Copyright © 2007 Jason Underdown

 Some rights reserved.
Real Analysis I

A sentence that can unambiguously be classified as true or false.

Let p stand for a statement, then $\sim p($ read not $p)$ represents the logical opposite or negation of p.

If p and q are statements, then the statement p or q (called the disjunction of p and q and denoted $\mathbf{p} \vee \mathbf{q}$) is true unless both p and q are false.

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

$$
\text { If } p, \text { then } q
$$

In the above, the statement p is called the antecedant or hypothesis, and the statement q is called the consequent or conclusion.

$$
\sim(p \wedge q) \Leftrightarrow(\sim p) \vee(\sim q)
$$

These flashcards and the accompanying $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$ source code are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. For more information, see creativecommons.org. You can contact the author at:
jasonu at physics utah edu
File last updated on Thursday $2^{\text {nd }}$ August, 2007, at 02:17
not, and, or, if ...then, if and only if

If p and q are statements, then the statement p and q (called the conjunction of p and q and denoted $\mathbf{p} \wedge \mathbf{q})$ is true only when both p and q are true, and false otherwise.

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

A statement of the form

$$
\text { if } p \text { then } q
$$

is called an implication or conditional.

p	q	$p \Rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

A statement of the form " p if and only if q " is the conjunction of two implications and is called an equivalence.
negation of a disjunction

Real Analysis I

Definition

Real Analysis I
tautology

Definition
existential quantifier

Real Analysis I

Definition

converse | |
| :--- |
| |
| |
| Real Analysis I |

Definition
negation of an implication

Real Analysis I

Definition
Definition universal quantifier

Definition

DEFINITION
inverse

Real Analysis I

$$
\sim(p \Rightarrow q) \Leftrightarrow p \wedge(\sim q)
$$

$$
\forall x, p(x)
$$

In the above statement, the universal quantifier denoted by \forall is read "for all", "for each", or "for every".

The implication $p \Rightarrow q$ is logically equivalent with its contrapositive:

$$
\sim q \Rightarrow \sim p
$$

$$
\sim(p \vee q) \Leftrightarrow(\sim p) \wedge(\sim q)
$$

A sentence whose truth table contains only T is called a tautology. The following sentences are examples of tautologies ($c \equiv$ contradiction):

$$
\begin{aligned}
& (p \Leftrightarrow q) \quad \Leftrightarrow \quad(p \Rightarrow q) \wedge(q \Rightarrow p) \\
& (p \Rightarrow q) \quad \Leftrightarrow \quad(\sim q \Rightarrow \sim p) \\
& (p \Rightarrow q)
\end{aligned} \Leftrightarrow^{[(p \wedge \sim q) \Rightarrow c]} \text {. }
$$

$$
\exists x \ni p(x)
$$

In the above statement, the existential quantifier denoted by \exists is read "there exists ...", "there is at least one ...". The symbol \ni is just shorthand for "such that".

Given the implication $p \Rightarrow q$ then its converse is

$$
q \Rightarrow p
$$

But they are not logically equivalent.

A contradiction is a statement that is always false. Contradictions are symbolized by the letter c or by two arrows pointing directly at each other.

$$
\Rightarrow \Leftarrow
$$

union, intersection, complement, disjoint

Real Analysis I

Definition
pairwise disjoint

Real Analysis I

Definition

Cartesian product

Real Analysis I

Definition

Definition
indexed family of sets

Real Analysis I

Definition
ordered pair

Real Analysis I
relation

Real Analysis I

Definition

Let A and B be sets. We say that A is a equal to B if A is a subset of B and B is a subset of A.

$$
A=B \Leftrightarrow A \subseteq B \text { and } B \subseteq A
$$

If for each element j in a nomempty set J there corresponds a set A_{j}, then

$$
\mathscr{A}=\left\{A_{j}: j \in J\right\}
$$

is called an indexed family of sets with J as the index set.

