updated on Friday 3 rd August, 2007, at 00:50
Theorem 3. Let x be a real number. If $x > 0$, then $\frac{1}{x} > 0$.	Theorem 2. Let x be a real number. If $x > 0$, then $\frac{1}{x} > 0$.
Theorem 5. Let A and B be subsets of a universal set U. Then $A \cap (U \setminus B) = A \setminus B$.	Theorem 4. Let A be a set. Then $\emptyset \subseteq A$.
Theorem 7. If A and B are subsets of a set U and A^c and B^c are their complements in U, then 1. $(A \cup B)^c = A^c \cap B^c$. 2. $(A \cap B)^c = A^c \cup B^c$.	Theorem 6. Let $A, B,$ and C be subsets of a universal set U . Then the following statements are true. 1. $A \cup (U \setminus A) = U$. 2. $A \cap (U \setminus A) = \emptyset$. 3. $U \setminus (U \setminus A) = A$. 4. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. 5. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. 6. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$. 7. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
Theorem 9. Let R be an equivalence relation on a set S . Then $\{E_x : x \in S\}$ is a partition of S . The relation "belongs to the same piece as" is the same as R . Conversely, if T is a partition of S , let R be defined by xRy iff x and y are in the same piece of the partition. Then R is an equivalence relation and the corresponding partition into equivalence classes is the same as T .	Theorem 8. $(a,b) = (c,d)$ iff $a = c$ and $b = d$.

Theorem	THEOREM
Theorem 10 (part 1)	Theorem 10 (part 2)
Real Ana	ALYSIS I REAL ANALYSIS I
THEOREM	Тнеопем
Theorem 11	Theorem 12
Real Ana	ALYSIS I REAL ANALYSIS I
Theorem	Theorem
Theorem 13	Theorem 14
Real Ana	ALYSIS I REAL ANALYSIS I
THEOREM	Theorem
Theorem 15	Theorem 16
Real Ana	ALYSIS I REAL ANALYSIS I
Theorem	Theorem
Theorem 17	Theorem 18
Real Ana	ALYSIS I REAL ANALYSIS I

Theorem 10. Suppose that $f: A \to B$. Let C, C_1 and C_2 be subsets of A and let D, D_1 and D_2 be subsets of B. Then the following hold:

6.
$$f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2)$$
.

7.
$$f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$$
.

8.
$$f^{-1}(B \setminus D) = A \setminus f^{-1}(D)$$
.

9.
$$f^{-1}(D_1 \setminus D_2) = f^{-1}(D_1) \setminus f^{-1}(D_2)$$
 if $D_2 \subseteq D_1$.

Theorem 10. Suppose that $f: A \to B$. Let C, C_1 and C_2 be subsets of A and let D, D_1 and D_2 be subsets of B. Then the following hold:

1.
$$C \subseteq f^{-1}[f(C)]$$
.

2.
$$f[f^{-1}(D)] \subseteq D$$
.

3.
$$f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$$
.

4.
$$f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$$
.

5.
$$f(C_1) \setminus f(C_2) \subseteq f(C_1 \setminus C_2)$$
 if $C_2 \subseteq C_1$.

Theorem 12. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Then

- 1. If f and g are surjective, then $g \circ f$ is surjective.
- 2. If f and g are injective, then $g \circ f$ is injective.
- 3. If f and g are bijective, then $g \circ f$ is bijective.

Theorem 11. Suppose that $f: A \to B$. Let C, C_1 and C_2 be subsets of A and let D be a subset of B. Then the following hold:

- 1. If f is injective, then $f^{-1}[f(C)] = C$.
- 2. If f is surjective, then $f[f^{-1}(D)] = D$.
- 3. If f is injective, then $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$.

Theorem 14. Let $f: A \to B$ and $g: B \to C$ be bijective. The the composition $g \circ f: A \to C$ is bijective and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Theorem 13. Let $f: A \to B$ be bijective. Then

- 1. $f^{-1}: B \to A$ is bijective.
- 2. $f^{-1} \circ f = i_A$ and $f \circ f^{-1} = i_B$.

Theorem 16. Let S be a nonempty set. The following three conditions are equivalent:

- 1. S is countable.
- 2. There exists an injection $f: S \to \mathbb{N}$.
- 3. There exists a surjection $f: \mathbb{N} \to S$.

Theorem 15. Let S be a countable set and let $T \subseteq S$. Then T is countable.

Theorem 18. Let S, T and U be sets.

- 1. If $S \subseteq T$, then $|S| \leq |T|$.
- 2. $|S| \leq |S|$.
- 3. If |S| < |T| and |T| < |U|, then |S| < |U|.
- 4. If $m, n \in \mathbb{N}$ and $m \le n$, then $|\{1, 2, ..., m\}| \le |\{1, 2, ..., n\}|$.
- 5. If S is finite, then $S < \aleph_0$.

Theorem 17. The set \mathbb{R} of real numbers is uncountable.

