Copyright © 2007 Erin Chamberlain Some rights reserved.

Theorem 1

Real Analysis I

REAL ANALYSIS I

Theorem Theorem

Theorem 2

Theorem 3

Real Analysis I

Real Analysis I

THEOREM THEOREM

Theorem 4

Theorem 5

Real Analysis I

Real Analysis I

Theorem Theorem

Theorem 6

Theorem 7

Real Analysis I

Real Analysis I

Theorem Theorem

Theorem 8

Theorem 9

Real Analysis I

Real Analysis I

Theorem 1. Let f be a continuous function. If $\int_0^1 f(x) dx \neq 0$, then there exists a point x in the interval [0, 1] such that $f(x) \neq 0$.

These flashcards and the accompanying LATEX source code are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. For more information, see creative commons.org.

File last updated on Friday 3rd August, 2007, at 00:50

Theorem 3. Let x be a real number. If x > 0, then $\frac{1}{x} > 0$.

Theorem 2. Let x be a real number. If x > 0, then $\frac{1}{x} > 0$.

Theorem 5. Let A and B be subsets of a universal set U. Then $A \cap (U \setminus B) = A \setminus B$.

Theorem 4. Let A be a set. Then $\emptyset \subseteq A$.

Theorem 7. If A and B are subsets of a set U and A^c and B^c are their complements in U, then

1.
$$(A \cup B)^c = A^c \cap B^c$$
.

2.
$$(A \cap B)^c = A^c \cup B^c$$
.

Theorem 6. Let A, B, and C be subsets of a universal set U. Then the following statements are true.

1.
$$A \cup (U \setminus A) = U$$
.

2.
$$A \cap (U \setminus A) = \emptyset$$

3.
$$U \setminus (U \setminus A) = A$$
.

4.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

5.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.
6. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

$$\gamma = A \times (B \cap C) = (A \times B) \sqcup (A \times C)$$

7. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Theorem 9. Let R be an equivalence relation on a set S. Then $\{E_x : x \in S\}$ is a partition of S. The relation "belongs to the same piece as" is the same as R. Conversely, if T is a partition of S, let R be defined by xRy iff x and y are in the same piece of the partition. Then R is an equivalence relation and the corresponding partition into equivalence classes is the same as T.

Theorem 8. (a, b) = (c, d) iff a = c and b = d.

THEOREM THEOREM

Theorem 10 (part 1) Theorem 10 (part 2)

REAL ANALYSIS I REAL ANALYSIS I

Theorem Theorem

Theorem 11 Theorem 12

Real Analysis I Real Analysis I

Theorem

Theorem 13 Theorem 14

REAL ANALYSIS I REAL ANALYSIS I

THEOREM

Theorem 15 Theorem 16

Real Analysis I Real Analysis I

THEOREM

Theorem 17 Theorem 18

Theorem 10. Suppose that $f: A \to B$. Let C, C_1 and C_2 be subsets of A and let D, D_1 and D_2 be subsets of B. Then the following hold:

6.
$$f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2)$$
.

7.
$$f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$$
.

8.
$$f^{-1}(B \setminus D) = A \setminus f^{-1}(D)$$
.

9.
$$f^{-1}(D_1 \setminus D_2) = f^{-1}(D_1) \setminus f^{-1}(D_2)$$
 if $D_2 \subseteq D_1$.

Theorem 12. Let $f: A \to B$ and $g: B \to C$. Then

- 1. If f and g are surjective, then $g \circ f$ is surjective.
- 2. If f and g are injective, then $g \circ f$ is injective.
- 3. If f and g are bijective, then $g \circ f$ is bijective.

Theorem 14. Let $f: A \to B$ and $g: B \to C$ be bijective. The the composition $g \circ f: A \to C$ is bijective and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Theorem 16. Let S be a nonempty set. The following three conditions are equivalent:

- 1. S is countable.
- 2. There exists an injection $f: S \to \mathbb{N}$.
- 3. There exists a surjection $f: \mathbb{N} \to S$.

Theorem 18. Let S, T and U be sets.

- 1. If $S \subseteq T$, then $|S| \leq |T|$.
- 2. $|S| \leq |S|$.
- 3. If $|S| \le |T|$ and $|T| \le |U|$, then $|S| \le |U|$.
- 4. If $m, n \in \mathbb{N}$ and $m \le n$, then $|\{1, 2, ..., m\}| \le |\{1, 2, ..., n\}|$.
- 5. If S is finite, then $S < \aleph_0$.

Theorem 10. Suppose that $f: A \to B$. Let C, C_1 and C_2 be subsets of A and let D, D_1 and D_2 be subsets of B. Then the following hold:

- 1. $C \subseteq f^{-1}[f(C)]$.
- 2. $f[f^{-1}(D)] \subseteq D$.
- 3. $f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$.
- 4. $f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$.
- 5. $f(C_1) \setminus f(C_2) \subseteq f(C_1 \setminus C_2)$ if $C_2 \subseteq C_1$.

Theorem 11. Suppose that $f: A \to B$. Let C, C_1 and C_2 be subsets of A and let D be a subset of B. Then the following hold:

- 1. If f is injective, then $f^{-1}[f(C)] = C$.
- 2. If f is surjective, then $f[f^{-1}(D)] = D$.
- 3. If f is injective, then $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$.