The ordered pair (a, b) is the set whose members are $\{a\}$ and $\{a, b\}$.

$$
(a, b)=\{\{a\},\{a, b\}\}
$$

Let A and B be sets. A relaton between A and B is any subset R of $A \times B$.

$$
a \mathrm{R} b \Leftrightarrow(a, b) \in \mathrm{R}
$$

The equivalence class of $x \in S$ with respect to an equivalence relation R is the set

$$
E_{x}=\{y \in S: y \mathrm{R} x\}
$$

Let A and B be sets. A is a proper subset of B if A is a subset of B and there exists an element in B that is not in A.

Let A and B be sets.

$$
\begin{aligned}
A \cup B & =\{x: x \in A \text { or } x \in B\} \\
A \cap B & =\{x: x \in A \text { and } x \in B\} \\
A \backslash B & =\{x: x \in A \text { and } x \notin B\}
\end{aligned}
$$

If $A \cap B=\varnothing$ then A and B are said to be disjoint.

If \mathscr{A} is a collection of sets, then \mathscr{A} is called pairwise disjoint if
$\forall A, B \in \mathscr{A}$, where $A \neq B$ then $A \cap B=\varnothing$

If A and B are sets, then the Cartesian product or cross product of A and B is the set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$.

$$
A \times B=\{(a, b): a \in A \text { and } b \in B\}
$$

A relation R on a set S is an equivalence relation if for all $x, y, z \in S$ it satisfies the following criteria:

1. $x \mathrm{R} x$ reflexivity
2. $x \mathrm{R} y \Rightarrow y \mathrm{R} x$ symmetry
3. $x \mathrm{R} y$ and $y \mathrm{R} z \Rightarrow x \mathrm{R} z$ transitivity
partition

Real Analysis I

Real Analysis I
domain

Real Analysis I
Definition
range \& codomain
surjective or onto injective or 1-1

Real Analysis I

Definition
bijective

Real Analysis I
Definition
characteristic or indicator function

Real Analysis I

Definition
composition of functions

A partition of a set S is a collection \mathscr{P} of nonempty subsets of S such that

1. Each $x \in S$ belongs to some subset $A \in \mathscr{P}$.
2. For all $A, B \in \mathscr{P}$, if $A \neq B$, then $A \cap B=\varnothing$

A member of a set \mathscr{P} is called a piece of the partition.

Let A and B be sets, and let $f \subseteq A \times B$ be a function between A and B. The domain of f is the set of all first elements of members of f.

$$
\operatorname{dom} f=\{a \in A: \exists b \in B \ni(a, b) \in f\}
$$

The function $f: A \rightarrow B$ is surjective or onto if $B=\operatorname{rng} f$. Equivalently,

$$
\forall b \in B, \quad \exists a \in A \ni b=f(a)
$$

A function $f: A \rightarrow B$ is said to be bijective if f is both surjective and injective.

Suppose $f: A \rightarrow B$, and $C \subseteq A$, then the image of C under f is

$$
f(C)=\{f(x): x \in C\}
$$

If $D \subseteq B$ then the pre-image of D in f is

$$
f^{-1}(D)=\{x \in A: f(x) \in D\}
$$

inverse function identity function

Real Analysis I

Definition

Definition

Real Analysis I
Definition
equinumerous

Real Analysis I
finite \& infinite sets

Definition
denumerable

Real Analysis I

Definition
countable \& uncountable

Real Analysis I
Real Analysis I

Definition
cardinal number \& transfinite

Definition
power set

Real Analysis I

Definition
continuum hypothesis
algebraic \& transcendental

A function that maps a set A onto itself is called the identity function on A, and is denoted i_{A}.
If $f: A \rightarrow B$ is a bijection, then

$$
\begin{aligned}
& f^{-1} \circ f=i_{A} \\
& f \circ f^{-1}=i_{B}
\end{aligned}
$$

A set S is said to be finite if $S=\varnothing$ or if there exists an $n \in \mathbb{N}$ and a bijection

$$
f:\{1,2, \ldots, n\} \rightarrow S
$$

If a set is not finite, it is said to be infinite.

A set S is said to be denumerable if there exists a bijection

$$
f: \mathbb{N} \rightarrow S
$$

Given any set S, the power set of S denoted by $\mathscr{P}(S)$ is the collection of all possible subsets of S.