THEOREM		Theorem
THEOREM		THEOREM
	Theorem 19	Theorem 20 Principle of Mathematical Induction
	Real Analysis I	Real Analysis I
THEOREM		Тнеопем
	Theorem 21	Theorem 22
	Real Analysis I	Real Analysis I
THEOREM		Theorem
	Theorem 23 The Binomial Formula	Theorem 24
	Real Analysis I	Real Analysis I
THEOREM		Тнеопем
	Theorem 25	Theorem 26
	Real Analysis I	Real Analysis I
THEOREM		Тнеопем
	Theorem 27	Theorem 28
	Real Analysis I	Real Analysis I

Theorem 20. (Principle of Mathematical Induction) Let $P(n)$ be a statement that is either true or false for each $n \in \mathbb{N}$. Then $P(n)$ is true for all $n \in \mathbb{N}$ provided that 1. $P(1)$ is true, and 2. for each $k \in \mathbb{N}$, if $P(k)$ is true, then $P(k+1)$ is true.	Theorem 19. For any set S , we have $ S < \mathcal{P}(S) $.
Theorem 22. $7^n - 4^n$ is a multiple of 3 for all $n \in \mathbb{N}$.	Theorem 21. $1+2+3+\cdots+n=\frac{1}{2}n(n+1)$ for every natural number n .
 Theorem 24. Let m ∈ N and let P(n) be a statement that is either true or false for each n ≥ m. Then P(n) is true for all n ≥ m provided that 1. P(m) is true, and 2. for each k ≥ m, if P(k) is true, then P(k+1) is true. 	Theorem 23. (The Binomial Formula) If x and y are real numbers and $n \in \mathbb{N}$, then $ (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k. $
Theorem 26. Let $x, y \in \mathbb{R}$ such that $x \leq y + \epsilon$ for every $\epsilon > 0$. Then $x \leq y$.	Theorem 25. Let $x, y, and z$ be real numbers. 1. If $x + z = y + z$, then $x = y$. 2. $x \cdot 0 = 0$. 3. $(-1) \cdot x = -x$. 4. $xy = 0$ iff $x = 0$ or $y = 0$. 5. $x < y$ iff $-y < -x$. 6. If $x < y$ and $z < 0$, then $xz > yz$.
Theorem 28. Let $m, n, p \in \mathbb{Z}$. If p is a prime number and p divides the product mn , then p divides m or p divides n .	Theorem 27. Let $x, y \in \mathbb{R}$ and let $a \ge 0$. Then 1. $ x \ge 0$. 2. $ x \le a$ iff $-a \le x \le a$. 3. $ xy = x \cdot y $. 4. $ x + y \le x + y $. (The triangle inequality)

Тнеопем			Theorem
	Theorem 29		Theorem 30
	Rea	al Analysis I	Real Analysis I
THEOREM			Theorem
	Theorem 31		Theorem 32
	Rea	al Analysis I	Real Analysis I
THEOREM			Тнеогем
	Theorem 33		Theorem 34
	Rea	al Analysis I	Real Analysis I
THEOREM			Theorem
	Theorem 35		Theorem 36 Archimedean Property of \mathbb{R}
	Rea	al Analysis I	Real Analysis I
THEOREM			Theorem
	Theorem 37		Theorem 38
	Rea	al Analysis I	Real Analysis I

Theorem 30. Every non-empty subset of \mathbb{R} that is bounded below has a greatest lower bound.	Theorem 29. Let p be a prime number. Then \sqrt{p} is not a rational number.
 Theorem 32. Let A and B be non-empty subsets of R. Then 1. inf A ≤ sup A. 2. sup(-A) = - inf A and inf(-A) = - sup A. 3. sup(A+B) = sup(A) + sup(B) and inf(A+B) = inf(A) + inf(B). 4. sup(A - B) = sup(A) - inf(B). 5. If A ⊆ B, then sup A ≤ sup B and inf B ≤ inf A. 	Theorem 31. Let A be a non-empty subset of \mathbb{R} and x an element of \mathbb{R} . Then 1. $\sup A \leq x$ iff $a \leq x$ for every $a \in A$. 2. $x < \sup A$ iff $x < a$ for some $a \in A$.
 Theorem 34. Let f and g be functions defined on a set containing A as a subset, and let c ∈ R be a positive constant. Then 1. sup_A cf = c sup_A f and inf_A cf = c inf_A f. 2. sup_A(-f) = - inf_A f. 3. sup_A(f + g) ≤ sup_A f + sup_A g and inf_A f + inf_Ag ≤ inf_A(f + g). 4. sup{f(x) - f(y) : x, y ∈ A} ≤ sup_A f - inf_A f. 	Theorem 33. Suppose that D is a nonempty set and that $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$. If for every $x, y \in D$, $f(x) \leq g(y)$, then $f(D)$ is bounded above and $g(D)$ is bounded below. Furthermore, $\sup f(D) \leq \sup g(D)$.
Theorem 36. (Archimedean Property of \mathbb{R}) The set \mathbb{N} of natural numbers is unbounded above in \mathbb{R} .	Theorem 35. The real number system \mathbb{R} is a complete ordered field.
Theorem 38. Let p be a prime number. Then there exists a positive real number x such that $x^2 = p$.	 Theorem 37. Each of the following is equivalent to the Archimedean property. 1. For each z ∈ ℝ, there exists n ∈ ℕ such that n > z. 2. For each x > 0 and for each y ∈ ℝ, there exists n ∈ ℕ such that nx > y. 3. For each x > 0, there exists n ∈ ℕ such that 0 < ½ < x.

