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Theorem 1. Let f be a continuous function. If∫ 1

0
f(x) dx 6= 0, then there exists a point x in the in-

terval [0, 1] such that f(x) 6= 0.
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Theorem 3. Let x be a real number. If x > 0, then
1
x > 0.

Theorem 2. Let x be a real number. If x > 0, then
1
x > 0.

Theorem 5. Let A and B be subsets of a universal
set U . Then A ∩ (U r B) = A r B. Theorem 4. Let A be a set. Then ∅ ⊆ A.

Theorem 7. If A and B are subsets of a set U and
Ac and Bc are their complements in U , then

1. (A ∪B)c = Ac ∩Bc.

2. (A ∩B)c = Ac ∪Bc.

Theorem 6. Let A, B, and C be subsets of a universal
set U . Then the following statements are true.

1. A ∪ (U r A) = U .

2. A ∩ (U r A) = ∅.
3. U r (U r A) = A.

4. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

5. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

6. A r (B ∪ C) = (A r B) ∩ (A r C).

7. A r (B ∩ C) = (A r B) ∪ (A r C).

Theorem 9. Let R be an equivalence relation on a
set S. Then {Ex : x ∈ S} is a partition of S. The
relation “belongs to the same piece as” is the same
as R. Conversely, if T is a partition of S, let R be
defined by xRy iff x and y are in the same piece of the
partition. Then R is an equivalence relation and the
corresponding partition into equivalence classes is the
same as T .

Theorem 8. (a, b) = (c, d) iff a = c and b = d.
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Theorem 10. Suppose that f : A → B. Let C, C1 and
C2 be subsets of A and let D, D1 and D2 be subsets of B.
Then the following hold:

6. f−1(D1 ∩D2) = f−1(D1) ∩ f−1(D2).

7. f−1(D1 ∪D2) = f−1(D1) ∪ f−1(D2).

8. f−1(B r D) = A r f−1(D).

9. f−1(D1 r D2) = f−1(D1) r f−1(D2) if D2 ⊆ D1.

Theorem 10. Suppose that f : A → B. Let C, C1 and
C2 be subsets of A and let D, D1 and D2 be subsets of B.
Then the following hold:

1. C ⊆ f−1[f(C)].

2. f [f−1(D)] ⊆ D.

3. f(C1 ∩ C2) ⊆ f(C1) ∩ f(C2).

4. f(C1 ∪ C2) = f(C1) ∪ f(C2).

5. f(C1) r f(C2) ⊆ f(C1 r C2) if C2 ⊆ C1.

Theorem 12. Let f : A → B and g : B → C. Then

1. If f and g are surjective, then g ◦ f is surjective.

2. If f and g are injective, then g ◦ f is injective.

3. If f and g are bijective, then g ◦ f is bijective.

Theorem 11. Suppose that f : A → B. Let C,C1

and C2 be subsets of A and let D be a subset of B.
Then the following hold:

1. If f is injective, then f−1[f(C)] = C.

2. If f is surjective, then f [f−1(D)] = D.

3. If f is injective, then f(C1∩C2) = f(C1)∩f(C2).

Theorem 14. Let f : A → B and g : B → C be
bijective. The the composition g◦f : A → C is bijective
and (g ◦ f)−1 = f−1 ◦ g−1.

Theorem 13. Let f : A → B be bijective. Then

1. f−1 : B → A is bijective.

2. f−1 ◦ f = iA and f ◦ f−1 = iB.

Theorem 16. Let S be a nonempty set. The following
three conditions are equivalent:

1. S is countable.

2. There exists an injection f : S → N.

3. There exists a surjection f : N → S.

Theorem 15. Let S be a countable set and let T ⊆ S.
Then T is countable.

Theorem 18. Let S, T and U be sets.

1. If S ⊆ T , then |S| ≤ |T |.

2. |S| ≤ |S|.