Theorem 13. Let $f: A \to B$ be bijective. Then

- 1. $f^{-1}: B \to A$ is bijective.
- 2. $f^{-1} \circ f = i_A$ and $f \circ f^{-1} = i_B$.

Theorem 15. Let S be a countable set and let $T \subseteq S$. Then T is countable.

Theorem 17. The set \mathbb{R} of real numbers is uncountable.

THEOREM

Theorem 19

 $Theorem~20 \\ Principle~of~Mathematical~Induction$

Real Analysis I

Real Analysis I

THEOREM

Theorem 21

Theorem 22

Real Analysis I

REAL ANALYSIS I

THEOREM THEOREM

Theorem 23
The Binomial Formula

Theorem 24

Real Analysis I

Real Analysis I

Theorem Theorem

Theorem 25

Theorem 26

Real Analysis I

Real Analysis I

Theorem Theorem

Theorem 27

Theorem 28

Real Analysis I

Real Analysis I

Theorem 20. (Principle of Mathematical Induction) Let P(n) be a statement that is either true or false for each $n \in \mathbb{N}$. Then P(n) is true for all $n \in \mathbb{N}$ provided that

1. P(1) is true, and

2. for each $k \in \mathbb{N}$, if P(k) is true, then P(k+1) is true.

Theorem 19. For any set S, we have $|S| < |\mathcal{P}(S)|$.

Theorem 22. $7^n - 4^n$ is a multiple of 3 for all $n \in \mathbb{N}$.

Theorem 21. $1+2+3+\cdots+n=\frac{1}{2}n(n+1)$ for every natural number n.

Theorem 24. Let $m \in \mathbb{N}$ and let P(n) be a statement that is either true or false for each $n \geq m$. Then P(n) is true for all $n \geq m$ provided that

- 1. P(m) is true, and
- 2. for each $k \ge m$, if P(k) is true, then P(k+1) is true.

Theorem 23. (The Binomial Formula) If x and y are real numbers and $n \in \mathbb{N}$, then

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Theorem 26. Let $x, y \in \mathbb{R}$ such that $x \leq y + \epsilon$ for every $\epsilon > 0$. Then $x \leq y$.

Theorem 25. Let x, y, and z be real numbers.

- 1. If x + z = y + z, then x = y.
- 2. $x \cdot 0 = 0$.
- 3. $(-1) \cdot x = -x$.
- 4. xy = 0 iff x = 0 or y = 0.
- 5. x < y iff -y < -x.
- 6. If x < y and z < 0, then xz > yz.

Theorem 28. Let $m, n, p \in \mathbb{Z}$. If p is a prime number and p divides the product mn, then p divides m or p

and p divides the product mn, then p a divides n.

Theorem 27. Let $x, y \in \mathbb{R}$ and let $a \geq 0$. Then

- 1. $|x| \ge 0$.
- 2. $|x| \le a$ iff $-a \le x \le a$.
- 3. $|xy| = |x| \cdot |y|$.
- 4. $|x+y| \le |x| + |y|$. (The triangle inequality)

THEOREM THEOREM

Theorem 29 Theorem 30

REAL ANALYSIS I REAL ANALYSIS I

Theorem Theorem

Theorem 31 Theorem 32

REAL ANALYSIS I REAL ANALYSIS I

Theorem Theorem

Theorem 33 Theorem 34

REAL ANALYSIS I REAL ANALYSIS I

THEOREM THEOREM

Theorem 35 Theorem 36
Archimedean Property of \mathbb{R}

Real Analysis I Real Analysis I

THEOREM

Theorem 37 Theorem 38

Theorem 30. Every non-empty subset of \mathbb{R} that is bounded below has a greatest lower bound.

Theorem 29. Let p be a prime number. Then \sqrt{p} is not a rational number.

Theorem 32. Let A and B be non-empty subsets of \mathbb{R} . Then

- 1. $\inf A \leq \sup A$.
- 2. $\sup(-A) = -\inf A$ and $\inf(-A) = -\sup A$.
- 3. $\sup(A+B) = \sup(A) + \sup(B)$ and $\inf(A+B) = \inf(A) + \inf(B)$.
- 4. $\sup(A B) = \sup(A) \inf(B).$
- 5. If $A \subseteq B$, then $\sup A \le \sup B$ and $\inf B \le \inf A$.

Theorem 34. Let f and g be functions defined on a set containing A as a subset, and let $c \in \mathbb{R}$ be a positive constant. Then

- 1. $\sup_A cf = c \sup_A f$ and $\inf_A cf = c \inf_A f$.
- 2. $\sup_{A} (-f) = -\inf_{A} f$.
- 3. $\sup_A (f+g) \le \sup_A f + \sup_A g$ and $\inf_A f + \inf_A g \le \inf_A (f+g)$.
- 4. $\sup\{f(x) f(y) : x, y \in A\} \le \sup_A f \inf_A f$.

Theorem 31. Let A be a non-empty subset of \mathbb{R} and x an element of \mathbb{R} . Then

- 1. $\sup A \leq x$ iff $a \leq x$ for every $a \in A$.
- 2. $x < \sup A$ iff x < a for some $a \in A$.

