

Theorem 1. Let f be a continuous function. If $\int_{0}^{1} f(x) d x \neq 0$, then there exists a point x in the interval $[0,1]$ such that $f(x) \neq 0$.

These flashcards and the accompanying $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. For more information, see creativecommons.org.

File last updated on Friday $3^{\text {rd }}$ August, 2007, at 00:50

Theorem 3. Let x be a real number. If $x>0$, then $\frac{1}{x}>0$.

Theorem 2. Let x be a real number. If $x>0$, then $\frac{1}{x}>0$.

Theorem 5. Let A and B be subsets of a universal set U. Then $A \cap(U \backslash B)=A \backslash B$.

Theorem 4. Let A be a set. Then $\emptyset \subseteq A$.

Theorem 6. Let A, B, and C be subsets of a universal set U. Then the following statements are true.

Theorem 7. If A and B are subsets of a set U and A^{c} and B^{c} are their complements in U, then

1. $(A \cup B)^{c}=A^{c} \cap B^{c}$.
2. $(A \cap B)^{c}=A^{c} \cup B^{c}$.
3. $A \cup(U \backslash A)=U$.
4. $A \cap(U \backslash A)=\emptyset$.
5. $U \backslash(U \backslash A)=A$.
6. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
7. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
8. $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
9. $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$.

Theorem 9. Let R be an equivalence relation on a set S. Then $\left\{E_{x}: x \in S\right\}$ is a partition of S. The relation "belongs to the same piece as" is the same as R. Conversely, if \mathcal{T} is a partition of S, let R be defined by $x R y$ iff x and y are in the same piece of the partition. Then R is an equivalence relation and the corresponding partition into equivalence classes is the same as \mathcal{T}.

Theorem 8. $(a, b)=(c, d)$ iff $a=c$ and $b=d$.

Theorem 10. Suppose that $f: A \rightarrow B$. Let C, C_{1} and C_{2} be subsets of A and let D, D_{1} and D_{2} be subsets of B. Then the following hold:
6. $f^{-1}\left(D_{1} \cap D_{2}\right)=f^{-1}\left(D_{1}\right) \cap f^{-1}\left(D_{2}\right)$.
7. $f^{-1}\left(D_{1} \cup D_{2}\right)=f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right)$.
8. $f^{-1}(B \backslash D)=A \backslash f^{-1}(D)$.
9. $f^{-1}\left(D_{1} \backslash D_{2}\right)=f^{-1}\left(D_{1}\right) \backslash f^{-1}\left(D_{2}\right)$ if $D_{2} \subseteq D_{1}$.

Theorem 10. Suppose that $f: A \rightarrow B$. Let C, C_{1} and C_{2} be subsets of A and let D, D_{1} and D_{2} be subsets of B. Then the following hold:

1. $C \subseteq f^{-1}[f(C)]$.
2. $f\left[f^{-1}(D)\right] \subseteq D$.
3. $f\left(C_{1} \cap C_{2}\right) \subseteq f\left(C_{1}\right) \cap f\left(C_{2}\right)$.
4. $f\left(C_{1} \cup C_{2}\right)=f\left(C_{1}\right) \cup f\left(C_{2}\right)$.
5. $f\left(C_{1}\right) \backslash f\left(C_{2}\right) \subseteq f\left(C_{1} \backslash C_{2}\right)$ if $C_{2} \subseteq C_{1}$.

Theorem 12. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Then

1. If f and g are surjective, then $g \circ f$ is surjective.
2. If f and g are injective, then $g \circ f$ is injective.
3. If f and g are bijective, then $g \circ f$ is bijective.

Theorem 11. Suppose that $f: A \rightarrow B$. Let C, C_{1} and C_{2} be subsets of A and let D be a subset of B. Then the following hold:

1. If f is injective, then $f^{-1}[f(C)]=C$.
2. If f is surjective, then $f\left[f^{-1}(D)\right]=D$.
3. If f is injective, then $f\left(C_{1} \cap C_{2}\right)=f\left(C_{1}\right) \cap f\left(C_{2}\right)$.

Theorem 14. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijective. The the composition $g \circ f: A \rightarrow C$ is bijective and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Theorem 13. Let $f: A \rightarrow B$ be bijective. Then

1. $f^{-1}: B \rightarrow A$ is bijective.
2. $f^{-1} \circ f=i_{A}$ and $f \circ f^{-1}=i_{B}$.