THEOREM	Theorem
TTI 00	TII. 40
Theorem 39	Theorem 40
Real Analysis I	Real Analysis I
THEOREM	Theorem
Theorem 41	Theorem 42
Theorem 41	Theorem 42
Real Analysis I	Real Analysis I
Corollary	Theorem
Corollary 1	Theorem 43
Real Analysis I	Real Analysis I
LEMMA	Тнеогем
	Theorem 44
Lemma 1	Heine–Borel Theorem
Real Analysis I	Drug Averyore I
REAL ANALYSIS I	Real Analysis I
Theorem	Theorem
Theorem 45	
Bolzano-Weierstrass Theorem	Theorem 46
Real Analysis I	Real Analysis I

Theorem 40. If x and y are real numbers with $x < y$, then there exists an irrational number w such that $x < w < y$.	Theorem 39. (Density of \mathbb{Q} in \mathbb{R}) If x and y are real numbers with $x < y$, then there exists a rational number r such that $x < r < y$.
 Theorem 42. The union of any collection of open sets is an open set. The intersection of any finite collection of open sets is an open set. 	 Theorem 41. 1. A set S is open iff S = int S. Equivalently, S is open iff every point in S is an interior point of S. 2. A set S is closed iff its complement R\S is open.
 Theorem 43. Let S be a subset of ℝ. Then 1. S is closed iff S contains all of its accumulation points. 2. cl S is a closed set. 3. S is closed iff S = cl S. 	Corollary 1. 1. The intersection of any collection of closed sets is closed. 2. The union of any finite collection of closed sets is closed.
Theorem 44. (Heine–Borel) A subset S of \mathbb{R} is compact iff S is closed and bounded.	Lemma 1. If S is a nonempty closed bounded subset of \mathbb{R} , then S has a maximum and a minimum.
Theorem 46. Let $\mathscr{F} = \{K_{\alpha} : \alpha \in \mathscr{A}\}$ be a family of compact subsets of \mathbb{R} . Suppose that the intersection of any finite subfamily of \mathscr{F} is nonempty. Then $\bigcap \{K_{\alpha} : \alpha \in \mathscr{A}\} \neq \varnothing$.	Theorem 45. (Bolzano–Weierstrass) If a bounded subset S of \mathbb{R} contains infinitely many points, then there exists at least one point in \mathbb{R} that is an accumulation point of S .

Corollary	Theorem
Corollary 2 Nested Intervals Theorem	Theorem 47
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 48	Theorem 49
Real Analysis I	Real Analysis I
Theorem	Тнеопем
Theorem 50	Theorem 51
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 52 The Squeeze Principle	Theorem 53
Real Analysis I	Real Analysis I
Theorem	Corollary
Theorem 54	Corollary 3
Real Analysis I	Real Analysis I

Theorem 47. Let (s_n) and (a_n) be sequences of real numbers and let $s \in \mathbb{R}$. If for some $k > 0$ and some $m \in \mathbb{N}$, we have $ s_n - s \le k a_n , \text{ for all } n > m,$ and if $\lim a_n = 0$, then it follows that $\lim s_n = s$.	Corollary 2. (Nested Intervals Theorem) Let $\mathscr{F} = \{A_n : n \in \mathbb{N}\}$ be a family of closed bounded intervals in \mathbb{R} such that $A_{n+1} \subseteq A_n$ for all $n \in \mathbb{N}$. Then $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$.
Theorem 49. If a sequence converges, its limit is unique.	Theorem 48. Every convergent sequence is bounded.
Theorem 51. Let (s_n) be a sequence of real numbers such that $\lim s_n = 0$, and let (t_n) be a bounded sequence. Then $\lim s_n t_n = 0$.	Theorem 50. A sequence (s_n) converges to s iff for each $\epsilon > 0$, there are only finitely many n for which $ s_n - s \ge \epsilon$.
Theorem 53. Suppose that (s_n) and (t_n) are convergent sequences with $\lim s_n = s$ and $\lim t_n = t$. Then 1. $\lim(s_n + t_n) = s + t$. 2. $\lim(ks_n) = ks$ and $\lim(k + s_n) = k + s$ for any $k \in \mathbb{R}$. 3. $\lim(s_nt_n) = st$. 4. $\lim\left(\frac{s_n}{t_n}\right) = \frac{s}{t}$, provided that $t_n \neq 0$ for all n and $t \neq 0$.	Theorem 52. (The Squeeze Principle) If (a_n) , (b_n) , and (c_n) are sequences for which there is a number K such that $b_n \leq a_n \leq c_n$ for all $n > K$, and if $b_n \to a$ and $c_n \to a$, then $a_n \to a$.
Corollary 3. If (t_n) converges to t and $t_n \ge 0$ for all $n \in \mathbb{N}$, then $t \ge 0$.	Theorem 54. Suppose that (s_n) and (t_n) are convergent sequences with $\lim s_n = s$ and $\lim t_n = t$. If $s_n \leq t_n$ for all $n \in \mathbb{N}$, then $s \leq t$.