Theorem 33. Suppose that D is a nonempty set and that $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$. If for every $x, y \in D$, $f(x) \leq g(y)$, then f(D) is bounded above and g(D) is bounded below. Furthermore, $\sup f(D) \leq \sup g(D)$.

Theorem 36. (Archimedean Property of \mathbb{R}) The set \mathbb{N} of natural numbers is unbounded above in \mathbb{R} .

Theorem 35. The real number system \mathbb{R} is a complete ordered field.

Theorem 38. Let p be a prime number. Then there exists a positive real number x such that $x^2 = p$.

Theorem 37. Each of the following is equivalent to the Archimedean property.

- 1. For each $z \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > z.
- 2. For each x > 0 and for each $y \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that nx > y.
- 3. For each x > 0, there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < x$.

Theorem 39 Theorem 40

Real Analysis I Real Analysis I

THEOREM

Theorem 41 Theorem 42

Real Analysis I Real Analysis I

COROLLARY THEOREM

Corollary 1 Theorem 43

REAL ANALYSIS I REAL ANALYSIS I

Lemma Theorem

Lemma 1 Theorem 44
Heine-Borel Theorem

Real Analysis I Real Analysis I

THEOREM

Theorem 45
Bolzano-Weierstrass Theorem
Theorem 46

Theorem 40. If x and y are real numbers with x < y, then there exists an irrational number w such that x < w < y.

Theorem 39. (Density of \mathbb{Q} in \mathbb{R}) If x and y are real numbers with x < y, then there exists a rational number r such that x < r < y.

Theorem 42.

- 1. The union of any collection of open sets is an open set.
- 2. The intersection of any finite collection of open sets is an open set.

Theorem 43. Let S be a subset of \mathbb{R} . Then

- $1. \ S \ is \ closed \ iff \ S \ contains \ all \ of \ its \ accumulation \\ points.$
- 2. cl S is a closed set.
- 3. S is closed iff S = cl S.

Theorem 44. (Heine–Borel) A subset S of \mathbb{R} is compact iff S is closed and bounded.

Theorem 41.

- A set S is open iff S = int S. Equivalently, S is open iff every point in S is an interior point of S.
- 2. A set S is closed iff its complement $\mathbb{R} \setminus S$ is open.

Corollary 1.

- 1. The intersection of any collection of closed sets is closed.
- 2. The union of any finite collection of closed sets is closed.

Lemma 1. If S is a nonempty closed bounded subset of \mathbb{R} , then S has a maximum and a minimum.

Theorem 46. Let $\mathscr{F} = \{K_{\alpha} : \alpha \in \mathscr{A}\}\$ be a family of compact subsets of \mathbb{R} . Suppose that the intersection of any finite subfamily of \mathscr{F} is nonempty. Then $\bigcap \{K_{\alpha} : \alpha \in \mathscr{A}\} \neq \varnothing$.

Theorem 45. (Bolzano–Weierstrass) If a bounded subset S of \mathbb{R} contains infinitely many points, then there exists at least one point in \mathbb{R} that is an accumulation point of S.

COROLLARY THEOREM

Corollary 2 Nested Intervals Theorem

Theorem 47

Real Analysis I

Real Analysis I

THEOREM THEOREM

Theorem 48

Theorem 49

Real Analysis I

Real Analysis I

THEOREM THEOREM

Theorem 50

Theorem 51

Real Analysis I

Real Analysis I

Theorem Theorem

 $Theorem\ 52$ $The\ Squeeze\ Principle$

Theorem 53

Real Analysis I

Real Analysis I

Theorem Corollary

Theorem 54

Corollary 3

Real Analysis I

Real Analysis I

Theorem 47. Let (s_n) and (a_n) be sequences of real numbers and let $s \in \mathbb{R}$. If for some k > 0 and some $m \in \mathbb{N}$, we have

$$|s_n - s| \le k|a_n|$$
, for all $n > m$,

and if $\lim a_n = 0$, then it follows that $\lim s_n = s$.

Corollary 2. (Nested Intervals Theorem) Let $\mathscr{F} = \{A_n : n \in \mathbb{N}\}$ be a family of closed bounded intervals in \mathbb{R} such that $A_{n+1} \subseteq A_n$ for all $n \in \mathbb{N}$. Then $\bigcap_{n=1}^{\infty} A_n \neq \varnothing$.

Theorem 49. If a sequence converges, its limit is unique.

Theorem 48. Every convergent sequence is bounded.

Theorem 51. Let (s_n) be a sequence of real numbers such that $\lim s_n = 0$, and let (t_n) be a bounded sequence. Then $\lim s_n t_n = 0$.

Theorem 50. A sequence (s_n) converges to s iff for each $\epsilon > 0$, there are only finitely many n for which $|s_n - s| \ge \epsilon$.

Theorem 53. Suppose that (s_n) and (t_n) are convergent sequences with $\lim s_n = s$ and $\lim t_n = t$. Then

- 1. $\lim(s_n + t_n) = s + t$.
- 2. $\lim(ks_n) = ks$ and $\lim(k + s_n) = k + s$ for any $k \in \mathbb{R}$.
- 3. $\lim(s_n t_n) = st$.
- 4. $\lim_{t \to 0} \left(\frac{s_n}{t_n}\right) = \frac{s}{t}$, provided that $t_n \neq 0$ for all n and $t \neq 0$.