Theorem 16. Let S be a nonempty set. The following three conditions are equivalent:

1. S is countable.
2. There exists an injection $f: S \rightarrow \mathbb{N}$.
3. There exists a surjection $f: \mathbb{N} \rightarrow S$.

Theorem 18. Let S, T and U be sets.

1. If $S \subseteq T$, then $|S| \leq|T|$.
2. $|S| \leq|S|$.
3. If $|S| \leq|T|$ and $|T| \leq|U|$, then $|S| \leq|U|$.
4. If $m, n \in \mathbb{N}$ and $m \leq n$, then $|\{1,2, \ldots, m\}| \leq$ $|\{1,2, \ldots, n\}|$.
5. If S is finite, then $S<\aleph_{0}$.

Theorem 15. Let S be a countable set and let $T \subseteq S$. Then T is countable.

Theorem 17. The set \mathbb{R} of real numbers is uncountable.

Theorem 20. (Principle of Mathematical Induction) Let $P(n)$ be a statement that is either true or false for each $n \in \mathbb{N}$. Then $P(n)$ is true for all $n \in \mathbb{N}$ provided that

1. $P(1)$ is true, and
2. for each $k \in \mathbb{N}$, if $P(k)$ is true, then $P(k+1)$ is true.

Theorem 19. For any set S, we have $|S|<|\mathcal{P}(\mathcal{S})|$.

Theorem 22. $7^{n}-4^{n}$ is a multiple of 3 for all $n \in \mathbb{N}$.

Theorem 24. Let $m \in \mathbb{N}$ and let $P(n)$ be a statement that is either true or false for each $n \geq m$. Then $P(n)$ is true for all $n \geq m$ provided that

1. $P(m)$ is true, and
2. for each $k \geq m$, if $P(k)$ is true, then $P(k+1)$ is true.

Theorem 21. $1+2+3+\cdots+n=\frac{1}{2} n(n+1)$ for every natural number n.

Theorem 23. (The Binomial Formula) If x and y are real numbers and $n \in \mathbb{N}$, then

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} .
$$

Theorem 25. Let x, y, and z be real numbers.

1. If $x+z=y+z$, then $x=y$.
2. $x \cdot 0=0$.
3. $(-1) \cdot x=-x$.
4. $x y=0$ iff $x=0$ or $y=0$.
5. $x<y$ iff $-y<-x$.
6. If $x<y$ and $z<0$, then $x z>y z$.

Theorem 27. Let $x, y \in \mathbb{R}$ and let $a \geq 0$. Then

1. $|x| \geq 0$.
2. $|x| \leq a$ iff $-a \leq x \leq a$.
3. $|x y|=|x| \cdot|y|$.
4. $|x+y| \leq|x|+|y|$. (The triangle inequality)

Theorem	Theorem 29 Real Analysis I	Theorem Theorem 30 Real Analysis I
Theorem	Theorem 31 Real Analysis I	Theorem Theorem 32 Real Analysis I
Theorem	Theorem 33 Real Analysis I	Theorem Theorem 34 Real Analysis I
Theorem	Theorem 35 Real Analysis I	Theorem Theorem 36 Archimedean Property of \mathbb{R} Real Analysis I
ThEOREM	Theorem 37 Real Analysis I	Theorem Theorem 38 Real Analysis I

Theorem 30. Every non-empty subset of \mathbb{R} that is bounded below has a greatest lower bound.

Theorem 29. Let p be a prime number. Then \sqrt{p} is not a rational number.

Theorem 32. Let A and B be non-empty subsets of \mathbb{R}. Then

1. $\inf A \leq \sup A$.
2. $\sup (-A)=-\inf A$ and $\inf (-A)=-\sup A$.
3. $\sup (A+B)=\sup (A)+\sup (B)$ and $\inf (A+B)=$ $\inf (A)+\inf (B)$.
4. $\sup (A-B)=\sup (A)-\inf (B)$.
5. If $A \subseteq B$, then $\sup A \leq \sup B$ and $\inf B \leq \inf A$.

Theorem 34. Let f and g be functions defined on a set containing A as a subset, and let $c \in \mathbb{R}$ be a positive constant. Then

1. $\sup _{A} c f=c \sup _{A} f$ and $\inf _{A} c f=c \inf _{A} f$.
2. $\sup _{A}(-f)=-\inf _{A} f$.
3. $\sup _{A}(f+g) \leq \sup _{A} f+\sup _{A} g$ and $\inf _{A} f+i n f_{A} g \leq \inf _{A}(f+g)$.
4. $\sup \{f(x)-f(y): x, y \in A\} \leq \sup _{A} f-\inf _{A} f$.