3. If |S| ≤ |T | and |T | ≤ |U |, then |S| ≤ |U |.

4. If m,n ∈ N and m ≤ n, then |{1, 2, . . . ,m}| ≤
|{1, 2, . . . , n}|.

5. If S is finite, then S < ℵ0.

Theorem 17. The set R of real numbers is uncount-
able.



Theorem

Theorem 19

Real Analysis I

Theorem

Theorem 20
Principle of Mathematical Induction

Real Analysis I

Theorem

Theorem 21

Real Analysis I

Theorem

Theorem 22

Real Analysis I

Theorem

Theorem 23
The Binomial Formula

Real Analysis I

Theorem

Theorem 24

Real Analysis I

Theorem

Theorem 25

Real Analysis I

Theorem

Theorem 26

Real Analysis I

Theorem

Theorem 27

Real Analysis I

Theorem

Theorem 28

Real Analysis I



Theorem 20. (Principle of Mathematical Induction)
Let P (n) be a statement that is either true or false for
each n ∈ N. Then P (n) is true for all n ∈ N provided
that

1. P (1) is true, and

2. for each k ∈ N, if P (k) is true, then P (k + 1) is
true.

Theorem 19. For any set S, we have |S| < |P(S)|.

Theorem 22. 7n−4n is a multiple of 3 for all n ∈ N. Theorem 21. 1+2+3+ · · ·+n = 1
2n(n+1) for every

natural number n.

Theorem 24. Let m ∈ N and let P (n) be a statement
that is either true or false for each n ≥ m. Then P (n)
is true for all n ≥ m provided that

1. P (m) is true, and

2. for each k ≥ m, if P (k) is true, then P (k +1) is
true.

Theorem 23. (The Binomial Formula) If x and y are
real numbers and n ∈ N, then

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk.

Theorem 26. Let x, y ∈ R such that x ≤ y + ε for
every ε > 0. Then x ≤ y.

Theorem 25. Let x, y, and z be real numbers.

1. If x + z = y + z, then x = y.

2. x · 0 = 0.

3. (−1) · x = −x.

4. xy = 0 iff x = 0 or y = 0.

5. x < y iff −y < −x.

6. If x < y and z < 0, then xz > yz.

Theorem 28. Let m,n, p ∈ Z. If p is a prime number
and p divides the product mn, then p divides m or p
divides n.

Theorem 27. Let x, y ∈ R and let a ≥ 0. Then

1. |x| ≥ 0.

2. |x| ≤ a iff −a ≤ x ≤ a.

3. |xy| = |x| · |y|.

4. |x + y| ≤ |x|+ |y|. (The triangle inequality)
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Theorem 30. Every non-empty subset of R that is
bounded below has a greatest lower bound.

Theorem 29. Let p be a prime number. Then
√

p is
not a rational number.

Theorem 32. Let A and B be non-empty subsets of
R. Then

1. inf A ≤ supA.

2. sup(−A) = − inf A and inf(−A) = − supA.

3. sup(A+B) = sup(A)+sup(B) and inf(A+B) =
inf(A) + inf(B).

4. sup(A−B) = sup(A)− inf(B).

5. If A ⊆ B, then supA ≤ supB and inf B ≤ inf A.

Theorem 31. Let A be a non-empty subset of R and
x an element of R. Then

1. supA ≤ x iff a ≤ x for every a ∈ A.

2. x < supA iff x < a for some a ∈ A.

Theorem 34. Let f and g be functions defined on a
set containing A as a subset, and let c ∈ R be a positive
constant. Then

1. supA cf = c supA f and infA cf = c infA f .

2. supA(−f) = − infA f .

3. supA(f + g) ≤ supA f + supA g and
infA f + infAg ≤ infA(f + g).

4. sup{f(x)− f(y) : x, y ∈ A} ≤ supA f − infA f .

