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2 LECTURES BY LAURENT FARGUES
1. INTRODUCTION

These are notes from the Fall 2015 lectures by Laurent Fargues on “Geometrization of the Local Langlands Correspon-
dence” delivered at the University of Chicago in the Geometric Langlands Seminar. The notes were typed by Sean Howe
who apologizes for any errors introduced in the transcription. Corrections and suggestions are welcome, and can be sent to
seanpkh@gmail.com.

VERSION NOTES (v0.5) This is the first version contains all lectures, but the end of the final lecture is still a rough
draft. Here are some changes pending in the upcoming versions.

e Clean up Lecture 9

Section headings

Add (more) internal references

Add (more) external citations

Add a full-page map of the curve incorporating various diagrams
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2. LECTURE 2015-10-08

2.1. Context. Let E be a discretely valued non-archimedean field with uniformizer 7 and finite residue field F, = Og/x.
Let F'/F, be a perfectoid field.

In joint work with Fontaine, we attach to this data a curve (in a generalized sense) X g/E. More generally, if S/F, is
perfectoid then we can define Xg g, which can be thought of as a “family of curves”

Xs = (Xk(S))sew\'

If G is a reductive group over E one can define a stack

Bung : S — {G-bundles on Xg }

We will be interested in perverse [-adic sheaves on Bung. We begin by explaining the construction of the curve.

2.2. Holomorphic functions of the variable p. We take E as before. There are two cases: either E = F,((7)) or
[E:Qp] < 0. We take F//F, to be a perfectoid field.

Definition 1. A perfectoid field in characteristic p is a perfect field F' of characteristic p complete with respect to a non-trivial
absolute value |- | : FF - R..

As before, to this data we attach a curve X. It has two “incarnations”:

o X2d = “compact p-adic Riemann surface”
e X = “complete algebraic curve,” where by algebraic curve we mean a one-dimensional noetherian regular scheme
over F.

The algebraic curve was discovered first, but it is easier to define X?4, so we begin there.
There is a space Y, which can be thought of as a punctured open disk in variable 7 with coefficients in F' such that
xd =y /g2
where ¢ is the Frobenius. We now explain the construction of Y.
Definition 2. A (= A" elsewhere) is the unique 7-adically complete 7-torsion free lift of O as an F,-algebra. So, A is an

Op-algebra that is m-adically complete such that A/m = Op. It is unique up to unique isomorphism.

There is a unique Teichmuller multiplicative lift [—] : Op — A, and

A= {Z [zn]7" |20 € OF}

n=0

That is, every element of A can be expressed this way and the expression is unique.
For each of the two possibilites for E we can give an explicit description of A:

e E =TF,((m)): In this case [—] is also additive so

[-]: Op — A
is an algebra morphism and
A = Op[[x]].
e [E:Qp] < oo: In this case
A =Wo,(OF),

where We,, denotes the ramified Witt vectors. For E = Q, these are the standard Witt vectors, otherwise they are
as defined by Drinfeld.

Interjection. Drinfeld explains: In the regular formation of Witt vectors, p appears in two places, in the exponents
and in the coefficients of the formulas. To obtain the ramified Witt vectors we must replace it in exponents with g,
the degree of the residue field extension, and in the coefficients with m, the uniformizer).
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In this case, we can also describe the ramified Witt vectors by
Wo,(OF) = W(OF) ®og, OF

where Ey/Qp is the maximal unramified subextension of E/Q, so that Og, = W(F,) (recall Fy is the residue field of

The addition and multiplication in A of elements

Z [z,]7" and Z [Yn]m"™
n=0 n=0
is given in Teichmuller coordinates by universal generalized polynomials in F,[x}/” ” y;/ P f]l j20-

At this point we fix a choice of wr € F such that 0 < |wp| < 1. We will use wp in some constructions, but the resulting
objects will not depend on our choice.

We equip A with the (7, [wr])-adic topology. This is the topology of weak (term by term) convergence in Teichmuller
coordinates.

We now define a space ) which will contain Y.

Definition 3. Y = Spa(A), = Spa(A)\V(7) u Spa(A\V ([wF]).