A real number is said to be algebraic if it is a root of a polynomial with integer coefficients.

If a number is not algebraic, it is called transcendental.

Let $f: A \rightarrow B$ be bijective. The inverse function of f is the function $f^{-1}: B \rightarrow A$ given by

$$
f^{-1}=\{(y, x) \in B \times A:(x, y) \in f\}
$$

Two sets S and T are equinumerous, denoted $S \sim T$, if there exists a bijection from S onto T.

Let $I_{n}=\{1,2, \ldots, n\}$. The cardinal number of I_{n} is n. Let S be a set. If $S \sim I_{n}$ then S has n elements.

The cardinal number of \varnothing is defined to be 0 .
Finally, if a cardinal number is not finite, it is said to be transfinite.

If a set is finite or denumerable, then it is countable.

If a set is not countable, then it is uncountable.

Given that $|\mathbb{N}|=\aleph_{0}$ and $|\mathbb{R}|=c$, we know that $c>\aleph_{0}$, but is there any set with cardinality say λ such that $\aleph_{0}<\lambda<c$?

The conjecture that there is no such set was first made by Cantor and is known as the continuum hypothesis.

Axiom
well-ordering property of \mathbb{N}

Real Analysis I

Definition
recursion relation or recurrence relation

Real Analysis I

Axiom Definition
order axioms absolute value

Real Analysis I

Theorem
triangle inequality

Real Analysis I

Definition

Definition
ordered field
Real Analysis I
basis for induction, induction step, induction hypothesis

Axiom
field axioms
Real Analysis I

Real Analysis I

In the Principle of Mathematical Induction, part (1) which refers to $P(1)$ being true is known as the basis for induction.

Part (2) where one must show that $\forall k \in \mathbb{N}, P(k) \Rightarrow$ $P(k+1)$ is known as the induction step.

Finally, the assumption in part (2) that $P(k)$ is true is known as the induction hypothesis.

A1 Closure under addition
A2 Addition is commutative
A3 Addition is associative
A4 Additive identity is 0
A5 Unique additive inverse of x is $-x$
M1 Closure under multiplication
M2 Multiplication is commutative
M3 Multiplication is associative
M4 Multiplicative identity is 1
M5 If $x \neq 0$, then the unique multiplicative inverse is $1 / x$
DL $\forall x, y, z \in \mathbb{R}, x(y+z)=x y+x z$

If $x \in \mathbb{R}$, then the absolute value of x, is denoted $|x|$ and defined to be

$$
|x|=\left\{\begin{array}{rl}
x & x \geq 0 \\
-x & x<0
\end{array}\right.
$$

Let S be a subset of \mathbb{R}. If there exists an $m \in \mathbb{R}$ such that $m \geq s \quad \forall s \in S$, then m is called an upper bound of S.

Similarly, if $m \leq s \forall s \in S$, then m is called a lower bound of S.

If S is a nonempty subset of \mathbb{N}, then there exists an element $m \in S$ such that $\forall k \in S m \leq k$.

A recurrence relation is an equation that defines a sequence recursively: each term of the sequence is defined as a function of the preceding terms.

The Fibonacci numbers are defined using the linear recurrence relation:

$$
\begin{aligned}
F_{n} & =F_{n-2}+F_{n-1} \\
F_{1} & =1 \\
F_{2} & =1
\end{aligned}
$$

O1 $\forall x, y \in \mathbb{R}$ exactly one of the relations $x=y, x<y, x>y$ holds. (trichotomy)

O2 $\forall x, y, z \in \mathbb{R}, x<y$ and $y<z \Rightarrow x<z$. (transitivity)

O3 $\forall x, y, z \in \mathbb{R}, x<y \Rightarrow x+z<y+z$
O4 $\forall x, y, z \in \mathbb{R}, x<y$ and $z>0 \Rightarrow x z<y z$.