Тнеогем			Theorem
	Theorem 55 Ratio Test		Theorem 56
	F	Real Analysis I	Real Analysis I
THEOREM			THEOREM
	Theorem 57		Theorem 58 Monotone Convergence Theorem
	F	Real Analysis I	Real Analysis I
Тнеокем			LEMMA
	Theorem 59		Lemma 2
	F	Real Analysis I	Real Analysis I
LEMMA	Lemma 3		Theorem 60 Cauchy Convergence Criterion
	F	Real Analysis I	Real Analysis I
Тнеокем			Тнеопем
	Theorem 61		Theorem 62 Bolzano–Weierstrass Theorem For Sequences
	F	Real Analysis I	Real Analysis I

Theorem 56. Suppose that (s_n) and (t_n) are sequences such that $s_n \leq t_n$ for all $n \in \mathbb{N}$. 1. If $\lim s_n = +\infty$, then $\lim t_n = +\infty$. 2. If $\lim t_n = -\infty$, then $\lim s_n = -\infty$.	Theorem 55. (Ratio Test) Suppose that (s_n) is a sequence of positive terms and that the limit $L = \lim \left(\frac{s_{n+1}}{s_n}\right)$ exists. If $L < 1$, then $\lim s_n = 0$.
Theorem 58. (Monotone Convergence Theorem) A monotone sequence is convergent iff it is bounded.	Theorem 57. Let (s_n) be a sequence of positive numbers. Then $\lim s_n = +\infty$ iff $\lim \left(\frac{1}{s_n}\right) = 0$.
Lemma 2. Every convergent sequence is a Cauchy sequence.	 Theorem 59. 1. If (s_n) is an unbounded increasing sequence, then lim s_n = +∞. 2. If (s_n) is an unbounded decreasing sequence, then lim s_n = -∞.
Theorem 60. (Cauchy Convergence Criterion) A sequence of real numbers is convergent iff it is a Cauchy sequence.	Lemma 3. Every Cauchy sequence is bounded.
Theorem 62. (Bolzano-Weierstrass Theorem For Sequences) Every bounded sequence has a convergent subsequence.	Theorem 61. If a sequence (s_n) converges to a real number s , then every subsequence of (s_n) also converges to s .

Typoppy			Typoppy		
THEOREM			THEOREM		
	Theorem 63			Theorem 64	
		REAL ANALYSIS I			Real Analysis I
THEOREM			THEOREM		
	Theorem 65			Theorem 66	
		Real Analysis I			Real Analysis I
		REAL ANALYSIS I			REAL ANALYSIS I
Corollary			THEOREM		
	Canallany 4			Theorem 67	
	Corollary 4			Theorem 67	
		REAL ANALYSIS I			Real Analysis I
THEOREM			THEOREM		
THEOREM			THEOREM		
	Theorem 68			Theorem 69	
		Real Analysis I			Real Analysis I
Theorem			Тнеокем		
	Theorem 70			Theorem 71	
		Real Analysis I			REAL ANALYSIS I
		Real Analysis I			REAL ANALYSIS I

 Theorem 64. Let (s_n) be a sequence and suppose that m = lim s_n is a real number. Then the following properties hold: 1. For every ε > 0 there exists N such that n > N implies that s_n < m + ε. 2. For every ε > 0 and for every i ∈ N, there exists an integer k > i such that s_k > m - ε. 	Theorem 63. Every unbounded sequence contains a monotone subsequence that has either $+\infty$ or $-\infty$ as a limit.
Theorem 66. Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D . Then $\lim_{x\to c} f(x) = L$ iff for every sequence (s_n) in D that converges to c with $s_n \neq c$ for all n , the sequence $(f(s_n))$ converges to L .	Theorem 65. Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D . Then $\lim_{x\to c} f(x) = L$ iff for each neighborhood V of L there exists a deleted neighborhood U of c such that $f(U \cap D) \subseteq V$.
 Theorem 67. Let f: D → R and let c be an accumulation point of D. Then the following are equivalent: (a) f does not have a limit at c. (b) There exists a sequence (s_n) in D with each s_n ≠ c such that (s_n) converges to c, but (f(s_n)) is not convergent in R. 	Corollary 4. If $f: D \to \mathbb{R}$ and if c is an accumulation point of D, then f can have only one limit at c.
 Theorem 69. Let f: D → R and let c ∈ D. Then the following three conditions are equivalent: (a) f is continuous at c. (b) If (x_n) is any sequence in D such that (x_n) converges to c, then lim f(x_n) = f(c). (c) For every neighborhood V of f(c) there exists a neighborhood U of c such that f(U ∩ D) ⊆ V. Furthermore, if c is an accumulation point of D, then the above are all equivalent to (d) f has a limit at c and lim_{x→c} f(x) = f(c). 	Theorem 68. Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$, and let c be an accumulation point of D . If $\lim_{x\to c} f(x) = L$, $\lim_{x\to c} g(x) = M$, and $k \in \mathbb{R}$, then $\lim_{x\to c} (f+g)(x) = L + M$, $\lim_{x\to c} (fg)(x) = LM$, and $\lim_{x\to c} (kf)(x) = kL$.
Theorem 71. Let f and g be functions from D to \mathbb{R} , and let $c \in D$. Suppose that f and g are continuous at c . Then (a) $f + g$ and fg are continuous at c , (b) f/g is continuous at c if $g(c) \neq 0$.	Theorem 70. Let $f: D \to \mathbb{R}$ and let $c \in D$. Then f is discontinuous at c iff there exists a sequence (x_n) in D such that (x_n) converges to c but the sequence $(f(x_n))$ does not converge to $f(c)$.