Theorem 33. Suppose that D is a nonempty set and
that f : D → R and g : D → R. If for every x, y ∈ D,
f(x) ≤ g(y), then f(D) is bounded above and g(D) is
bounded below. Furthermore, sup f(D) ≤ sup g(D).

Theorem 36. (Archimedean Property of R) The set
N of natural numbers is unbounded above in R.

Theorem 35. The real number system R is a com-
plete ordered field.

Theorem 38. Let p be a prime number. Then there
exists a positive real number x such that x2 = p.

Theorem 37. Each of the following is equivalent to
the Archimedean property.

1. For each z ∈ R, there exists n ∈ N such that
n > z.

2. For each x > 0 and for each y ∈ R, there exists
n ∈ N such that nx > y.

3. For each x > 0, there exists n ∈ N such that
0 < 1

n < x.
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Theorem 40. If x and y are real numbers with x <
y, then there exists an irrational number w such that
x < w < y.

Theorem 39. (Density of Q in R) If x and y are
real numbers with x < y, then there exists a rational
number r such that x < r < y.

Theorem 42.

1. The union of any collection of open sets is an
open set.

2. The intersection of any finite collection of open
sets is an open set.

Theorem 41.

1. A set S is open iff S = int S. Equivalently, S is
open iff every point in S is an interior point of
S.

2. A set S is closed iff its complement RrS is open.

Theorem 43. Let S be a subset of R. Then

1. S is closed iff S contains all of its accumulation
points.

2. cl S is a closed set.

3. S is closed iff S = cl S.

Corollary 1.

1. The intersection of any collection of closed sets
is closed.

2. The union of any finite collection of closed sets
is closed.

Theorem 44. (Heine–Borel) A subset S of R is com-
pact iff S is closed and bounded.

Lemma 1. If S is a nonempty closed bounded subset
of R, then S has a maximum and a minimum.

Theorem 46. Let F = {Kα : α ∈ A } be a family
of compact subsets of R. Suppose that the intersec-
tion of any finite subfamily of F is nonempty. Then⋂
{Kα : α ∈ A } 6= ∅.

Theorem 45. (Bolzano–Weierstrass) If a bounded
subset S of R contains infinitely many points, then
there exists at least one point in R that is an accumu-
lation point of S.
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Theorem 47. Let (sn) and (an) be sequences of real
numbers and let s ∈ R. If for some k > 0 and some
m ∈ N, we have

|sn − s| ≤ k|an|, for all n > m,

and if lim an = 0, then it follows that lim sn = s.

Corollary 2. (Nested Intervals Theorem) Let F =
{An : n ∈ N} be a family of closed bounded inter-
vals in R such that An+1 ⊆ An for all n ∈ N. Then⋂∞

n=1 An 6= ∅.

Theorem 49. If a sequence converges, its limit is
unique. Theorem 48. Every convergent sequence is bounded.

Theorem 51. Let (sn) be a sequence of real num-
bers such that lim sn = 0, and let (tn) be a bounded
sequence. Then lim sntn = 0.

Theorem 50. A sequence (sn) converges to s iff for
each ε > 0, there are only finitely many n for which
|sn − s| ≥ ε.

Theorem 53. Suppose that (sn) and (tn) are conver-
gent sequences with lim sn = s and lim tn = t. Then

1. lim(sn + tn) = s + t.

2. lim(ksn) = ks and lim(k + sn) = k + s for any
k ∈ R.

3. lim(sntn) = st.

4. lim
(

sn

tn

)
= s

t , provided that tn 6= 0 for all n and
t 6= 0.

Theorem 52. (The Squeeze Principle) If (an), (bn),
and (cn) are sequences for which there is a number K
such that bn ≤ an ≤ cn for all n > K, and if bn → a
and cn → a, then an → a.

Corollary 3. If (tn) converges to t and tn ≥ 0 for all
n ∈ N, then t ≥ 0.