Theorem 33. Suppose that D is a nonempty set and that $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$. If for every $x, y \in D$, $f(x) \leq g(y)$, then $f(D)$ is bounded above and $g(D)$ is bounded below. Furthermore, sup $f(D) \leq \sup g(D)$.

Theorem 36. (Archimedean Property of \mathbb{R}) The set \mathbb{N} of natural numbers is unbounded above in \mathbb{R}.

Theorem 31. Let A be a non-empty subset of \mathbb{R} and x an element of \mathbb{R}. Then

1. $\sup A \leq x$ iff $a \leq x$ for every $a \in A$.
2. $x<\sup A$ iff $x<a$ for some $a \in A$.

Theorem 40. If x and y are real numbers with $x<$ y, then there exists an irrational number w such that $x<w<y$.

Theorem 39. (Density of \mathbb{Q} in \mathbb{R}) If x and y are real numbers with $x<y$, then there exists a rational number r such that $x<r<y$.

Theorem 42.

1. The union of any collection of open sets is an open set.
2. The intersection of any finite collection of open sets is an open set.

Theorem 41.

1. A set S is open iff $S=$ int S. Equivalently, S is open iff every point in S is an interior point of S.
2. A set S is closed iff its complement $\mathbb{R} \backslash S$ is open.

Theorem 43. Let S be a subset of \mathbb{R}. Then

1. S is closed iff S contains all of its accumulation points.
2. cl S is a closed set.
3. S is closed iff $S=c l S$.

Corollary 1.

1. The intersection of any collection of closed sets is closed.
2. The union of any finite collection of closed sets is closed.

Theorem 44. (Heine-Borel) A subset S of \mathbb{R} is compact iff S is closed and bounded.

Lemma 1. If S is a nonempty closed bounded subset of \mathbb{R}, then S has a maximum and a minimum.

Theorem 46. Let $\mathscr{F}=\left\{K_{\alpha}: \alpha \in \mathscr{A}\right\}$ be a family of compact subsets of \mathbb{R}. Suppose that the intersection of any finite subfamily of \mathscr{F} is nonempty. Then $\bigcap\left\{K_{\alpha}: \alpha \in \mathscr{A}\right\} \neq \varnothing$.

Theorem 45. (Bolzano-Weierstrass) If a bounded subset S of \mathbb{R} contains infinitely many points, then there exists at least one point in \mathbb{R} that is an accumulation point of S.

Corollary		Theorem		
	Corollary 2 Nested Intervals Theorem Real Analysis I		Theorem 47	
				Real Analysis I
Theorem	Theorem 48	Theorem		
			Theorem 49	
	Real Analysis I			Real Analysis I
ThEOREM	Theorem 50	Theorem		
			Theorem 51	
	Real Analysis I			Real Analysis I
ThEOREM	Theorem 52 The Squeeze Principle	Theorem		
			Theorem 53	
	Real Analysis I			Real Analysis I
Theorem	Theorem 54	Corollary	Corollary 3	
	Real Analysis I			Real Analysis I

Theorem 47. Let $\left(s_{n}\right)$ and $\left(a_{n}\right)$ be sequences of real numbers and let $s \in \mathbb{R}$. If for some $k>0$ and some $m \in \mathbb{N}$, we have

$$
\left|s_{n}-s\right| \leq k\left|a_{n}\right|, \text { for all } n>m
$$

and if $\lim a_{n}=0$, then it follows that $\lim s_{n}=s$.

Theorem 49. If a sequence converges, its limit is unique.

Corollary 2. (Nested Intervals Theorem) Let $\mathscr{F}=$ $\left\{A_{n}: n \in \mathbb{N}\right\}$ be a family of closed bounded intervals in \mathbb{R} such that $A_{n+1} \subseteq A_{n}$ for all $n \in \mathbb{N}$. Then $\bigcap_{n=1}^{\infty} A_{n} \neq \varnothing$.

Theorem 48. Every convergent sequence is bounded.

Theorem 51. Let $\left(s_{n}\right)$ be a sequence of real numbers such that $\lim s_{n}=0$, and let $\left(t_{n}\right)$ be a bounded sequence. Then $\lim s_{n} t_{n}=0$.

Theorem 50. A sequence $\left(s_{n}\right)$ converges to s iff for each $\epsilon>0$, there are only finitely many n for which $\left|s_{n}-s\right| \geq \epsilon$.