Theorem	Theorem
THEOREM	THEOREM
Theorem 72	Theorem 73
Real Analysis I	Real Analysis I
Corollary	LEMMA
Corollary 5	Lemma 4
Colonary	Echina 4
Real Analysis I	Real Analysis I
THEOREM	Theorem
Theorem 74 Intermediate Value Theorem	Theorem 75
Intermediate value Theorem	
REAL ANALYSIS I	Real Analysis I
THEOREM	Theorem
Theorem 76	Theorem 77
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 78	Theorem 79
Real Analysis I	Real Analysis I

Theorem 73. Let D be a compact subset of \mathbb{R} and suppose that $f: D \to \mathbb{R}$ is continuous. Then $f(D)$ is compact.	Theorem 72. Let $f: D \to \mathbb{R}$ and $g: E \to \mathbb{R}$ be functions such that $f(D) \subseteq E$. If f is continuous at a point $c \in D$ and g is continuous at $f(c)$, then the composition $g \circ f: D \to \mathbb{R}$ is continuous at c .
Lemma 4. Let $f:[a,b] \to \mathbb{R}$ be continuous and suppose that $f(a) < 0 < f(b)$. Then there exists a point c in (a,b) such that $f(x) = 0$.	Corollary 5. Let D be a compact subset of \mathbb{R} and suppose that $f: D \to \mathbb{R}$ is continuous. Then f assumes minimum and maximum values on D . That is, there exist points x_1 and x_2 in D such that $f(x_1) \leq f(x) \leq f(x_2)$ for all $x \in D$.
Theorem 75. Let I be a compact interval and suppose that $f: I \to \mathbb{R}$ is a continuous function. Then the set $f(I)$ is a compact interval.	Theorem 74. (Intermediate Value Theorem) Suppose that $f:[a,b] \to \mathbb{R}$ is continuous. Then f has the intermediate value property on $[a,b]$. That is, if k is any value between $f(a)$ and $f(b)$ [i.e. $f(a) < k < f(b)$ or $f(b) < k < f(a)$], then there exists $c \in [a,b]$ such that $f(c) = k$.
Theorem 77. Let $f: D \to \mathbb{R}$ be uniformly continuous on D and suppose that (x_n) is a Cauchy sequence in D . Then $(f(x_n))$ is a Cauchy sequence.	Theorem 76. Suppose that $f: D \to \mathbb{R}$ is continuous on a compact set D . Then f is uniformly continuous on D .
Theorem 79. Let I be an interval containing the point c and suppose that $f: I \to \mathbb{R}$. Then f is differentiable at c iff, for every sequence (x_n) in $I \setminus \{c\}$ that converges to c , the sequence $\left(\frac{f(x_n) - f(c)}{x_n - c}\right)$ converges. Furthermore, if f is differentiable at c , then the sequence of quotients above will converge to $f'(c)$.	Theorem 78. A function $f:(a,b) \to \mathbb{R}$ is uniformly continuous on (a,b) iff it can be extended to a function \tilde{f} that is continuous on $[a,b]$.

Theorem	Тнеогем
Theorem 80	Theorem 81 (part 1)
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 81 (part 2)	Theorem 82 Chain Rule
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 83	Theorem 84 Rolle's Theorem
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 85 Mean Value Theorem	Theorem 86
Real Analysis I	Real Analysis I
Corollary	Theorem
Corollary 6	Theorem 87
Real Analysis I	Real Analysis I