Theorem 54. Suppose that (sn) and (tn) are con-
vergent sequences with lim sn = s and lim tn = t. If
sn ≤ tn for all n ∈ N, then s ≤ t.
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Theorem 56. Suppose that (sn) and (tn) are se-
quences such that sn ≤ tn for all n ∈ N.

1. If lim sn = +∞, then lim tn = +∞.

2. If lim tn = −∞, then lim sn = −∞.

Theorem 55. (Ratio Test) Suppose that (sn) is a
sequence of positive terms and that the limit L =
lim

(
sn+1
sn

)
exists. If L < 1, then lim sn = 0.

Theorem 58. (Monotone Convergence Theorem) A
monotone sequence is convergent iff it is bounded.

Theorem 57. Let (sn) be a sequence of positive num-
bers. Then lim sn = +∞ iff lim

(
1

sn

)
= 0.

Lemma 2. Every convergent sequence is a Cauchy
sequence.

Theorem 59.

1. If (sn) is an unbounded increasing sequence, then
lim sn = +∞.

2. If (sn) is an unbounded decreasing sequence, then
lim sn = −∞.

Theorem 60. (Cauchy Convergence Criterion) A se-
quence of real numbers is convergent iff it is a Cauchy
sequence.

Lemma 3. Every Cauchy sequence is bounded.

Theorem 62. (Bolzano–Weierstrass Theorem For
Sequences) Every bounded sequence has a convergent
subsequence.

Theorem 61. If a sequence (sn) converges to a real
number s, then every subsequence of (sn) also con-
verges to s.
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Theorem 64. Let (sn) be a sequence and suppose that
m = lim sn is a real number. Then the following prop-
erties hold:

1. For every ε > 0 there exists N such that n > N
implies that sn < m + ε.

2. For every ε > 0 and for every i ∈ N, there exists
an integer k > i such that sk > m− ε.

Theorem 63. Every unbounded sequence contains a
monotone subsequence that has either +∞ or −∞ as
a limit.

Theorem 66. Let f : D → R and let c be an accumu-
lation point of D. Then limx→c f(x) = L iff for every
sequence (sn) in D that converges to c with sn 6= c for
all n, the sequence (f(sn)) converges to L.

Theorem 65. Let f : D → R and let c be an accumu-
lation point of D. Then limx→c f(x) = L iff for each
neighborhood V of L there exists a deleted neighbor-
hood U of c such that f(U ∩D) ⊆ V .

Theorem 67. Let f : D → R and let c be an accumu-
lation point of D. Then the following are equivalent:

(a) f does not have a limit at c.

(b) There exists a sequence (sn) in D with each sn 6=
c such that (sn) converges to c, but (f(sn)) is not
convergent in R.

Corollary 4. If f : D → R and if c is an accumu-
lation point of D, then f can have only one limit at
c.

Theorem 69. Let f : D → R and let c ∈ D. Then the
following three conditions are equivalent:

(a) f is continuous at c.

(b) If (xn) is any sequence in D such that (xn) converges
to c, then lim f(xn) = f(c).

(c) For every neighborhood V of f(c) there exists a
neighborhood U of c such that f(U ∩D) ⊆ V .

Furthermore, if c is an accumulation point of D, then the
above are all equivalent to

(d) f has a limit at c and limx→c f(x) = f(c).

Theorem 68. Let f : D → R and g : D → R, and let
c be an accumulation point of D. If limx→c f(x) = L,
limx→c g(x) = M , and k ∈ R, then limx→c(f +g)(x) =
L + M, limx→c(fg)(x) = LM , and limx→c(kf)(x) =
kL.

Theorem 71. Let f and g be functions from D to R,
and let c ∈ D. Suppose that f and g are continuous
at c. Then

(a) f + g and fg are continuous at c,

(b) f/g is continuous at c if g(c) 6= 0.