Let $x, y \in \mathbb{R}$ then

$$
|x+y| \leq|x|+|y|
$$

alternatively,

$$
|a-b| \leq|a-c|+|c-b|
$$

Suppose $x \in \mathbb{R}$. If $x \neq \frac{m}{n}$ for some $m, n \in \mathbb{Z}$, then x is irrational.

bounded

Real Analysis I

Definition

Real Analysis I

Axiom

Completeness Axiom

Real Analysis I

Definition
dense

Real Analysis I

Definition
maximum \& minimum
infimum
Definition

Real Analysis I

Archimedean ordered field

Real Analysis I

Definition
extended real numbers

Definition

neighborhood \& radius

If m is an upper bound of S and also in S, then m is called the maximum of S.

Similarly, if m is a lower bound of S and also in S, then m is called the minimum of S.

Let S be a nonempty subset of \mathbb{R}. If S is bounded below, then the greatest lower bound is called the infimum, and is denoted $\inf S$.
$m=\inf S \Leftrightarrow$
(a) $m \leq s, \forall s \in S$ and
(b) if $m^{\prime}>m$, then $\exists s^{\prime} \in S \ni s^{\prime}<m^{\prime}$

An ordered field F has the Archimedean property if

$$
\forall x \in F \quad \exists n \in \mathbb{N} \ni x<n
$$

For convenience, we extend the set of real numbers with two symbols ∞ and $-\infty$, that is $\mathbb{R} \cup\{\infty,-\infty\}$.

Then for example if a set S is not bounded above, then we can write

$$
\sup S=\infty
$$

A set S is said to be bounded if it is bounded above and bounded below.

Let S be a nonempty subset of \mathbb{R}. If S is bounded above, then the least upper bound is called the supremum, and is denoted sup S.
$m=\sup S \Leftrightarrow$
(a) $m \geq s, \forall s \in S$ and
(b) if $m^{\prime}<m$, then $\exists s^{\prime} \in S \ni s^{\prime}>m^{\prime}$

Every nonempty subset S of \mathbb{R} that is bounded above has a least upper bound. That is, sup S exists and is a real number.

A set S is dense in a set T if

$$
\forall t_{1}, t_{2} \in T \quad \exists s \in S \ni t_{1}<s<t_{2}
$$

Let $x \in \mathbb{R}$ and $\varepsilon>0$, then a neighborhood of x is

$$
N(x ; \varepsilon)=\{y \in \mathbb{R}:|y-x|<\varepsilon\}
$$

The number ε is referred to as the radius of $N(x ; \varepsilon)$.

interior point

Real Analysis I
Definition

Definition
closed and open sets

Real Analysis I

Definition
isolated point

Real Analysis I

Definition
DEFINITION
subcover

Real Analysis I

Definition

Definition

A point $x \in \mathbb{R}$ is a boundary point of S if
$\forall \varepsilon>0, \quad N(x ; \varepsilon) \cap S \neq \varnothing$ and $N(x ; \varepsilon) \cap(\mathbb{R} \backslash S) \neq \varnothing$
In other words, every neighborhood of a boundary point must intersect the set S and the complement of S in \mathbb{R}.

The set of all boundary points of S is denoted bd S.

Suppose $S \subseteq \mathbb{R}$, then a point $x \in \mathbb{R}$ is called an accumulation point of S if

$$
\forall \varepsilon>0, \quad N^{*}(x ; \varepsilon) \cap S \neq \varnothing
$$

In other words, every deleted neighborhood of x contains a point in S.

The set of all accumulation points of S is denoted S^{\prime}.

Let $S \subseteq \mathbb{R}$. The closure of S is defined by

$$
\operatorname{cl} S=S \cup S^{\prime}
$$

In other words, the closure of a set is the set itself unioned with its set of accumulation points.

Suppose $\mathscr{G} \subseteq \mathscr{F}$ are both families of indexed sets that cover a set S, then since \mathscr{G} is a subset of \mathscr{F} it is called a subcover of S.

A sequence s is a function whose domain is \mathbb{N}. However, instead of denoting the value of s at n by $s(n)$, we denote it s_{n}. The ordered set of all values of s is denoted $\left(s_{n}\right)$.

