Determine whether the following statement is True or False.

1. The space P_1 is isomorphic to \mathbb{C}.
2. The space P_2 is isomorphic to the space of all 3×3 diagonal matrices.
3. If W is a subspace of V and if W is finite dimensional, then V must be finite dimensional as well.
4. If T is a linear transformation from P_6 to $\mathbb{R}^{2 \times 2}$, then the kernel of T must be 3-dimensional.
5. If the kernel of a linear transformation $T : P_4 \rightarrow P_4$ is $\{0\}$, then T must be an isomorphism.
6. If the image of a linear transform $T : V \rightarrow V$ is all of V, then T must be an isomorphism.
7. If the image of a linear transform $T : V \rightarrow V$ is all of V, then the intersection of $\text{im}(T)$ and $\text{ker}(T)$ is $\{0\}$.

Date: February 21, 2005.