Theorem 52. (The Squeeze Principle) If (a_n) , (b_n) , and (c_n) are sequences for which there is a number K such that $b_n \leq a_n \leq c_n$ for all n > K, and if $b_n \to a$ and $c_n \to a$, then $a_n \to a$.

Corollary 3. If (t_n) converges to t and $t_n \geq 0$ for all $n \in \mathbb{N}$, then $t \geq 0$.

Theorem 54. Suppose that (s_n) and (t_n) are convergent sequences with $\lim s_n = s$ and $\lim t_n = t$. If $s_n \leq t_n$ for all $n \in \mathbb{N}$, then $s \leq t$.

Theorem 55 Theorem 56 Ratio Test Real Analysis I Real Analysis I THEOREM THEOREM Theorem 58 Theorem 57 Monotone Convergence Theorem Real Analysis I REAL ANALYSIS I THEOREM Lemma Theorem 59 Lemma 2 Real Analysis I Real Analysis I

Lemma 3 Theorem 60
Cauchy Convergence Criterion

Theorem

Real Analysis I Real Analysis I

Theorem Theorem

Lemma

Theorem 61 Theorem 62
Bolzano-Weierstrass Theorem For Sequences

Theorem 56. Suppose that (s_n) and (t_n) are sequences such that $s_n \leq t_n$ for all $n \in \mathbb{N}$.

- 1. If $\lim s_n = +\infty$, then $\lim t_n = +\infty$.
- 2. If $\lim t_n = -\infty$, then $\lim s_n = -\infty$.

Theorem 55. (Ratio Test) Suppose that (s_n) is a sequence of positive terms and that the limit $L = \lim \left(\frac{s_{n+1}}{s_n}\right)$ exists. If L < 1, then $\lim s_n = 0$.

Theorem 58. (Monotone Convergence Theorem) A monotone sequence is convergent iff it is bounded.

Theorem 57. Let (s_n) be a sequence of positive numbers. Then $\lim s_n = +\infty$ iff $\lim \left(\frac{1}{s_n}\right) = 0$.

Theorem 59.

Lemma 2. Every convergent sequence is a Cauchy sequence.

- 1. If (s_n) is an unbounded increasing sequence, then $\lim s_n = +\infty$.
- 2. If (s_n) is an unbounded decreasing sequence, then $\lim s_n = -\infty$.

Theorem 60. (Cauchy Convergence Criterion) A sequence of real numbers is convergent iff it is a Cauchy sequence.

Lemma 3. Every Cauchy sequence is bounded.

Theorem 62. (Bolzano-Weierstrass Theorem For Sequences) Every bounded sequence has a convergent subsequence.

Theorem 61. If a sequence (s_n) converges to a real number s, then every subsequence of (s_n) also converges to s.

THEOREM THEOREM

Theorem 63 Theorem 64 Real Analysis I REAL ANALYSIS I THEOREM THEOREM Theorem 65 Theorem 66 Real Analysis I REAL ANALYSIS I Corollary THEOREM Corollary 4 Theorem 67 Real Analysis I Real Analysis I THEOREM Theorem Theorem 68 Theorem 69 Real Analysis I REAL ANALYSIS I THEOREM THEOREM Theorem 70 Theorem 71

Theorem 64. Let (s_n) be a sequence and suppose that $m = \lim s_n$ is a real number. Then the following properties hold:

- 1. For every $\epsilon > 0$ there exists N such that n > N implies that $s_n < m + \epsilon$.
- 2. For every $\epsilon > 0$ and for every $i \in \mathbb{N}$, there exists an integer k > i such that $s_k > m \epsilon$.

Theorem 63. Every unbounded sequence contains a monotone subsequence that has either $+\infty$ or $-\infty$ as a limit.

Theorem 66. Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D. Then $\lim_{x\to c} f(x) = L$ iff for every sequence (s_n) in D that converges to c with $s_n \neq c$ for all n, the sequence $(f(s_n))$ converges to L.

Theorem 65. Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D. Then $\lim_{x\to c} f(x) = L$ iff for each neighborhood V of L there exists a deleted neighborhood U of c such that $f(U \cap D) \subseteq V$.

Theorem 67. Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D. Then the following are equivalent:

- (a) f does not have a limit at c.
- (b) There exists a sequence (s_n) in D with each $s_n \neq c$ such that (s_n) converges to c, but $(f(s_n))$ is not convergent in \mathbb{R} .

Corollary 4. If $f: D \to \mathbb{R}$ and if c is an accumulation point of D, then f can have only one limit at c.

Theorem 69. Let $f: D \to \mathbb{R}$ and let $c \in D$. Then the following three conditions are equivalent:

- (a) f is continuous at c.
- (b) If (x_n) is any sequence in D such that (x_n) converges to c, then $\lim_{n \to \infty} f(x_n) = f(c)$.
- (c) For every neighborhood V of f(c) there exists a neighborhood U of c such that $f(U \cap D) \subseteq V$.