Theorem 70. Let f : D → R and let c ∈ D. Then
f is discontinuous at c iff there exists a sequence (xn)
in D such that (xn) converges to c but the sequence
(f(xn)) does not converge to f(c).
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Theorem 73. Let D be a compact subset of R and
suppose that f : D → R is continuous. Then f(D) is
compact.

Theorem 72. Let f : D → R and g : E → R be
functions such that f(D) ⊆ E. If f is continuous at
a point c ∈ D and g is continuous at f(c), then the
composition g ◦ f : D → R is continuous at c.

Lemma 4. Let f : [a, b] → R be continuous and sup-
pose that f(a) < 0 < f(b). Then there exists a point c
in (a, b) such that f(x) = 0.

Corollary 5. Let D be a compact subset of R and sup-
pose that f : D → R is continuous. Then f assumes
minimum and maximum values on D. That is, there
exist points x1 and x2 in D such that f(x1) ≤ f(x) ≤
f(x2) for all x ∈ D.

Theorem 75. Let I be a compact interval and suppose
that f : I → R is a continuous function. Then the set
f(I) is a compact interval.

Theorem 74. (Intermediate Value Theorem) Suppose
that f : [a, b] → R is continuous. Then f has the
intermediate value property on [a, b]. That is, if k is
any value between f(a) and f(b) [i.e. f(a) < k < f(b)
or f(b) < k < f(a)], then there exists c ∈ [a, b] such
that f(c) = k.

Theorem 77. Let f : D → R be uniformly continuous
on D and suppose that (xn) is a Cauchy sequence in
D. Then (f(xn)) is a Cauchy sequence.

Theorem 76. Suppose that f : D → R is continuous
on a compact set D. Then f is uniformly continuous
on D.

Theorem 79. Let I be an interval containing the
point c and suppose that f : I → R. Then f is dif-
ferentiable at c iff, for every sequence (xn) in I r {c}
that converges to c, the sequence(

f(xn)− f(c)
xn − c

)
converges. Furthermore, if f is differentiable at c, then
the sequence of quotients above will converge to f ′(c).

Theorem 78. A function f : (a, b) → R is uniformly
continuous on (a, b) iff it can be extended to a function
f̃ that is continuous on [a, b].
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Theorem 81. Suppose that f : I → R and g : I → R
are differentiable at c ∈ I. Then

(a) If k ∈ R, then the function kf is differentiable
at c and (kf)′(c) = k · f ′(c).

(b) The function f +g is differentiable at c and (f +
g)′(c) = f ′(c) + g′(c).

Theorem 80. If f : I → R is differentiable at a point
c ∈ I, then f is continuous at c.

Theorem 82. (Chain Rule) Let I and J be intervals
in R, let f : I → R and g : J → R, where f(I) ⊆
J , and let c ∈ I. If f is differentiable at c and g is
differentiable at f(c), then the composite function g◦f
is differentiable at c and (g ◦ f)′(c) = g′(f(c)) · f ′(c).

Theorem 81. Suppose that f : I → R and g : I → R
are differentiable at c ∈ I. Then

(c) (Product Rule) The function fg is differentiable
at c and (fg)′(c) = f(c)g′(c) + f ′(c)g(c).

(d) (Quotient Rule) If g(c) 6= 0, then the function
f/g is differentiable at c and(

f

g

)′
(c) =

g(c)f ′(c)− f(c)g′(c)
[g(c)]2

.

Theorem 84. (Rolle’s Theorem) Let f be a contin-
uous function on [a, b] that is differentiable on (a, b)
and such that f(a) = f(b) = 0. Then there exists at
least one point c ∈ (a, b) such that f ′(c) = 0.

Theorem 83. If f is differentiable on an open inter-
val (a, b) and if f assumes its maximum or minimum
at a point c ∈ (a, b), then f ′(c) = 0.

Theorem 86. Let f be continuous on [a, b] and dif-
ferentiable on (a, b). If f ′(x) = 0 for all x ∈ (a, b),
then f is constant on [a, b].