Let $S \subseteq \mathbb{R}$. A point $x \in \mathbb{R}$ is an interior point of S if there exists a neigborhood $N(x ; \varepsilon)$ such that $N \subseteq S$.

The set of all interior points of S is denoted int S.

Let $S \subseteq \mathbb{R}$. If bd $S \subseteq S$, then S is said to be closed.
If bd $S \subseteq \mathbb{R} \backslash S$, then S is said to be open.

Let $S \subseteq \mathbb{R}$. If $x \in S$ and $x \notin S^{\prime}$, then x is called an isolated point of S.

An open cover of a set S is a family or collection of sets whose union contains S.

$$
S \subseteq \mathscr{F}=\left\{F_{n}: n \in \mathbb{N}\right\}
$$

A set S is compact iff every open cover of S contains a finite subcover of S.

Note: This is a difficult definition to use because to show that a set is compact you must show that every open cover contains a finite subcover.

Real Analysis I

bounded sequence

Real Analysis I

Definition
diverge to $+\infty$

Real Analysis I
Definition
diverge to $-\infty$

Definition
increasing \& decreasing

Real Analysis I
Real Analysis I

Definition

Cauchy sequence

Real Analysis I
Real Analysis I

Definition
Definition
subsequential limit
$\lim \sup \& \lim \inf$

A sequence is said to be bounded if its range $\left\{s_{n}: n \in \mathbb{N}\right\}$ is bounded. Equivalently if,
$\exists M \geq 0$ such that $\forall n \in \mathbb{N},\left|s_{n}\right| \leq M$

A sequence $\left(s_{n}\right)$ is said to diverge to $-\infty$ if

$$
\begin{gathered}
\forall M \in \mathbb{R}, \exists N \text { such that } \\
\quad n>N \Rightarrow s_{n}<M
\end{gathered}
$$

A sequence $\left(s_{n}\right)$ is increasing if

$$
s_{n}<s_{n+1} \quad \forall n \in \mathbb{N}
$$

A sequence $\left(s_{n}\right)$ is decreasing if

$$
s_{n}>s_{n+1} \quad \forall n \in \mathbb{N}
$$

If $\left(s_{n}\right)$ is any sequence and $\left(n_{k}\right)$ is any strictly increasing sequence, then the sequence $\left(s_{n_{k}}\right)$ is called a subsequence of $\left(s_{n}\right)$.

Suppose S is the set of all subsequential limits of a sequence $\left(s_{n}\right)$. The lim sup $\left(s_{n}\right)$, shorthand for the limit superior of $\left(s_{n}\right)$ is defined to be

$$
\lim \sup \left(s_{n}\right)=\sup S
$$

The $\lim \inf \left(s_{n}\right)$, shorthand for the limit inferior of $\left(s_{n}\right)$ is defined to be
$\lim \inf \left(s_{n}\right)=\inf S$

A sequence $\left(s_{n}\right)$ is said to converge to $s \in \mathbb{R}$, denoted $\left(s_{n}\right) \rightarrow s$ if

$$
\begin{gathered}
\forall \varepsilon>0, \exists N \text { such that } \forall n \in \mathbb{N}, \\
n>N \Rightarrow\left|s_{n}-s\right|<\varepsilon
\end{gathered}
$$

If a sequence does not converge, it is said to diverge.

A sequence $\left(s_{n}\right)$ is said to diverge to $+\infty$ if

$$
\forall M \in \mathbb{R}, \exists N \text { such that }
$$ $n>N \Rightarrow s_{n}>M$

A sequence $\left(s_{n}\right)$ is nondecreasing if

$$
s_{n} \leq s_{n+1} \quad \forall n \in \mathbb{N}
$$

A sequence $\left(s_{n}\right)$ is nonincreasing if

$$
s_{n} \geq s_{n+1} \quad \forall n \in \mathbb{N}
$$

A sequence is monotone if it is either nondecreasing or nonincreasing.