Furthermore, if c is an accumulation point of D, then the above are all equivalent to

(d) f has a limit at c and $\lim_{x\to c} f(x) = f(c)$.

Theorem 68. Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$, and let c be an accumulation point of D. If $\lim_{x\to c} f(x) = L$, $\lim_{x\to c} g(x) = M$, and $k \in \mathbb{R}$, then $\lim_{x\to c} (f+g)(x) = L + M$, $\lim_{x\to c} (fg)(x) = LM$, and $\lim_{x\to c} (kf)(x) = kL$.

Theorem 71. Let f and g be functions from D to \mathbb{R} , and let $c \in D$. Suppose that f and g are continuous at c. Then

- (a) f + g and fg are continuous at c,
- (b) f/g is continuous at c if $g(c) \neq 0$.

Theorem 70. Let $f: D \to \mathbb{R}$ and let $c \in D$. Then f is discontinuous at c iff there exists a sequence (x_n) in D such that (x_n) converges to c but the sequence $(f(x_n))$ does not converge to f(c).

Theorem 72 Theorem 73

REAL ANALYSIS I REAL ANALYSIS I

COROLLARY

Corollary 5 Lemma 4

Real Analysis I Real Analysis I

THEOREM

Theorem 74
Intermediate Value Theorem
Theorem 75

REAL ANALYSIS I REAL ANALYSIS I

THEOREM

Theorem 76 Theorem 77

Real Analysis I Real Analysis I

THEOREM

Theorem 78 Theorem 79

Theorem 73. Let D be a compact subset of \mathbb{R} and suppose that $f: D \to \mathbb{R}$ is continuous. Then f(D) is compact.

Theorem 72. Let $f: D \to \mathbb{R}$ and $g: E \to \mathbb{R}$ be functions such that $f(D) \subseteq E$. If f is continuous at a point $c \in D$ and g is continuous at f(c), then the composition $g \circ f: D \to \mathbb{R}$ is continuous at c.

Lemma 4. Let $f:[a,b] \to \mathbb{R}$ be continuous and suppose that f(a) < 0 < f(b). Then there exists a point c in (a,b) such that f(x) = 0.

Corollary 5. Let D be a compact subset of \mathbb{R} and suppose that $f: D \to \mathbb{R}$ is continuous. Then f assumes minimum and maximum values on D. That is, there exist points x_1 and x_2 in D such that $f(x_1) \leq f(x) \leq f(x_2)$ for all $x \in D$.

Theorem 75. Let I be a compact interval and suppose that $f: I \to \mathbb{R}$ is a continuous function. Then the set f(I) is a compact interval.

Theorem 74. (Intermediate Value Theorem) Suppose that $f:[a,b] \to \mathbb{R}$ is continuous. Then f has the intermediate value property on [a,b]. That is, if k is any value between f(a) and f(b) [i.e. f(a) < k < f(b) or f(b) < k < f(a)], then there exists $c \in [a,b]$ such that f(c) = k.

Theorem 77. Let $f: D \to \mathbb{R}$ be uniformly continuous on D and suppose that (x_n) is a Cauchy sequence in D. Then $(f(x_n))$ is a Cauchy sequence.

Theorem 76. Suppose that $f: D \to \mathbb{R}$ is continuous on a compact set D. Then f is uniformly continuous on D.

Theorem 79. Let I be an interval containing the point c and suppose that $f: I \to \mathbb{R}$. Then f is differentiable at c iff, for every sequence (x_n) in $I \setminus \{c\}$ that converges to c, the sequence

$$\left(\frac{f(x_n) - f(c)}{x_n - c}\right)$$

converges. Furthermore, if f is differentiable at c, then the sequence of quotients above will converge to f'(c).

Theorem 78. A function $f:(a,b) \to \mathbb{R}$ is uniformly continuous on (a,b) iff it can be extended to a function \tilde{f} that is continuous on [a,b].

THEOREM THEOREM

Theorem 80 Theorem 81 (part 1)

Real Analysis I Real Analysis I

THEOREM

Theorem 81 (part 2)

Theorem 82
Chain Rule

REAL ANALYSIS I REAL ANALYSIS I

Theorem Theorem

Theorem 83

Theorem 84
Rolle's Theorem

REAL ANALYSIS I REAL ANALYSIS I

Theorem Theorem

Theorem 85
Mean Value Theorem
Theorem 86

Real Analysis I Real Analysis I

COROLLARY THEOREM

Corollary 6 Theorem 87

Theorem 81. Suppose that $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are differentiable at $c \in I$. Then

- (a) If $k \in \mathbb{R}$, then the function kf is differentiable at c and $(kf)'(c) = k \cdot f'(c)$.
- (b) The function f + g is differentiable at c and (f + g)'(c) = f'(c) + g'(c).

Theorem 80. If $f: I \to \mathbb{R}$ is differentiable at a point $c \in I$, then f is continuous at c.