Theorem 53. Suppose that $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are convergent sequences with $\lim s_{n}=s$ and $\lim t_{n}=t$. Then

1. $\lim \left(s_{n}+t_{n}\right)=s+t$.
2. $\lim \left(k s_{n}\right)=k s$ and $\lim \left(k+s_{n}\right)=k+s$ for any $k \in \mathbb{R}$.
3. $\lim \left(s_{n} t_{n}\right)=s t$.
4. $\lim \left(\frac{s_{n}}{t_{n}}\right)=\frac{s}{t}$, provided that $t_{n} \neq 0$ for all n and $t \neq 0$.

Corollary 3. If $\left(t_{n}\right)$ converges to t and $t_{n} \geq 0$ for all $n \in \mathbb{N}$, then $t \geq 0$.

Theorem 52. (The Squeeze Principle) If $\left(a_{n}\right),\left(b_{n}\right)$, and $\left(c_{n}\right)$ are sequences for which there is a number K such that $b_{n} \leq a_{n} \leq c_{n}$ for all $n>K$, and if $b_{n} \rightarrow a$ and $c_{n} \rightarrow a$, then $a_{n} \rightarrow a$.

Theorem 54. Suppose that $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are convergent sequences with $\lim s_{n}=s$ and $\lim t_{n}=t$. If $s_{n} \leq t_{n}$ for all $n \in \mathbb{N}$, then $s \leq t$.

Theorem 56. Suppose that $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are sequences such that $s_{n} \leq t_{n}$ for all $n \in \mathbb{N}$.

1. If $\lim s_{n}=+\infty$, then $\lim t_{n}=+\infty$.
2. If $\lim t_{n}=-\infty$, then $\lim s_{n}=-\infty$.

Theorem 55. (Ratio Test) Suppose that $\left(s_{n}\right)$ is a sequence of positive terms and that the limit $L=$ $\lim \left(\frac{s_{n+1}}{s_{n}}\right)$ exists. If $L<1$, then $\lim s_{n}=0$.

Theorem 58. (Monotone Convergence Theorem) A monotone sequence is convergent iff it is bounded.

Theorem 57. Let $\left(s_{n}\right)$ be a sequence of positive numbers. Then $\lim s_{n}=+\infty$ iff $\lim \left(\frac{1}{s_{n}}\right)=0$.

Theorem 59.

Lemma 2. Every convergent sequence is a Cauchy sequence.

1. If $\left(s_{n}\right)$ is an unbounded increasing sequence, then $\lim s_{n}=+\infty$.
2. If $\left(s_{n}\right)$ is an unbounded decreasing sequence, then $\lim s_{n}=-\infty$.

Theorem 60. (Cauchy Convergence Criterion) A sequence of real numbers is convergent iff it is a Cauchy sequence.

Lemma 3. Every Cauchy sequence is bounded.

Theorem 62. (Bolzano-Weierstrass Theorem For Sequences) Every bounded sequence has a convergent subsequence.

Theorem 61. If a sequence $\left(s_{n}\right)$ converges to a real number s, then every subsequence of $\left(s_{n}\right)$ also converges to s.

Theorem 64. Let $\left(s_{n}\right)$ be a sequence and suppose that $m=\lim s_{n}$ is a real number. Then the following properties hold:

1. For every $\epsilon>0$ there exists N such that $n>N$ implies that $s_{n}<m+\epsilon$.
2. For every $\epsilon>0$ and for every $i \in \mathbb{N}$, there exists an integer $k>i$ such that $s_{k}>m-\epsilon$.

Theorem 63. Every unbounded sequence contains a monotone subsequence that has either $+\infty$ or $-\infty$ as a limit.

Theorem 65. Let $f: D \rightarrow \mathbb{R}$ and let c be an accumulation point of D. Then $\lim _{x \rightarrow c} f(x)=L$ iff for each neighborhood V of L there exists a deleted neighborhood U of c such that $f(U \cap D) \subseteq V$.

Theorem 67. Let $f: D \rightarrow \mathbb{R}$ and let c be an accumulation point of D. Then the following are equivalent:
(a) f does not have a limit at c.
(b) There exists a sequence $\left(s_{n}\right)$ in D with each $s_{n} \neq$ c such that $\left(s_{n}\right)$ converges to c, but $\left(f\left(s_{n}\right)\right)$ is not convergent in \mathbb{R}.

Corollary 4. If $f: D \rightarrow \mathbb{R}$ and if c is an accumulation point of D, then f can have only one limit at c.