A sequence $\left(s_{n}\right)$ is said to be a Cauchy sequence if

$$
\begin{aligned}
& \forall \varepsilon>0, \quad \exists N \text { such that } \\
& m, n>N \Rightarrow\left|s_{n}-s_{m}\right|<\varepsilon
\end{aligned}
$$

A subsequential limit of a sequence $\left(s_{n}\right)$ is the limit of some subsequence of $\left(s_{n}\right)$.
oscillating sequence

Real Analysis I

sum, product, multiple, \& quotient
of functions

Real Analysis I

Definition
left-hand limit

Real Analysis I

Definition
continuous on S
continuous

Real Analysis I

Definition
limit of a function

Definition
Definition

Real Analysis I
right-hand limit

Definition
continuous function at a point

Real Analysis I

Definition
bounded function

Definition

Suppose $f: D \rightarrow \mathbb{R}$ where $D \subseteq \mathbb{R}$, and suppose c is an accumulation point of D. Then the limit of f at c is L is denoted by

$$
\lim _{x \rightarrow c} f(x)=L
$$

and defined by

$$
\begin{aligned}
& \forall \varepsilon>0, \quad \exists \delta>0 \text { such that } \\
& |x-c|<\delta \Rightarrow|f(x)-L|<\varepsilon
\end{aligned}
$$

Let $f:(a, b) \rightarrow \mathbb{R}$, then the right-hand limit of f at a is denoted

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

and defined by

$$
\begin{gathered}
\forall \varepsilon>0, \quad \exists \delta>0 \text { such that } \\
a<x<a+\delta \Rightarrow|f(x)-L|<\varepsilon
\end{gathered}
$$

Let $f: D \rightarrow \mathbb{R}$ where $D \subseteq \mathbb{R}$, and suppose $c \in D$, then f is continuous at c if

$$
\begin{gathered}
\forall \varepsilon>0, \quad \exists \delta>0 \text { such that } \\
|x-c|<\delta \Rightarrow|f(x)-f(c)|<\varepsilon
\end{gathered}
$$

A function is said to be bounded if its range is bounded. Equivalently, $f: D \rightarrow \mathbb{R}$ is bounded if

$$
\exists M \in \mathbb{R} \text { such that } \forall x \in D,|f(x)| \leq M
$$

Suppose $f:(a, b) \rightarrow \mathbb{R}$, then the extension of f is denoted $\tilde{f}:[a, b] \rightarrow \mathbb{R}$ and defined by

$$
\tilde{f}(x)= \begin{cases}u & x=a \\ f(x) & a<x<b \\ v & x=b\end{cases}
$$

where $\lim _{x \rightarrow a} f(x)=u$ and $\lim _{x \rightarrow b} f(x)=v$.

If $\lim \inf \left(s_{n}\right)<\lim \sup \left(s_{n}\right)$, then we say that the sequence $\left(s_{n}\right)$ oscillates.

Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$, then we define:

1. $\operatorname{sum}(f+g)(x)=f(x)+g(x)$
2. product $(f g)(x)=f(x) g(x)$
3. multiple $(k f)(x)=k f(x) \quad k \in \mathbb{R}$
4. quotient $\left(\frac{f}{g}\right)=\frac{f(x)}{g(x)}$ if $g(x) \neq 0 \quad \forall x \in D$

Let $f:(a, b) \rightarrow \mathbb{R}$, then the left-hand limit of f at b is denoted

$$
\lim _{x \rightarrow b^{-}} f(x)=L
$$

and defined by

$$
\forall \varepsilon>0, \quad \exists \delta>0 \text { such that }
$$

$$
b-\delta<x<b \Rightarrow|f(x)-L|<\varepsilon
$$

Let $f: D \rightarrow \mathbb{R}$ where $D \subseteq \mathbb{R}$. If f is continuous at each point of a subset $S \subseteq D$, then f is said to be continuous on S.

If f is continuous on its entire domain D, then f is simply said to be continuous.