Theorem 82. (Chain Rule) Let I and J be intervals in \mathbb{R} , let $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$, where $f(I) \subseteq J$, and let $c \in I$. If f is differentiable at c and g is differentiable at f(c), then the composite function $g \circ f$ is differentiable at c and $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

- **Theorem 81.** Suppose that $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are differentiable at $c \in I$. Then
 - (c) (Product Rule) The function fg is differentiable at c and (fg)'(c) = f(c)g'(c) + f'(c)g(c).
 - (d) (Quotient Rule) If $g(c) \neq 0$, then the function f/g is differentiable at c and

$$\left(\frac{f}{g}\right)'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{[g(c)]^2}.$$

Theorem 84. (Rolle's Theorem) Let f be a continuous function on [a,b] that is differentiable on (a,b) and such that f(a) = f(b) = 0. Then there exists at least one point $c \in (a,b)$ such that f'(c) = 0.

Theorem 83. If f is differentiable on an open interval (a,b) and if f assumes its maximum or minimum at a point $c \in (a,b)$, then f'(c) = 0.

Theorem 86. Let f be continuous on [a,b] and differentiable on (a,b). If f'(x) = 0 for all $x \in (a,b)$, then f is constant on [a,b].

Theorem 85. (Mean Value Theorem) Let f be a continuous function on [a,b] that is differentiable on (a,b). Then there exists at least one point $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Theorem 87. Let f be differentiable on an interval I. Then

- (a) if f'(x) > 0 for all $x \in I$, then f is strictly increasing on i, and
- (b) if f'(x) < 0 for all $x \in I$, then f is strictly decreasing on I.

Corollary 6. Let f and g be continuous on [a,b] and differentiable on (a,b). Suppose that f'(x) = g'(x) for all $x \in (a,b)$. Then there exists a constant C such that f = g + C on [a,b].

Theorem 88
Intermediate Value Theorem for Derivatives

Theorem 89
Inverse Function Theorem

Real Analysis I

Real Analysis I

Theorem Theorem

Theorem 90 Cauchy Mean Value Theorem

Theorem 91 L'Hospital's Rule

Real Analysis I

Real Analysis I

THEOREM

Theorem 92 L'Hospital's Rule Theorem 93 Taylor's Theorem

Real Analysis I

Real Analysis I

Theorem Theorem

Theorem 94

Theorem 95

Real Analysis I

Real Analysis I

Theorem Theorem

Theorem 96

Theorem 97

Real Analysis I

Real Analysis I

Theorem 89. (Inverse Function Theorem) Suppose that f is differentiable on an interval I and $f'(x) \neq 0$ for all $x \in I$. Then f is injective, f^{-1} is differentiable on f(I), and $(f^{-1})'(y) = \frac{1}{f'(x)}$, where y = f(x).

Theorem 88. (Intermediate Value Theorem for Derivatives) Let f be differentiable on [a,b] and suppose that k is a number between f'(a) and f'(b). Then there exists a point $c \in (a,b)$ such that f'(c) = k.

Theorem 91. (L'Hospital's Rule) Let f and g be continuous on [a,b] and differentiable on (a,b). Suppose that $c \in [a,b]$ and f(c) = g(c) = 0. Suppose also that $g'(x) \neq 0$ for $x \in U$, where U is the intersection of (a,b) and some deleted neighborhood of c. If $\lim_{x\to c} \frac{f'(x)}{g'(x)} = L$, with $L \in \mathbb{R}$, then $\lim_{x\to c} \frac{f(x)}{g(x)} = L$.

Theorem 90. (Cauchy Mean Value Theorem) Let f and g be functions that are continuous on [a,b] and differentiable on (a,b). Then there exists at least one point $c \in (a,b)$ such that

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c)$$

Theorem 93. (Taylor's Theorem) Let f and its first n derivatives be continuous on [a,b] and differentiable on (a,b), and let $x_0 \in [a,b]$. Then for each $x \in [a,b]$ with $x \neq x_0$ there exists a point c between x and x_0 such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots$$
$$+ \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.$$

Theorem 92. (L'Hospital's Rule) Let f and g be differentiable on (b, ∞) . Suppose that $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$, and that $g'(x) \neq 0$ for $x \in (b, \infty)$. If $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = L$, where $L \in \mathbb{R}$, then $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L$.

Theorem 95. Let f be a bounded function on [a,b]. Then $L(f) \leq U(f)$.

Theorem 94. Let f be a bounded function on [a,b]. If P and Q are partitions of [a,b] and Q is a refinement of P, then $L(f,P) \leq L(f,Q) \leq U(f,Q) \leq U(f,P)$.

Theorem 97. Let f be a monotonic function on [a, b]. Then f is integrable.

Theorem 96. Let f be a bounded function on [a,b]. Then f is integrable iff for each $\epsilon > 0$ there exists a partition P of [a,b] such that $U(f,P) - L(f,P) < \epsilon$.

Theorem 98 Theorem 99

REAL ANALYSIS I REAL ANALYSIS I

THEOREM

Theorem 100 Theorem 101

REAL ANALYSIS I REAL ANALYSIS I

COROLLARY THEOREM

Corollary 7 Theorem 102
The Fundamental Theorem of Calculus I

REAL ANALYSIS I REAL ANALYSIS I

Theorem Theorem

Theorem 103
The Fundamental Theorem of Calculus II
Theorem 104

Real Analysis I Real Analysis I

THEOREM THEOREM

Theorem 105

Theorem 106
Cauchy Criterion for Series

Theorem 99. Let f and g be integrable functions on [a,b] and let $k \in \mathbb{R}$. Then

- (a) kf is integrable and $\int_a^b kf = k \int f$, and
- (b) f + g is integrable and $\int_a^b (f + g) = \int_a^b f + \int_a^b g$.