Theorem 69. Let $f: D \rightarrow \mathbb{R}$ and let $c \in D$. Then the following three conditions are equivalent:
(a) f is continuous at c.
(b) If $\left(x_{n}\right)$ is any sequence in D such that $\left(x_{n}\right)$ converges to c, then $\lim f\left(x_{n}\right)=f(c)$.
(c) For every neighborhood V of $f(c)$ there exists a neighborhood U of c such that $f(U \cap D) \subseteq V$.
Furthermore, if c is an accumulation point of D, then the above are all equivalent to
(d) f has a limit at c and $\lim _{x \rightarrow c} f(x)=f(c)$.

Theorem 68. Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$, and let c be an accumulation point of D. If $\lim _{x \rightarrow c} f(x)=L$, $\lim _{x \rightarrow c} g(x)=M$, and $k \in \mathbb{R}$, then $\lim _{x \rightarrow c}(f+g)(x)=$ $L+M, \lim _{x \rightarrow c}(f g)(x)=L M$, and $\lim _{x \rightarrow c}(k f)(x)=$ $k L$ 。

Theorem 70. Let $f: D \rightarrow \mathbb{R}$ and let $c \in D$. Then f is discontinuous at c iff there exists a sequence $\left(x_{n}\right)$ in D such that $\left(x_{n}\right)$ converges to c but the sequence $\left(f\left(x_{n}\right)\right)$ does not converge to $f(c)$.

Theorem 73. Let D be a compact subset of \mathbb{R} and suppose that $f: D \rightarrow \mathbb{R}$ is continuous. Then $f(D)$ is compact.

Theorem 72. Let $f: D \rightarrow \mathbb{R}$ and $g: E \rightarrow \mathbb{R}$ be functions such that $f(D) \subseteq E$. If f is continuous at a point $c \in D$ and g is continuous at $f(c)$, then the composition $g \circ f: D \rightarrow \mathbb{R}$ is continuous at c.

Lemma 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and suppose that $f(a)<0<f(b)$. Then there exists a point c in (a, b) such that $f(x)=0$.

Corollary 5. Let D be a compact subset of \mathbb{R} and suppose that $f: D \rightarrow \mathbb{R}$ is continuous. Then f assumes minimum and maximum values on D. That is, there exist points x_{1} and x_{2} in D such that $f\left(x_{1}\right) \leq f(x) \leq$ $f\left(x_{2}\right)$ for all $x \in D$.

Theorem 74. (Intermediate Value Theorem) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then f has the intermediate value property on $[a, b]$. That is, if k is any value between $f(a)$ and $f(b)$ [i.e. $f(a)<k<f(b)$ or $f(b)<k<f(a)]$, then there exists $c \in[a, b]$ such that $f(c)=k$.

Theorem 77. Let $f: D \rightarrow \mathbb{R}$ be uniformly continuous on D and suppose that $\left(x_{n}\right)$ is a Cauchy sequence in D. Then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence.

Theorem 76. Suppose that $f: D \rightarrow \mathbb{R}$ is continuous on a compact set D. Then f is uniformly continuous on D.

Theorem 79. Let I be an interval containing the point c and suppose that $f: I \rightarrow \mathbb{R}$. Then f is differentiable at c iff, for every sequence $\left(x_{n}\right)$ in $I \backslash\{c\}$ that converges to c, the sequence

$$
\left(\frac{f\left(x_{n}\right)-f(c)}{x_{n}-c}\right)
$$

converges. Furthermore, if f is differentiable at c, then the sequence of quotients above will converge to $f^{\prime}(c)$.

Theorem 78. A function $f:(a, b) \rightarrow \mathbb{R}$ is uniformly continuous on (a, b) iff it can be extended to a function \tilde{f} that is continuous on $[a, b]$.

Theorem 81. Suppose that $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ are differentiable at $c \in I$. Then
(a) If $k \in \mathbb{R}$, then the function $k f$ is differentiable at c and $(k f)^{\prime}(c)=k \cdot f^{\prime}(c)$.
(b) The function $f+g$ is differentiable at c and $(f+$ $g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$.

Theorem 82. (Chain Rule) Let I and J be intervals in \mathbb{R}, let $f: I \rightarrow \mathbb{R}$ and $g: J \rightarrow \mathbb{R}$, where $f(I) \subseteq$ J, and let $c \in I$. If f is differentiable at c and g is differentiable at $f(c)$, then the composite function $g \circ f$ is differentiable at c and $(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)$.