A function $f: D \rightarrow \mathbb{R}$ is uniformly continuous on D if

$$
\begin{gathered}
\forall \varepsilon>0, \quad \exists \delta>0 \text { such that } \\
|x-y|<\delta \Rightarrow|f(x)-f(y)|<\varepsilon
\end{gathered}
$$

differentiable at a point

Real Analysis I

Definition
limit at ∞

Real Analysis I

Definition

Taylor polynomials for f at x_{0}

Real Analysis I

Definition
partition of an interval
refinement of a partition

Real Analysis I
Definition
upper sum
Real Analysis I

Definition
strictly increasing function strictly decreasing function

A function $f: D \rightarrow \mathbb{R}$ is said to be strictly increasing if

$$
\forall x_{1}, x_{2} \in D, \quad x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)
$$

A function $f: D \rightarrow \mathbb{R}$ is said to be strictly decreasing if

$$
\forall x_{1}, x_{2} \in D, \quad x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)
$$

Suppose $f:(a, \infty) \rightarrow \mathbb{R}$, then we say f tends to ∞ as $x \rightarrow \infty$ and denote it by

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

iff

$$
\begin{gathered}
\forall M \in \mathbb{R}, \quad \exists N>a \text { such that } \\
x>N \Rightarrow f(x)>M
\end{gathered}
$$

If f has derivatives of all orders in a neighborhood of x_{0}, then the limit of the Taylor polynomials is an infinite series called the Taylor series of f at x_{0}.

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \\
& =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots
\end{aligned}
$$

Suppose f is a bounded function on $[a, b]$ and $P=$ $\left\{x_{0}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$.
For each $i \in\{1, \ldots, n\}$ let

$$
M_{i}(f)=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\} .
$$

We define the upper sum of f with respect to P to be

$$
U(f, P)=\sum_{i=1}^{n} M_{i} \Delta x_{i}
$$

where $\Delta x_{i}=x_{i}-x_{i-1}$.
Suppose f is a bounded function on $[a, b]$. We define the upper integral of f on $[a, b]$ to be

$$
U(f)=\inf \{U(f, P): P \text { any partition of }[a, b]\}
$$

Similarly, we define the lower integral of f on $[a, b]$ to be

$$
L(f)=\sup \{L(f, P): P \text { any partition of }[a, b]\}
$$

Suppose $f: I \rightarrow \mathbb{R}$ where I is an interval containing the point c. Then f is differentiable at c if the limit

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

exists and is finite. Whenever this limit exists and is finite, we denote the derivative of f at c by

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

Suppose $f:(a, \infty) \rightarrow \mathbb{R}$, then the limit at infinity of f denoted

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

iff

$$
\begin{gathered}
\forall \varepsilon>0, \quad \exists N>a \text { such that } \\
\quad x>N \Rightarrow|f(x)-L|<\varepsilon
\end{gathered}
$$

$$
\begin{aligned}
& p_{0}(x)=f\left(x_{0}\right) \\
& p_{1}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& p_{2}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2} \\
& \vdots \\
& p_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

A partition of an interval $[a, b]$ is a finite set of points $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that

$$
a=x_{0}<x_{1}<\ldots<x_{n}=b
$$

If P and P^{\prime} are two partitions of $[a, b]$ where $P \subset P^{\prime}$ then P^{\prime} is called a refinement of P.

Suppose f is a bounded function on $[a, b]$ and $P=$ $\left\{x_{0}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$.
For each $i \in\{1, \ldots, n\}$ let

$$
m_{i}(f)=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}
$$

We define the lower sum of f with respect to P to be

$$
L(f, P)=\sum_{i=1}^{n} m_{i} \Delta x_{i}
$$

where $\Delta x_{i}=x_{i}-x_{i-1}$.

convergent series
 sum

Real Analysis I

Definition

Real Analysis I
Definition

monotone function

Definition
improper integral

Real Analysis I
infinite series
partial sum

Real Analysis I
divergent series
diverge to $+\infty$

Definition
geometric series

A function is said to be monotone if it is either increasing or decreasing.
A function is increasing if $x<y \Rightarrow f(x) \leq f(y)$. A function is decreasing if $x<y \Rightarrow f(x) \geq f(y)$.

An improper integral is the limit of a definite integral, as an endpoint of the interval of integration approaches either a specified real number or ∞ or $-\infty$ or, in some cases, as both endpoints approach limits.