Theorem 85. (Mean Value Theorem) Let f be a con-
tinuous function on [a, b] that is differentiable on (a, b).
Then there exists at least one point c ∈ (a, b) such that
f ′(c) = f(b)−f(a)

b−a .

Theorem 87. Let f be differentiable on an interval
I. Then

(a) if f ′(x) > 0 for all x ∈ I, then f is strictly
increasing on i, and

(b) if f ′(x) < 0 for all x ∈ I, then f is strictly
decreasing on I.

Corollary 6. Let f and g be continuous on [a, b] and
differentiable on (a, b). Suppose that f ′(x) = g′(x) for
all x ∈ (a, b). Then there exists a constant C such that
f = g + C on [a, b].
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Theorem 89. (Inverse Function Theorem) Suppose
that f is differentiable on an interval I and f ′(x) 6= 0
for all x ∈ I. Then f is injective, f−1 is differentiable
on f(I), and (f−1)′(y) = 1

f ′(x) , where y = f(x).

Theorem 88. (Intermediate Value Theorem for
Derivatives) Let f be differentiable on [a, b] and sup-
pose that k is a number between f ′(a) and f ′(b). Then
there exists a point c ∈ (a, b) such that f ′(c) = k.

Theorem 91. (L’Hospital’s Rule) Let f and g be con-
tinuous on [a, b] and differentiable on (a, b). Suppose
that c ∈ [a, b] and f(c) = g(c) = 0. Suppose also
that g′(x) 6= 0 for x ∈ U , where U is the intersec-
tion of (a, b) and some deleted neighborhood of c. If

lim
x→c

f ′(x)
g′(x)

= L, with L ∈ R, then lim
x→c

f(x)
g(x)

= L.

Theorem 90. (Cauchy Mean Value Theorem) Let f
and g be functions that are continuous on [a, b] and
differentiable on (a, b). Then there exists at least one
point c ∈ (a, b) such that

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c)

Theorem 93. (Taylor’s Theorem) Let f and its first
n derivatives be continuous on [a, b] and differentiable
on (a, b), and let x0 ∈ [a, b]. Then for each x ∈ [a, b]
with x 6= x0 there exists a point c between x and x0

such that

f(x) = f(x0)+ f ′(x0)(x−x0)+
f ′′(x0)

2!
(x−x0)2 + · · ·

+
f (n)(x0)

n!
(x− x0)n +

f (n+1)(c)
(n + 1)!

(x− x0)n+1.

Theorem 92. (L’Hospital’s Rule) Let f and g be dif-
ferentiable on (b,∞). Suppose that limx→∞ f(x) =
limx→∞ g(x) = ∞, and that g′(x) 6= 0 for x ∈ (b,∞).

If lim
x→∞

f ′(x)
g′(x)

= L, where L ∈ R, then lim
x→∞

f(x)
g(x)

= L.

Theorem 95. Let f be a bounded function on [a, b].
Then L(f) ≤ U(f).

Theorem 94. Let f be a bounded function on [a, b]. If
P and Q are partitions of [a, b] and Q is a refinement
of P , then L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Theorem 97. Let f be a monotonic function on [a, b].
Then f is integrable.

Theorem 96. Let f be a bounded function on [a, b].
Then f is integrable iff for each ε > 0 there exists a
partition P of [a, b] such that U(f, P )− L(f, P ) < ε.
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Theorem 99. Let f and g be integrable functions on
[a, b] and let k ∈ R. Then

(a) kf is integrable and
∫ b

a
kf = k

∫
f , and

(b) f + g is integrable and
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

Theorem 98. Let f be a continuous function on [a, b].
Then f is integrable on [a, b].

Theorem 101. Suppose that f is integrable on [a, b]
and g is continuous on [c, d], where f([a, b]) ⊆ [c, d].
Then g ◦ f is integrable on [a, b].