Theorem 84. (Rolle's Theorem) Let f be a continuous function on $[a, b]$ that is differentiable on (a, b) and such that $f(a)=f(b)=0$. Then there exists at least one point $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Theorem 80. If $f: I \rightarrow \mathbb{R}$ is differentiable at a point $c \in I$, then f is continuous at c.

Theorem 81. Suppose that $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ are differentiable at $c \in I$. Then
(c) (Product Rule) The function fg is differentiable at c and $(f g)^{\prime}(c)=f(c) g^{\prime}(c)+f^{\prime}(c) g(c)$.
(d) (Quotient Rule) If $g(c) \neq 0$, then the function f / g is differentiable at c and

$$
\left(\frac{f}{g}\right)^{\prime}(c)=\frac{g(c) f^{\prime}(c)-f(c) g^{\prime}(c)}{[g(c)]^{2}}
$$

Theorem 83. If f is differentiable on an open interval (a, b) and if f assumes its maximum or minimum at a point $c \in(a, b)$, then $f^{\prime}(c)=0$.

Theorem 86. Let f be continuous on $[a, b]$ and differentiable on (a, b). If $f^{\prime}(x)=0$ for all $x \in(a, b)$, then f is constant on $[a, b]$.

Theorem 85. (Mean Value Theorem) Let f be a continuous function on $[a, b]$ that is differentiable on (a, b). Then there exists at least one point $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Corollary 6. Let f and g be continuous on $[a, b]$ and differentiable on (a, b). Suppose that $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in(a, b)$. Then there exists a constant C such that $f=g+C$ on $[a, b]$.

Theorem Theorem 88 Intermediate Value Theorem for Derivatives Real Analysis I	Theorem Theorem 89 Inverse Function Theorem Real Analysis I
Theorem Theorem 90 Cauchy Mean Value Theorem Real Analysis I	Theorem Theorem 91 L'Hospital's Rule Real Analysis I
Theorem Theorem 92 L'Hospital's Rule Real Analysis I	Theorem Theorem 93 Taylor's Theorem Real Analysis I
Theorem Theorem 94 Real Analysis I	Theorem Theorem 95 Real Analysis I
Theorem Theorem 96	Theorem Theorem 97
Real Analysis I	Real Analysis I

Theorem 89. (Inverse Function Theorem) Suppose that f is differentiable on an interval I and $f^{\prime}(x) \neq 0$ for all $x \in I$. Then f is injective, f^{-1} is differentiable on $f(I)$, and $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}$, where $y=f(x)$.

Theorem 88. (Intermediate Value Theorem for Derivatives) Let f be differentiable on $[a, b]$ and suppose that k is a number between $f^{\prime}(a)$ and $f^{\prime}(b)$. Then there exists a point $c \in(a, b)$ such that $f^{\prime}(c)=k$.

Theorem 91. (L'Hospital's Rule) Let f and g be continuous on $[a, b]$ and differentiable on (a, b). Suppose that $c \in[a, b]$ and $f(c)=g(c)=0$. Suppose also that $g^{\prime}(x) \neq 0$ for $x \in U$, where U is the intersection of (a, b) and some deleted neighborhood of c. If $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, with $L \in \mathbb{R}$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=L$.

Theorem 90. (Cauchy Mean Value Theorem) Let f and g be functions that are continuous on $[a, b]$ and differentiable on (a, b). Then there exists at least one point $c \in(a, b)$ such that

$$
[f(b)-f(a)] g^{\prime}(c)=[g(b)-g(a)] f^{\prime}(c)
$$

Theorem 92. (L'Hospital's Rule) Let f and g be differentiable on (b, ∞). Suppose that $\lim _{x \rightarrow \infty} f(x)=$ $\lim _{x \rightarrow \infty} g(x)=\infty$, and that $g^{\prime}(x) \neq 0$ for $x \in(b, \infty)$. If $\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, where $L \in \mathbb{R}$, then $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L$.

Theorem 94. Let f be a bounded function on $[a, b]$. If P and Q are partitions of $[a, b]$ and Q is a refinement of P, then $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$.

Theorem 97. Let f be a monotonic function on $[a, b]$. Then f is integrable.

Theorem 96. Let f be a bounded function on $[a, b]$. Then f is integrable iff for each $\epsilon>0$ there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\epsilon$.