 Theorem 81. Suppose that f: I → R and g: I → R are differentiable at c ∈ I. Then (a) If k ∈ R, then the function kf is differentiable at c and (kf)'(c) = k · f'(c). (b) The function f + g is differentiable at c and (f + g)'(c) = f'(c) + g'(c). 	Theorem 80. If $f: I \to \mathbb{R}$ is differentiable at a point $c \in I$, then f is continuous at c .
Theorem 82. (Chain Rule) Let I and J be intervals in \mathbb{R} , let $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$, where $f(I) \subseteq J$, and let $c \in I$. If f is differentiable at c and g is differentiable at $f(c)$, then the composite function $g \circ f$ is differentiable at c and $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.	Theorem 81. Suppose that $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are differentiable at $c \in I$. Then (c) (Product Rule) The function fg is differentiable at c and $(fg)'(c) = f(c)g'(c) + f'(c)g(c)$. (d) (Quotient Rule) If $g(c) \neq 0$, then the function f/g is differentiable at c and $\left(\frac{f}{g}\right)'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{[g(c)]^2}.$
Theorem 84. (Rolle's Theorem) Let f be a continuous function on $[a,b]$ that is differentiable on (a,b) and such that $f(a) = f(b) = 0$. Then there exists at least one point $c \in (a,b)$ such that $f'(c) = 0$.	Theorem 83. If f is differentiable on an open interval (a,b) and if f assumes its maximum or minimum at a point $c \in (a,b)$, then $f'(c) = 0$.
Theorem 86. Let f be continuous on $[a,b]$ and differentiable on (a,b) . If $f'(x) = 0$ for all $x \in (a,b)$, then f is constant on $[a,b]$.	Theorem 85. (Mean Value Theorem) Let f be a continuous function on $[a,b]$ that is differentiable on (a,b) . Then there exists at least one point $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.
 Theorem 87. Let f be differentiable on an interval I. Then (a) if f'(x) > 0 for all x ∈ I, then f is strictly increasing on i, and (b) if f'(x) < 0 for all x ∈ I, then f is strictly decreasing on I. 	Corollary 6. Let f and g be continuous on $[a,b]$ and differentiable on (a,b) . Suppose that $f'(x) = g'(x)$ for all $x \in (a,b)$. Then there exists a constant C such that $f = g + C$ on $[a,b]$.

Theorem	Theorem
Theorem 88 Intermediate Value Theorem for Derivatives	Theorem 89 Inverse Function Theorem
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 90 Cauchy Mean Value Theorem	Theorem 91 L'Hospital's Rule
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 92 L'Hospital's Rule	Theorem 93 Taylor's Theorem
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 94	Theorem 95
Real Analysis I	Real Analysis I
Тнеопем	Theorem
Theorem 96	Theorem 97
Real Analysis I	Real Analysis I

Theorem 89. (Inverse Function Theorem) Suppose that f is differentiable on an interval I and $f'(x) \neq 0$ for all $x \in I$. Then f is injective, f^{-1} is differentiable on $f(I)$, and $(f^{-1})'(y) = \frac{1}{f'(x)}$, where $y = f(x)$.	Theorem 88. (Intermediate Value Theorem for Derivatives) Let f be differentiable on $[a,b]$ and suppose that k is a number between $f'(a)$ and $f'(b)$. Then there exists a point $c \in (a,b)$ such that $f'(c) = k$.
Theorem 91. (L'Hospital's Rule) Let f and g be continuous on $[a,b]$ and differentiable on (a,b) . Suppose that $c \in [a,b]$ and $f(c) = g(c) = 0$. Suppose also that $g'(x) \neq 0$ for $x \in U$, where U is the intersection of (a,b) and some deleted neighborhood of c . If $\lim_{x\to c} \frac{f'(x)}{g'(x)} = L$, with $L \in \mathbb{R}$, then $\lim_{x\to c} \frac{f(x)}{g(x)} = L$.	Theorem 90. (Cauchy Mean Value Theorem) Let f and g be functions that are continuous on $[a,b]$ and differentiable on (a,b) . Then there exists at least one point $c \in (a,b)$ such that $[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c)$
Theorem 93. (Taylor's Theorem) Let f and its first n derivatives be continuous on $[a,b]$ and differentiable on (a,b) , and let $x_0 \in [a,b]$. Then for each $x \in [a,b]$ with $x \neq x_0$ there exists a point c between x and x_0 such that $f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.$	Theorem 92. (L'Hospital's Rule) Let f and g be differentiable on (b, ∞) . Suppose that $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$, and that $g'(x) \neq 0$ for $x \in (b, \infty)$. If $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = L$, where $L \in \mathbb{R}$, then $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L$.
Theorem 95. Let f be a bounded function on $[a,b]$. Then $L(f) \leq U(f)$.	Theorem 94. Let f be a bounded function on $[a,b]$. If P and Q are partitions of $[a,b]$ and Q is a refinement of P , then $L(f,P) \leq L(f,Q) \leq U(f,Q) \leq U(f,P)$.
Theorem 97. Let f be a monotonic function on $[a, b]$. Then f is integrable.	Theorem 96. Let f be a bounded function on $[a,b]$. Then f is integrable iff for each $\epsilon > 0$ there exists a partition P of $[a,b]$ such that $U(f,P) - L(f,P) < \epsilon$.