We explain some of the notation: Spa(A), from the language of Huber’s adic spaces, is the topological space of continuous
valuations on A plus a structural presheaf of rings. Here a valuation is in the most general sense (in particular it is not
necessarily of rank 1), and can be thought of as a map v : A — I' U 400 for T" a totally ordered abelian group or in terms of

valuation rings. As a reference for adic spaces, one can consult Huber - A generalization of formal schemes and rigid analytic
varieties, or the notes from Scholze’s course on p-adic geometry.

The subscript a on Spa(A), indicates we take the analytic points — that is we must throw away the valuations with open
support. In this case, the valuations we remove are those factoring through

(A/ (7, [@F]))rea = kr
where kg is the residue field of F.

We note that J = Spa(A), is not affinoid.
Definition 4. Y = Spa(A\V (n[wF]).

We have that ) is an adic space over Or and Y is an adic space over E (one must verify that the structural presheaf is
actually a sheaf, but we will return to this point later).

2.2.1. What are these things?
We first examine the case E = F ((m)).

In this case, Y = D}, the rigid analytic punctured disk of radius 1 over F' with coordinate 7. That is, D} < AL defined by
0<|m| < 1.

We have natural maps

DF

T

Spa(F) Dg, = Spa(Fy((r))) = Spa(E)

The map on the left to Spa(F') is the usual structure morphism and is locally of finite type. However, we are interested in Y’
as a space over E (via the map on the right), where the structural morphism is not locally of finite type.
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We can write down the ring of functions explicitly as

oD}) = {2 anm" |an, € F and Vp e (0,1), lim |ay|p" = O}
n—oxKO

neZ

The space D% is Stein, so it can be understood completely in terms of its ring of functions. On the level of functions, the
map to D that we are interested in is given by the inclusion of Fy((7)) into the ring of power series O(D}.) as described
above.

In this description, we have
Y =Dr u{(}
where Dp is the open disk {0 < 7 < 1} and the valuation ( is of rank 1, given by

0if Yn, |o,| <1
p~ ", ng = inf{n||z,| = 1}

For f = Z [za]m", [f(O)| =

n=0

Interjection. Drinfeld asks: Another understandable story is if we take A? and look at the completed local ring at 0, then
remove the closed point. Is it related to this story?
Answer: Yes, if we remove perfect hypothesis and take F' = Fy((T)) and repeat above, then A =T [[x,T]], and

*Y = Spec(F[[x, TIN\V (m, 7)™

We can visualize ) as a unit disk, where the center point is 7 = 0 and the boundary is [wwr] = 0; when both are removed we
have Y.

[wr] =

It is useful to think of a function being holomorphic on [@wr] = 0 as equivalent to being bounded near it.
We now return to the case of any E (i.e. either E =F,((7)) or [E: Qp] < ).

Consider the ring

™ [wF] n>>—ow

A[l L]:{ S [walr" [an € F, s%p|xn|<oo}.

It is the ring of holomorphic functions on Y meromorphic at m = 0 (corresponding to the condition that the sum is over
n >> —o0) and at [cwp| = 0 (corresponding to the condition that sup,, |, | < o).

For p € (0,1] and
1 1
P ]

n>>—x
set
/1y = sup |zn]p".
Set also
|flo =g 7.
For pe (0,1), | - |, is the Gauss supremum norm on the annulus |7| = p, |- |o is the order of vanishing at 7 = 0, and | - |; is

the order of vanishing at [wr] = 0.
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There is a radius function
0: Y| — [0,1]
y —— |7 (y™™)|
(fake formula)
The real formula is

e O

5(y) — qflog\[wm(ym“)l

Where y™2* is the unique maximal rank 1 (i.e. with values in R) generization of y.

In our picture for ), ¢ is the distance from the center:

Let I < [0,1] be an interval with I # ¢, 0, 1 and with extremities in |F|'/*. Then,
Yr = annulus Int({y € V| d(y) € I})

Example 2.1. Y = Y1)

We have O(Y) = A, and

o) = completion w.r.t. (|- |p)per

of {A[L] f Jand 1€ 1
A[ﬁ] 1fIC[O,1) and 0 ¢ I

This is a Frechet algebra. It is a Banach algebra if I is compact (by the maximum modulus principal, |- |, < sup{|-|p,]|-|p.}
if p € [p1, p2]).-
We define B = O(Y'), a Frechet algebra.