Theorem Theorem 98 Real Analysis I	Theorem Theorem 99 Real Analysis I
Theorem Theorem 100 Real Analysis I	Theorem Theorem 101 Real Analysis I
Corollary Corollary 7 Real Analysis I	Theorem Theorem 102 The Fundamental Theorem of Calculus I Real Analysis I
Theorem Theorem 103 The Fundamental Theorem of Calculus II Real Analysis I	Theorem Theorem 104 Real Analysis I
Theorem Theorem 105 Real Analysis I	Theorem Theorem 106 Cauchy Criterion for Series Real Analysis I

Theorem 99. Let f and g be integrable functions on $[a, b]$ and let $k \in \mathbb{R}$. Then
(a) $k f$ is integrable and $\int_{a}^{b} k f=k \int f$, and
(b) $f+g$ is integrable and $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$.

Theorem 98. Let f be a continuous function on $[a, b]$. Then f is integrable on $[a, b]$.

Theorem 101. Suppose that f is integrable on $[a, b]$ and g is continuous on $[c, d]$, where $f([a, b]) \subseteq[c, d]$. Then $g \circ f$ is integrable on $[a, b]$.

Theorem 100. Suppose that f is integrable on both $[a, c]$ and $[c, b]$. Then f is integrable on $[a, b]$. Furthermore, $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$.

Theorem 102. (The Fundamental Theorem of Calculus I) Let f be integrable on $[a, b]$. For each $x \in[a, b]$ let $F(x)=\int_{a}^{x} f(t) d t$. Then F is uniformly continuous on $[a, b]$. Furthermore, if f is continuous at $c \in[a, b]$, then F is differentiable at c and $F^{\prime}(c)=f(c)$.

Corollary 7. Let f be integrable on $[a, b]$. The $|f|$ is integrable on $[a, b]$ and $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$.

Theorem 104. Suppose that $\sum a_{n}=s$ and $\sum b_{n}=$ t. Then $\sum\left(a_{n}+b_{n}\right)=s+t$ and $\sum\left(k a_{n}\right)=k s$, for every $k \in \mathbb{R}$.

Theorem 103. (The Fundamental Theorem of Calculus II) If f is differentiable on $[a, b]$ and f^{\prime} is integrable on $[a, b]$, then $\int_{a}^{b} f^{\prime}=f(b)-f(a)$.

Theorem 105. If $\sum a_{n}$ is a convergent series, then $\lim a_{n}=0$.

Theorem 108. If a series converges absolutely, then it converges.

Theorem 107. (Comparison Test) Let $\sum a_{n}$ and $\sum b_{n}$ be infinite series of nonnegative terms. That is, $a_{n} \geq 0$ and $b_{n} \geq 0$ for all n. Then

1. If $\sum a_{n}$ converges and $0 \leq b_{n} \leq a_{n}$ for all n, then $\sum b_{n}$ converges.
2. If $\sum a_{n}=+\infty$ and $0 \leq a_{n} \leq b_{n}$ for all n, then $\sum b_{n}=+\infty$.

Theorem 110. (Root Test) Given a series $\sum a_{n}$, let $\alpha=\limsup \left|a_{n}\right|^{\frac{1}{n}}$.

1. If $\alpha<1$, then the series converges absolutely.
2. If $\alpha>1$, then the series diverges.
3. Otherwise, $\alpha=1$ and the test gives no information about convergence or divergence.

Theorem 112. (Alternating Series Test) If $\left(a_{n}\right)$ is a decreasing sequence of positive numbers and $\lim a_{n}=$ 0 , then the series $\sum(-1)^{n+1} a_{n}$ converges.

Theorem 114. (Ratio Criterion) The radius of convergence R of a power series $\sum a_{n} x^{n}$ is equal to $\lim \left|\frac{a_{n}}{a_{n+1}}\right|$, provided that this limit exists.

Theorem 116. (Weierstrass M-test) Suppose that $\left(f_{n}\right)$ is a sequence of functions defined on S and $\left(M_{n}\right)$ is a sequence of nonnegative numbers such that $\left|f_{n}(x)\right| \leq M_{n}$ for all $x \in S$ and all $n \in \mathbb{N}$. If $\sum M_{n}$ converges, then $\sum f_{n}$ converges uniformly on S.

Theorem 109. (Ratio Test) Let $\sum a_{n}$ be a series of nonzero terms.

1. If $\lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|<1$, then the series converges absolutely.
2. If $\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right|>1$, the the series diverges.
3. Otherwise, $\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right| \leq 1 \leq \lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|$ and the test gives no information about convergence or divergence.