Let $f:(a, b] \rightarrow \mathbb{R}$ be integrable on $[c, b] \forall c \in(a, b]$. If $\lim _{c \rightarrow a^{+}} \int_{c}^{b} f$ exists then

$$
\int_{a}^{b} f=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f
$$

Let $\left(a_{k}\right)$ be a sequence of real numbers, then we can create a new sequence of numbers $\left(s_{n}\right)$ where each s_{n} in $\left(s_{n}\right)$ corresponds to the sum of the first n terms of $\left(a_{k}\right)$. This new sequence of sums is called an infinite series and is denoted by $\sum_{n=0}^{\infty} a_{n}$.
The n-th partial sum of the series, denoted by s_{n} is defined to be

$$
s_{n}=\sum_{k=0}^{n} a_{k}
$$

If a series does not converge then it is divergent.
If the $\lim _{n \rightarrow \infty} s_{n}=+\infty$ then the series is said to diverge to $+\infty$.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. If $L(f)=$ $U(f)$, then we say f is Riemann integrable or just integrable. Furthermore,

$$
\int_{a}^{b} f=\int_{a}^{b} f(x) d x=L(f)=U(f)
$$

is called the Riemann integral or just the integral of f on $[a, b]$.

When a function f is bounded and the interval over which it is integrated is bounded, then if the integral exists it is called a proper integral.

Suppose $f:(a, b] \rightarrow \mathbb{R}$ is integrable on $[c, b] \forall c \in(a, b]$, futhermore let $L=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f$. If L is finite, then the improper integral $\int_{a}^{b} f$ is said to converge to L.

If $L=\infty$ or $L=-\infty$, then the improper integral is said to diverge.

If $\left(s_{n}\right)$ converges to a real number say s, then we say that the series $\sum_{n=0}^{\infty} a_{n}=s$ is convergent.

Furthermore, we call s the sum of the series.

The harmonic series is given by

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

The harmonic series diverges to $+\infty$.

The geometric series converges to $\frac{1}{1-x}$ for $|x|<1$, and diverges otherwise.
interval of convergence

Definition
converges pointwise

Real Analysis I

Definition

Real Analysis I
Real Analysis I

Definition
Definition
converge absolutely converge conditionally
power series

DeFiniTION
converges uniformly

Real Analysis I

Definition

Definition

Given a sequence $\left(a_{n}\right)$ of real numbers, then the series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

is called a power series. The number a_{n} is called the nth coefficient of the series.

The interval of convergence of a power series is the set of all $x \in \mathbb{R}$ such that $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges.

By theorem we see that (for a power series centered at $0)$ this set will either be $\{0\}, \mathbb{R}$ or a bounded interval centered at 0 .

Let $\left(f_{n}\right)$ be a sequence of functions defined on a subset S of \mathbb{R}. Then $\left(f_{n}\right)$ converges uniformly on S to a function f defined on S if

$$
\begin{gathered}
\forall \varepsilon>0, \quad \exists N \text { such that } \forall x \in S \\
\quad n>N \Rightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon
\end{gathered}
$$

If $\sum\left|a_{n}\right|$ converges then the series $\sum a_{n}$ is said to converge absolutely.

If $\sum a_{n}$ converges, but $\sum\left|a_{n}\right|$ diverges, then the series $\sum a_{n}$ is said to converge conditionally.

The radius of convergence of a power series $\sum a_{n} x^{n}$ is an extended real number R such that (for a power series centered at x_{0})

$$
\left|x-x_{0}\right|<R \Rightarrow \sum a_{n} x^{n} \text { converges. }
$$

Note that R may be $0,+\infty$ or any number between.

Let $\left(f_{n}\right)$ be a sequence of functions defined on a subset S of \mathbb{R}. Then $\left(f_{n}\right)$ converges pointwise on S if for each $x \in S$ the sequence of numbers $\left(f_{n}(x)\right)$ converges. If $\left(f_{n}\right)$ converges pointwise on S, then we define f : $S \rightarrow \mathbb{R}$ by

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

for each $x \in S$, and we say that $\left(f_{n}\right)$ converges to f pointwise on S.