Warning. If E =F,((x)),

B = {2 [zp]7™ |zy € F and Vp e (0,1), lim |z,|p" = O} .

n—xK0
neZ

However, if E/Q,, there may exist f € B that do not have such a Laurent expansion at 7 = 0; this is one of the big difficulties

of p-adic Hodge theory. For example, the elements of the form above are in B, but their sums and products may not be of
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1
WF]

this form. The reason is that for f =, ___[z,]7" and g = >, ___ [yn]7" two elements of A [%, [ ], there is no simple

formula for

|f - 9|p
whereas when E = Fy((m)),

|f —9glp =sup|zn —yn|p".
n

For another example, the periods of p-divisible groups are of this form, but periods of higher Dieudonné-Manin slope cannot
be expressed in this way.

More precisely, let us consider a slope (in the sense of Dieudonné-Manin) A € Qs0, A = d/h with (d,h) = 1. There is a
crystalline Frobenius ¢ acting on B (as we will see later). If E = Fy((m)) then there is a bijection

d ph=nd
m%g B

d—1 —nh .
(@05 -y Ta1) —— Mg Dnezled  J7"IT

The induced E-vector space structure on m% via this bijection is given by the identification of m% with the Op-points of a

slope A Drinfeld module.

If E/Q,, and X € (0, 1] there is again such a bijection where the E-vector space structure on m% is now identified with the

Op-points of a formal 7-divisible Og-module (a p-divisible group when E = Q,,) of slope A. But for A > 1, contrary to the
function field case, there is no geometric object generalizing p-divisible groups whose O g-points would give B#"="" and the
elements contained in it may not have a Laurent expansion around m = 0. The Banach space B#"="" shows up as crystalline
periods, i.e. elements of Hom, (H2,,, B) where HZ is the crystalline cohomology of a the special fiber of a proper smooth
scheme over the p-adic integers. For the H_ . only periods of the p-divisible groups attached to the Picard variety show up,
but for H¢ ., with i > 1, Dieudonné-Manin slopes that are not in [0, 1] may appear.

cris
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3. LECTURE 2015-10-15
3.1. Perfectoid Fields. In this section, K is a complete field with respect to a non-trivial valuation |- |: K — R,.

Definition 5. K is perfectoid if

(1)
(2)

The valuation of K is not discrete, and
dwgk € I(, “9|5§ |CU}{| <1 s.t.
OK/’(DK % OK/YDK

is surjective.

In fact we have (2) <= (2') Ox — Ok /p is surjective.

Example 3.1. The following are perfectoid fields (remember K here is always complete with respect to a non-trivial
valuation):

K algebraically closed is perfectoid.
If charK = p then K is perfectoid if and only if it’s perfect.

Fontaine and Wintenberger give the following criterion: Suppose L/Q, is a complete d.v.r with perfect residue field
and L'/L is an infinite degree algebraic Galois extension such that Vs € R, Gal(L’/L)*® is open in Gal(L’/L), where
Gal(L'/L)*® denotes a term in the higher ramification filtration (which, in general, is only closed, and thus is open if
and only if it is of finite index). Such an extension is called arithmetically profinite (because the topology induced
by the ramification filtration is the same as the profinite topology). Then, L is perfectoid. They also give a similar
criterion for algebraic but not Galois extensions.

Qp(Cp») is perfectoid by the criterion of Fontaine-Wintenberger above.

Qp’(mr‘) = U Qp(p!/P™) is perfectoid, as can be verified by hand.

n=0

3.1.1. Tilting. Let K be a perfectoid field. We set

K = {(x(n))nzo | 2™ e K, (x(nJrl))P _ x(n)}

For z,y € K”, we define multiplication by

()™ = )y

and addition by

b

(z+y)™ = lim (I(n+b) +y(n+b))iﬂ

b—w

We also define a valuation by

2| = 12"

Then, K” is a perfectoid field of characteristic p and | K| = |K’| € R,. Note that if K is of characteristic p then K = K°.