Theorem 98. Let f be a continuous function on [a, b]. Then f is integrable on [a, b].

Theorem 101. Suppose that f is integrable on [a,b] and g is continuous on [c,d], where $f([a,b]) \subseteq [c,d]$. Then $g \circ f$ is integrable on [a,b].

Theorem 100. Suppose that f is integrable on both [a, c] and [c, b]. Then f is integrable on [a, b]. Furthermore, $\int_a^b f = \int_a^c f + \int_c^b f$.

Theorem 102. (The Fundamental Theorem of Calculus I) Let f be integrable on [a,b]. For each $x \in [a,b]$ let $F(x) = \int_a^x f(t) dt$. Then F is uniformly continuous on [a,b]. Furthermore, if f is continuous at $c \in [a,b]$, then F is differentiable at c and F'(c) = f(c).

Corollary 7. Let f be integrable on [a,b]. The |f| is integrable on [a,b] and $\left| \int_a^b f \right| \leq \int_a^b |f|$.

Theorem 104. Suppose that $\sum a_n = s$ and $\sum b_n = t$. Then $\sum (a_n + b_n) = s + t$ and $\sum (ka_n) = ks$, for every $k \in \mathbb{R}$.

Theorem 103. (The Fundamental Theorem of Calculus II) If f is differentiable on [a,b] and f' is integrable on [a,b], then $\int_a^b f' = f(b) - f(a)$.

Theorem 106. (Cauchy Criterion for Series) The infinite series $\sum a_n$ converges iff for each $\epsilon > 0$ there exists a number N such that if $n \geq m > N$, then $|a_m + a_{m+1} + \cdots + a_n| < \epsilon$.

Theorem 105. If $\sum a_n$ is a convergent series, then $\lim a_n = 0$.

Theorem 107 Comparison Test

Theorem 108

Real Analysis I

Real Analysis I

THEOREM

Theorem 109 Ratio Test Theorem 110 Root Test

Real Analysis I

Real Analysis I

THEOREM

Theorem 111 Integral Test Theorem 112 Alternating Series Test

Real Analysis I

Real Analysis I

Theorem Theorem

Theorem 113

Theorem 114
Ratio Criterion

Real Analysis I

Real Analysis I

Theorem Theorem

Theorem~115

Theorem 116
Weierstrass M-test

Theorem 108. If a series converges absolutely, then it converges.

Theorem 110. (Root Test) Given a series $\sum a_n$, let $\alpha = \limsup |a_n|^{\frac{1}{n}}$.

- 1. If $\alpha < 1$, then the series converges absolutely.
- 2. If $\alpha > 1$, then the series diverges.
- 3. Otherwise, $\alpha = 1$ and the test gives no information about convergence or divergence.

Theorem 112. (Alternating Series Test) If (a_n) is a decreasing sequence of positive numbers and $\lim a_n = 0$, then the series $\sum (-1)^{n+1} a_n$ converges.

Theorem 114. (Ratio Criterion) The radius of convergence R of a power series $\sum a_n x^n$ is equal to $\lim \left| \frac{a_n}{a_{n+1}} \right|$, provided that this limit exists.

Theorem 116. (Weierstrass M-test) Suppose that (f_n) is a sequence of functions defined on S and (M_n) is a sequence of nonnegative numbers such that $|f_n(x)| \leq M_n$ for all $x \in S$ and all $n \in \mathbb{N}$. If $\sum M_n$ converges, then $\sum f_n$ converges uniformly on S.

Theorem 107. (Comparison Test) Let $\sum a_n$ and $\sum b_n$ be infinite series of nonnegative terms. That is, $a_n \geq 0$ and $b_n \geq 0$ for all n. Then

- 1. If $\sum a_n$ converges and $0 \le b_n \le a_n$ for all n, then $\sum b_n$ converges.
- 2. If $\sum a_n = +\infty$ and $0 \le a_n \le b_n$ for all n, then $\sum b_n = +\infty$.

Theorem 109. (Ratio Test) Let $\sum a_n$ be a series of nonzero terms.

- 1. If $\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1$, then the series converges absolutely.
- 2. If $\liminf \left| \frac{a_{n+1}}{a_n} \right| > 1$, the the series diverges.
- 3. Otherwise, $\liminf \left| \frac{a_{n+1}}{a_n} \right| \le 1 \le \limsup \left| \frac{a_{n+1}}{a_n} \right|$ and the test gives no information about convergence or divergence.

Theorem 111. (Integral Test) Let f be a continuous function defined on $[0, \infty)$, and suppose that f is positive and decreasing. That is, if $x_1 < x_2$, then $f(x_1) \ge f(x_2) > 0$. Then the series $\sum (f(n))$ converges iff $\lim_{n\to\infty} \left(\int_1^n f(x) dx\right)$ exists as a real number.