Theorem 100. Suppose that f is integrable on both
[a, c] and [c, b]. Then f is integrable on [a, b]. Further-
more,

∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

Theorem 102. (The Fundamental Theorem of Cal-
culus I) Let f be integrable on [a, b]. For each x ∈ [a, b]

let F (x) =
∫ x

a

f(t) dt. Then F is uniformly continuous

on [a, b]. Furthermore, if f is continuous at c ∈ [a, b],
then F is differentiable at c and F ′(c) = f(c).

Corollary 7. Let f be integrable on [a, b]. The |f | is

integrable on [a, b] and
∣∣∣ ∫ b

a

f
∣∣∣ ≤ ∫ b

a

|f |.

Theorem 104. Suppose that
∑

an = s and
∑

bn =

t. Then
∑

(an + bn) = s + t and
∑

(kan) = ks, for
every k ∈ R.

Theorem 103. (The Fundamental Theorem of Calcu-
lus II) If f is differentiable on [a, b] and f ′ is integrable

on [a, b], then
∫ b

a

f ′ = f(b)− f(a).

Theorem 106. (Cauchy Criterion for Series) The in-
finite series

∑
an converges iff for each ε > 0 there

exists a number N such that if n ≥ m > N , then
|am + am+1 + · · ·+ an| < ε.

Theorem 105. If
∑

an is a convergent series, then
lim an = 0.
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Theorem 108. If a series converges absolutely, then
it converges.

Theorem 107. (Comparison Test) Let
∑

an and∑
bn be infinite series of nonnegative terms. That

is, an ≥ 0 and bn ≥ 0 for all n. Then

1. If
∑

an converges and 0 ≤ bn ≤ an for all n,

then
∑

bn converges.

2. If
∑

an = +∞ and 0 ≤ an ≤ bn for all n, then∑
bn = +∞.

Theorem 110. (Root Test) Given a series
∑

an, let

α = lim sup |an|
1
n .

1. If α < 1, then the series converges absolutely.

2. If α > 1, then the series diverges.

3. Otherwise, α = 1 and the test gives no informa-
tion about convergence or divergence.

Theorem 109. (Ratio Test) Let
X

an be a series of
nonzero terms.

1. If lim sup
˛̨̨
an+1

an

˛̨̨
< 1, then the series converges ab-

solutely.

2. If lim inf
˛̨̨
an+1

an

˛̨̨
> 1, the the series diverges.

3. Otherwise, lim inf
˛̨̨
an+1

an

˛̨̨
≤ 1 ≤ lim sup

˛̨̨
an+1

an

˛̨̨
and

the test gives no information about convergence or
divergence.

Theorem 112. (Alternating Series Test) If (an) is a
decreasing sequence of positive numbers and lim an =
0, then the series

∑
(−1)n+1an converges.

Theorem 111. (Integral Test) Let f be a continu-
ous function defined on [0,∞), and suppose that f is
positive and decreasing. That is, if x1 < x2, then
f(x1) ≥ f(x2) > 0. Then the series

∑
(f(n)) con-

verges iff lim
n→∞

(∫ n

1

f(x) dx

)
exists as a real number.

Theorem 114. (Ratio Criterion) The radius of con-
vergence R of a power series

∑
anxn is equal to

lim
∣∣∣∣ an

an+1

∣∣∣∣, provided that this limit exists.

Theorem 113. Let
X

anxn be a power series and let

α = lim sup |an|
1
n . Define R by

R =

8<:
1
α

if 0 < α < +∞
+∞ if α = 0
0 if α = +∞

.

Then the series converges absolutely whenever |x| < R and

diverges whenever |x| > R. (When R = +∞ we take this

to mean that the series converges absolutely for all real x.

When R = 0 then the series converges only at x = 0.)

Theorem 116. (Weierstrass M-test) Suppose that
(fn) is a sequence of functions defined on S and
(Mn) is a sequence of nonnegative numbers such that
|fn(x)| ≤ Mn for all x ∈ S and all n ∈ N. If

∑
Mn

converges, then
∑

fn converges uniformly on S.