Theorem	Theorem
Theorem 98	Theorem 99
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 100	Theorem 101
Real Analysis I	Real Analysis I
Corollary	Theorem
Corollary 7	Theorem 102 The Fundamental Theorem of Calculus I
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 103 The Fundamental Theorem of Calculus II	Theorem 104
Real Analysis I	Real Analysis I
Theorem	Theorem
Theorem 105	Theorem 106 Cauchy Criterion for Series
Real Analysis I	Real Analysis I
ILEAL ANALISIS I	ILEAL ANALISIS I

Theorem 99. Let f and g be integrable functions on $[a,b]$ and let $k \in \mathbb{R}$. Then (a) kf is integrable and $\int_a^b kf = k \int f$, and (b) $f+g$ is integrable and $\int_a^b (f+g) = \int_a^b f + \int_a^b g$.	Theorem 98. Let f be a continuous function on $[a, b]$. Then f is integrable on $[a, b]$.
Theorem 101. Suppose that f is integrable on $[a, b]$ and g is continuous on $[c, d]$, where $f([a, b]) \subseteq [c, d]$. Then $g \circ f$ is integrable on $[a, b]$.	Theorem 100. Suppose that f is integrable on both $[a,c]$ and $[c,b]$. Then f is integrable on $[a,b]$. Furthermore, $\int_a^b f = \int_a^c f + \int_c^b f$.
Theorem 102. (The Fundamental Theorem of Calculus I) Let f be integrable on $[a,b]$. For each $x \in [a,b]$ let $F(x) = \int_a^x f(t) dt$. Then F is uniformly continuous on $[a,b]$. Furthermore, if f is continuous at $c \in [a,b]$, then F is differentiable at c and $F'(c) = f(c)$.	Corollary 7. Let f be integrable on $[a,b]$. The $ f $ is integrable on $[a,b]$ and $\Big \int_a^b f\Big \leq \int_a^b f $.
Theorem 104. Suppose that $\sum a_n = s$ and $\sum b_n = t$. Then $\sum (a_n + b_n) = s + t$ and $\sum (ka_n) = ks$, for every $k \in \mathbb{R}$.	Theorem 103. (The Fundamental Theorem of Calculus II) If f is differentiable on $[a,b]$ and f' is integrable on $[a,b]$, then $\int_a^b f' = f(b) - f(a)$.
Theorem 106. (Cauchy Criterion for Series) The infinite series $\sum a_n$ converges iff for each $\epsilon > 0$ there exists a number N such that if $n \geq m > N$, then $ a_m + a_{m+1} + \cdots + a_n < \epsilon$.	Theorem 105. If $\sum a_n$ is a convergent series, then $\lim a_n = 0$.

THEOREM		Тнеогем
	Theorem 107 Comparison Test	Theorem 108
	Real Analysis I	Real Analysis I
THEOREM		Theorem
	Theorem 109 Ratio Test	Theorem 110 Root Test
	Real Analysis I	Real Analysis I
THEOREM		Theorem
	Theorem 111 Integral Test	Theorem 112 Alternating Series Test
	Real Analysis I	Real Analysis I
Тнеопем		Theorem
	Theorem 113	Theorem 114 Ratio Criterion
	Real Analysis I	Real Analysis I
Тнеопем		Тнеопем
	Theorem 115	Theorem 116 Weierstrass M-test
	Real Analysis I	Real Analysis I

Theorem 108. If a series converges absolutely, then it converges.	Theorem 107. (Comparison Test) Let $\sum a_n$ and $\sum b_n$ be infinite series of nonnegative terms. That is, $a_n \geq 0$ and $b_n \geq 0$ for all n . Then 1. If $\sum a_n$ converges and $0 \leq b_n \leq a_n$ for all n , then $\sum b_n$ converges. 2. If $\sum a_n = +\infty$ and $0 \leq a_n \leq b_n$ for all n , then $\sum b_n = +\infty$.
 Theorem 110. (Root Test) Given a series ∑ a_n, let α = lim sup a_n ^{1/n}. 1. If α < 1, then the series converges absolutely. 2. If α > 1, then the series diverges. 3. Otherwise, α = 1 and the test gives no information about convergence or divergence. 	 Theorem 109. (Ratio Test) Let ∑ a_n be a series of nonzero terms. 1. If lim sup a_{n+1} / a_n < 1, then the series converges absolutely. 2. If lim inf a_{n+1} / a_n > 1, the the series diverges. 3. Otherwise, lim inf a_{n+1} / a_n ≤ 1 ≤ lim sup a_{n+1} / a_n and the test gives no information about convergence or divergence.
Theorem 112. (Alternating Series Test) If (a_n) is a decreasing sequence of positive numbers and $\lim a_n = 0$, then the series $\sum (-1)^{n+1} a_n$ converges.	Theorem 111. (Integral Test) Let f be a continuous function defined on $[0,\infty)$, and suppose that f is positive and decreasing. That is, if $x_1 < x_2$, then $f(x_1) \ge f(x_2) > 0$. Then the series $\sum (f(n))$ converges iff $\lim_{n\to\infty} \left(\int_1^n f(x) dx\right)$ exists as a real number.
Theorem 114. (Ratio Criterion) The radius of convergence R of a power series $\sum a_n x^n$ is equal to $\lim \left \frac{a_n}{a_{n+1}} \right $, provided that this limit exists.	Theorem 113. Let $\sum a_n x^n$ be a power series and let $\alpha = \limsup a_n ^{\frac{1}{n}}$. Define R by $R = \begin{cases} \frac{1}{\alpha} & \text{if } 0 < \alpha < +\infty \\ +\infty & \text{if } \alpha = 0 \\ 0 & \text{if } \alpha = +\infty \end{cases}$ Then the series converges absolutely whenever $ x < R$ and diverges whenever $ x > R$. (When $R = +\infty$ we take this to mean that the series converges absolutely for all real x . When $R = 0$ then the series converges only at $x = 0$.)
Theorem 116. (Weierstrass M-test) Suppose that (f_n) is a sequence of functions defined on S and (M_n) is a sequence of nonnegative numbers such that $ f_n(x) \leq M_n$ for all $x \in S$ and all $n \in \mathbb{N}$. If $\sum M_n$ converges, then $\sum f_n$ converges uniformly on S .	Theorem 115. Let (f_n) be a sequence of functiond defined on a subset S of \mathbb{R} . There exists a function f such that (f_n) converges to f uniformly on S iff the following condition (called the Cauchy criterion) is satisfied: For every $\epsilon > 0$ there exists a number N such that $ f_n(x) - f_m(x) < \epsilon$ for all $x \in S$ and all $m, n > N$.