Theorem 111. (Integral Test) Let f be a continuous function defined on $[0, \infty)$, and suppose that f is positive and decreasing. That is, if $x_{1}<x_{2}$, then $f\left(x_{1}\right) \geq f\left(x_{2}\right)>0$. Then the series $\sum(f(n))$ converges iff $\lim _{n \rightarrow \infty}\left(\int_{1}^{n} f(x) d x\right)$ exists as a real number.

Theorem 113. Let $\sum a_{n} x^{n}$ be a power series and let $\alpha=\limsup \left|a_{n}\right|^{\frac{1}{n}}$. Define R by

$$
R= \begin{cases}\frac{1}{\alpha} & \text { if } 0<\alpha<+\infty \\ +\infty & \text { if } \alpha=0 \\ 0 & \text { if } \alpha=+\infty\end{cases}
$$

Then the series converges absolutely whenever $|x|<R$ and diverges whenever $|x|>R$. (When $R=+\infty$ we take this to mean that the series converges absolutely for all real x. When $R=0$ then the series converges only at $x=0$.)

Theorem 115. Let $\left(f_{n}\right)$ be a sequence of functiond defined on a subset S of \mathbb{R}. There exists a function f such that $\left(f_{n}\right)$ converges to f uniformly on S iff the following condition (called the Cauchy criterion) is satisfied:
For every $\epsilon>0$ there exists a number N such that $\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$ for all $x \in S$ and all $m, n>N$.

Corollary 8. Let $\sum_{n=0}^{\infty} f_{n}$ be a series of functions defined on a set S. Suppose that each f_{n} is continuous on S and that the series converges uniformly to a function f on S. Then $f=\sum_{n=0}^{\infty} f_{n}$ si continuous on S.

Corollary 9. Let $\sum_{n=0}^{\infty} f_{n}$ be a series of functions defined on an interval $[a, b]$. Suppose that each f_{n} is continuous on $[a, b]$ and that the series converges uniformly to a function f on $[a, b]$. Then $\int_{a}^{b} f(x) d x=$ $\sum_{n=0}^{\infty} \int_{a}^{b} f_{n}(x) d x$.

Corollary 10. Let $\sum_{n=0}^{\infty} f_{n}$ be a series of functions that converges to a function f on an interval $[a, b]$. Suppose that for each n, f_{n}^{\prime} exists and is continuous on $[a, b]$ and that the series of derivatives $\sum_{n=0}^{\infty} f_{n}^{\prime}$ is uniformly convergent on $[a, b]$. Then $f^{\prime}(x)=\sum_{n=0}^{\infty} f_{n}^{\prime}(x)$ for all $x \in[a, b]$.

Theorem 121. Let $\sum a_{n} x^{n}$ be a power series with radius of convergence R, where $0<R \leq+\infty$. If $0<K<R$, then teh power series converges uniformly on $[-K, K]$.

Theorem 117. Let $\left(f_{n}\right)$ be a sequence of continuous functions defined on a set S and suppose that $\left(f_{n}\right)$ converges uniformly on S to a function $f: S \rightarrow \mathbb{R}$. Then f is continuous on S.

Theorem 118. Let $\left(f_{n}\right)$ be a sequence of continuous functions defined on an interval $[a, b]$ and suppose that $\left(f_{n}\right)$ converges uniformly on $[a, b]$ to a function f. Then $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x$.

Theorem 119. Suppose that $\left(f_{n}\right)$ converges to f on an interval $[a, b]$. Suppose also that each f_{n}^{\prime} exists and is continuous on $[a, b]$, and that the sequence $\left(f_{n}^{\prime}\right)$ converges uniformly on $[a, b]$. Then $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=f^{\prime}(x)$ for each $x \in[a, b]$.

Theorem 120. There exists a continuous function defined on \mathbb{R} that is nowhere differentiable.

Corollary 11. Suppose that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ for $x \in$ $(-R, R)$, where $R>0$. Then for each $k \in \mathbb{N}$, the k th derivative $f^{(k)}$ of f exists on $(-R, R)$ and

$$
\begin{aligned}
f^{(k)}(x) & =\sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_{n} x^{n-k} \\
& =k!a_{k}+(k+1)!a_{k+1}+\frac{(k+2)!}{2!} a_{k+2} x^{2}+\cdots .
\end{aligned}
$$

Furthermore, $f^{(k)}(0)=k!a_{k}$.

Theorem 122. Suppose that a pwer series converges to a function f on $(-R, R)$, where $R>0$. Then the series can be differentiated term by term, and the differentiated series converges on $(-R, R)$ to f^{\prime}. That is, if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, then $f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}$, and both series have the same radius of convergence.