Theorem 115. Let (fn) be a sequence of functiond
defined on a subset S of R. There exists a function
f such that (fn) converges to f uniformly on S iff
the following condition (called the Cauchy criterion)
is satisfied:
For every ε > 0 there exists a number N such that
|fn(x)− fm(x)| < ε for all x ∈ S and all m,n > N .
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Corollary 8. Let
∞∑

n=0

fn be a series of functions de-

fined on a set S. Suppose that each fn is continuous on
S and that the series converges uniformly to a function

f on S. Then f =
∞∑

n=0

fn si continuous on S.

Theorem 117. Let (fn) be a sequence of continuous
functions defined on a set S and suppose that (fn) con-
verges uniformly on S to a function f : S → R. Then
f is continuous on S.

Corollary 9. Let
∞∑

n=0

fn be a series of functions de-

fined on an interval [a, b]. Suppose that each fn is
continuous on [a, b] and that the series converges uni-

formly to a function f on [a, b]. Then
∫ b

a

f(x) dx =
∞∑

n=0

∫ b

a

fn(x) dx.

Theorem 118. Let (fn) be a sequence of continu-
ous functions defined on an interval [a, b] and suppose
that (fn) converges uniformly on [a, b] to a function f .

Then lim
n→∞

∫ b

a

fn(x) dx =
∫ b

a

f(x) dx.

Corollary 10. Let
∞∑

n=0

fn be a series of functions that

converges to a function f on an interval [a, b]. Suppose
that for each n, f ′n exists and is continuous on [a, b]

and that the series of derivatives
∞∑

n=0

f ′n is uniformly

convergent on [a, b]. Then f ′(x) =
∞∑

n=0

f ′n(x) for all

x ∈ [a, b].

Theorem 119. Suppose that (fn) converges to f on
an interval [a, b]. Suppose also that each f ′n exists and
is continuous on [a, b], and that the sequence (f ′n) con-
verges uniformly on [a, b]. Then lim

n→∞
f ′n(x) = f ′(x)

for each x ∈ [a, b].

Theorem 121. Let
∑

anxn be a power series with
radius of convergence R, where 0 < R ≤ +∞. If
0 < K < R, then teh power series converges uniformly
on [−K, K].

Theorem 120. There exists a continuous function
defined on R that is nowhere differentiable.

Corollary 11. Suppose that f(x) =
∞X

n=0

anxn for x ∈

(−R, R), where R > 0. Then for each k ∈ N, the kth
derivative f (k) of f exists on (−R, R) and

f (k)(x) =

∞X
n=k

n!

(n− k)!
anxn−k

= k!ak + (k + 1)!ak+1 +
(k + 2)!

2!
ak+2x

2 + · · · .

Furthermore, f (k)(0) = k!ak.

Theorem 122. Suppose that a pwer series converges
to a function f on (−R,R), where R > 0. Then the
series can be differentiated term by term, and the dif-
ferentiated series converges on (−R,R) to f ′. That is,

if f(x) =
∞∑

n=0

anxn, then f ′(x) =
∞∑

n=1

nanxn−1, and

both series have the same radius of convergence.
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Theorem 123. Let
∞∑

n=0

anxn be a power series with

a finite positive radius of convergence R. If the series
converges at x = R, then it converges uniformly on
teh interval [0, R]. Similarly, if the series converges at
x = −R, then it converges uniformly on [−R, 0].

Corollary 12. If
∞∑

n=0

anxn =
∞∑

n=0

bnxn for all x in

some interval (−R,R), where R > 0, then an = bn for
all n ∈ N ∪ {0}.

Corollary 13. Let f(x) =
∞∑

n=0

anxn have a finite pos-

itive radius of convergence R. If the series converges
at x = R, then f is continuous at x = R. If the series
converges at x = −R, then f is continuous at x = −R.