THEOREM		Corollary
	Theorem 117	Corollary 8
	Real Analysis I	Real Analysis I
ТНЕОВЕМ		Corollary
	Theorem 118	Corollary 9
	Real Analysis I	Real Analysis I
THEOREM		Corollary
	Theorem 119	Corollary 10
	Real Analysis I	Real Analysis I
THEOREM		Theorem
	Theorem 120	Theorem 121
	Real Analysis I	Real Analysis I
THEOREM		Corollary
	Theorem 122	Corollary 11
	Real Analysis I	Real Analysis I

Theorem 117. Let (f_n) be a sequence of continuous functions defined on a set S and suppose that (f_n) converges uniformly on S to a function $f: S \to \mathbb{R}$. Then f is continuous on S.

Corollary 9. Let $\sum_{n=0}^{\infty} f_n$ be a series of functions defined on an interval [a,b]. Suppose that each f_n is continuous on [a,b] and that the series converges uniformly to a function f on [a,b]. Then $\int_a^b f(x) dx = \sum_{n=0}^{\infty} \int_a^b f_n(x) dx$.

Theorem 118. Let (f_n) be a sequence of continuous functions defined on an interval [a,b] and suppose that (f_n) converges uniformly on [a,b] to a function f.

Then $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$.

Corollary 10. Let $\sum_{n=0}^{\infty} f_n$ be a series of functions that converges to a function f on an interval [a,b]. Suppose that for each n, f'_n exists and is continuous on [a,b] and that the series of derivatives $\sum_{n=0}^{\infty} f'_n$ is uniformly convergent on [a,b]. Then $f'(x) = \sum_{n=0}^{\infty} f'_n(x)$ for all $x \in [a,b]$.

Theorem 119. Suppose that (f_n) converges to f on an interval [a,b]. Suppose also that each f'_n exists and is continuous on [a,b], and that the sequence (f'_n) converges uniformly on [a,b]. Then $\lim_{n\to\infty} f'_n(x) = f'(x)$ for each $x \in [a,b]$.

Theorem 121. Let $\sum a_n x^n$ be a power series with radius of convergence R, where $0 < R \le +\infty$. If 0 < K < R, then teh power series converges uniformly on [-K, K].

Theorem 120. There exists a continuous function defined on \mathbb{R} that is nowhere differentiable.

Corollary 11. Suppose that $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for $x \in (-R, R)$, where R > 0. Then for each $k \in \mathbb{N}$, the kth derivative $f^{(k)}$ of f exists on (-R, R) and

$$f^{(k)}(x) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n x^{n-k}$$
$$= k! a_k + (k+1)! a_{k+1} + \frac{(k+2)!}{2!} a_{k+2} x^2 + \cdots$$

Furthermore, $f^{(k)}(0) = k!a_k$.

Theorem 122. Suppose that a pwer series converges to a function f on (-R,R), where R>0. Then the series can be differentiated term by term, and the differentiated series converges on (-R,R) to f'. That is, if $f(x) = \sum_{n=0}^{\infty} a_n x^n$, then $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$, and both series have the same radius of convergence.

Corollary	Theorem
Corollary 12	Theorem 123
Real Analysis I	Real Analysis I
COROLLARY	
Corollary 13	
Real Analysis I	

Theorem 123. Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with a finite positive radius of convergence R . If the series converges at $x = R$, then it converges uniformly on teh interval $[0, R]$. Similarly, if the series converges at $x = -R$, then it converges uniformly on $[-R, 0]$.	Corollary 12. If $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n$ for all x in some interval $(-R,R)$, where $R>0$, then $a_n=b_n$ for all $n \in \mathbb{N} \cup \{0\}$.
	Corollary 13. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ have a finite positive radius of convergence R . If the series converges at $x = R$, then f is continuous at $x = R$. If the series converges at $x = -R$, then f is continuous at $x = -R$.