Theorem 113. Let $\sum a_n x^n$ be a power series and let $\alpha = \limsup |a_n|^{\frac{1}{n}}$. Define R by

$$R = \begin{cases} \frac{1}{\alpha} & \text{if } 0 < \alpha < +\infty \\ +\infty & \text{if } \alpha = 0 \\ 0 & \text{if } \alpha = +\infty \end{cases}.$$

Then the series converges absolutely whenever |x| < R and diverges whenever |x| > R. (When $R = +\infty$ we take this to mean that the series converges absolutely for all real x. When R = 0 then the series converges only at x = 0.)

Theorem 115. Let (f_n) be a sequence of functiond defined on a subset S of \mathbb{R} . There exists a function f such that (f_n) converges to f uniformly on S iff the following condition (called the Cauchy criterion) is satisfied:

For every $\epsilon > 0$ there exists a number N such that $|f_n(x) - f_m(x)| < \epsilon$ for all $x \in S$ and all m, n > N.

THEOREM COROLLARY

Theorem 117 Corollary 8

REAL ANALYSIS I REAL ANALYSIS I

Theorem Corollary

Theorem 118 Corollary 9

REAL ANALYSIS I REAL ANALYSIS I

Theorem Corollary

Theorem 119 Corollary 10

REAL ANALYSIS I REAL ANALYSIS I

THEOREM

Theorem 120 Theorem 121

REAL ANALYSIS I REAL ANALYSIS I

Theorem Corollary

Theorem 122 Corollary 11

Corollary 8. Let $\sum_{n=0}^{\infty} f_n$ be a series of functions defined on a set S. Suppose that each f_n is continuous on S and that the series converges uniformly to a function f on S. Then $f = \sum_{n=0}^{\infty} f_n$ si continuous on S.

Theorem 117. Let (f_n) be a sequence of continuous functions defined on a set S and suppose that (f_n) converges uniformly on S to a function $f: S \to \mathbb{R}$. Then f is continuous on S.

Corollary 9. Let $\sum_{n=0}^{\infty} f_n$ be a series of functions defined on an interval [a,b]. Suppose that each f_n is continuous on [a,b] and that the series converges uniformly to a function f on [a,b]. Then $\int_a^b f(x) dx = \sum_{n=0}^{\infty} \int_a^b f_n(x) dx$.

Theorem 118. Let (f_n) be a sequence of continuous functions defined on an interval [a,b] and suppose that (f_n) converges uniformly on [a,b] to a function f.

Then $\lim_{n\to\infty}\int_a^b f_n(x)\,dx=\int_a^b f(x)\,dx$.

Corollary 10. Let $\sum_{n=0}^{\infty} f_n$ be a series of functions that converges to a function f on an interval [a,b]. Suppose that for each n, f'_n exists and is continuous on [a,b] and that the series of derivatives $\sum_{n=0}^{\infty} f'_n$ is uniformly convergent on [a,b]. Then $f'(x) = \sum_{n=0}^{\infty} f'_n(x)$ for all $x \in [a,b]$.

Theorem 119. Suppose that (f_n) converges to f on an interval [a,b]. Suppose also that each f'_n exists and is continuous on [a,b], and that the sequence (f'_n) converges uniformly on [a,b]. Then $\lim_{n\to\infty} f'_n(x) = f'(x)$ for each $x \in [a,b]$.

Theorem 121. Let $\sum a_n x^n$ be a power series with radius of convergence R, where $0 < R \le +\infty$. If 0 < K < R, then teh power series converges uniformly on [-K, K].

Theorem 120. There exists a continuous function defined on \mathbb{R} that is nowhere differentiable.

Corollary 11. Suppose that $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for $x \in (-R, R)$, where R > 0. Then for each $k \in \mathbb{N}$, the kth derivative $f^{(k)}$ of f exists on (-R, R) and

$$f^{(k)}(x) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n x^{n-k}$$
$$= k! a_k + (k+1)! a_{k+1} + \frac{(k+2)!}{2!} a_{k+2} x^2 + \cdots$$

ferentiated series converges on (-R, R) to f'. That is, if $f(x) = \sum_{n=0}^{\infty} a_n x^n$, then $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$, and both series have the same radius of convergence.

Theorem 122. Suppose that a pwer series converges

to a function f on (-R,R), where R>0. Then the

series can be differentiated term by term, and the dif-

Furthermore, $f^{(k)}(0) = k!a_k$.

COROLLARY THEOREM

Corollary 12

Theorem 123

Real Analysis I

Real Analysis I

Corollary

Corollary 13

Real Analysis I

Theorem 123. Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with a finite positive radius of convergence R. If the series

a finite positive radius of convergence R. If the series converges at x = R, then it converges uniformly on teh interval [0, R]. Similarly, if the series converges at x = -R, then it converges uniformly on [-R, 0].

Corollary 12. If $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n$ for all x in some interval (-R,R), where R > 0, then $a_n = b_n$ for all $n \in \mathbb{N} \cup \{0\}$.

Corollary 13. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ have a finite positive radius of convergence R. If the series converges

itive radius of convergence R. If the series converges at x = R, then f is continuous at x = R. If the series converges at x = -R, then f is continuous at x = -R.