Moreover,

O ———— lim O /p
Frob

(m(n))nzo — (I(n) mod p)n=0

is a bijection whose inverse is given by

b
. /\p
(Yn)nz0 — (hm Yn+b )
b— w0
n=0

where 7n1p is any lift of y,4s. This explains the formula for addition on K” given above, and we could have alternatively
defined O this way and then defined K” by K* = FracO,.
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Example 3.2. In the setting of Fontaine-Wintenberger from the earlier example, let K = L' for L' /L arithmetically profinite.
Then
]{b ~ kL/((Tl/p ) ))
For example:
o If K =Qu(Cpr), € = (Cpr)ns0 € K? and 7, = e — 1 € K”, then
K> =Fy((x/"")).
This example gives rise to the theory of (¢, I')-modules.

o If we take K = QPWI‘) and m = (p'/?" )50 € K” then
K2 = By (r/77)
Theorem 3.1 (Purity theorem). Let K be a perfectoid field. Then:
(1) If L is a finite degree extension of K then L is perfectoid and [L° : K’] = [L : K].
(2) OL/Ok is almost étale in the sense that if n = [L: K|, Y0 <e <1, Je1,...,e, € O, such that
€< ‘disc (Trp i (eie;)) 1

<
lsi,an‘ =

(3) (=) induces an equivalence
Finite étale K-algebras « Finite étale Kb—algebms
Remark 1. There is a useful MathOverflow post explaining why this is called a purity theorem: [1].
Corollary 3.1.
(1) K is algebraically closed if and only if K" is algebraically closed.

(2) Gal(K/K) — Gal(K’/K) where

K’ = U L

KcLcK finite

Remark 2. Note that in part (2) of the Purity theorem, Or/Ok is not in general finite. This type of almost étale statement
showed up already in Tate’s paper on p-divisible groups.

3.2. Back to Y. Recall that F is Fy((m)) or a finite extension of Q,, and F/F, is perfectoid. We defined
o ORIl it B = ()
W(’)E(OF) if [E : Qp] < 0

Then
Y = Spa(A)\V (7, [@F])

for some 0 < |wp| < 1, and
Y c Y = Spa(A)\V(7) u Spa(A\V ([wF]).
3.2.1. Classical points of Y.
Definition 6. f =), . 7" € A is primitive if xo # 0 and 3d such that |z[q = 1. For a primitve f, set
deg(f) = smallest d s.t. |z|q = 1.
An f that is primitive is irreducible if deg(f) > 0 and #ig, h € A primitive of degree > 0 such that f = gh.

For g, h primitive, deg(gh) = deg(g) + deg(h) so the set of primitive elements is a graded monoid (graded by deg).
Example 3.3.
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e {primitive of deg 0} = A*

e Forae F,0 < |a| <1, m — [a] is primitive of degree 1.

Notation: Irred/ ~= {irreducible primitive}/A*. So, Irred/ ~— Spec(A) via the ideal generated.
Example 3.4. If E = F,((7)), then by the Weierstrass preparation theorem,
Irred/ ~= {P € Op[r] | P is a monic irreducible and 0 < |P(0)| < 1} = D%
where |ID)j3|Cl are the classical Tate points of the punctured disk D%, (recall that with respect to the structure morphism to F
this is a Tate rigid analytic space.)
Let B = O(Y) as in the first lecture.
Theorem 3.2. Fory = (f) € Irred/ ~, set k(y) = B/f and 0, : B — B/f = k(y). Then,
(1) k(y) is a perfectoid field over E.
(2) The map
F—— k(y)
a —— (Oy([a” "])nzo
defines an extension k(y)’/F such that
[k(y)" : F] = degy.
(8) This defines a bijection

Irred®®e=!/ ~ —~ (K, i) | K/E perfectoid and i : F5K"}/ ~
(4) If F is algebraically closed then degy =1 and Ja € F,0 < |a| <1 s.t. y = (7 — [a]).

This is one of the most difficult theorems in the work with Fontaine.

Point (4) tells us that if F' is algebraically closed and g € A is primitive of degree d, then g = u - (7 — [a1])...(7m — [aq]) for
u € A*. This gives a type of Weierstrass factoriation for inequal characteristic.

Warning. The [a1], ..., [aq] appearing in such a factorization are not unique if E/Q,.

Indeed, suppose F' is algebraically closed, a € F', 0 < |a| < 1 and y = (7 — [a]). Then k(y) is algebraically closed and [a] = 7
in k(y). By the identification of F' with k(y)’, the map a ~ 6,([a]) is the map a — a°. Thus, (7 — [@/]) = (7 — [a]) exactly
when a’® = a® = 7. The set

{@)nz0 € k(y)' |29 = =}

is a Zy(1)-torsor in k(y), and thus there is a Z,(1) worth of ambiguity in the choice of a giving the point y = (z —[a]).
3.3. An updated picture. We denote by || the classical Tate points, which we can just define to be Irred/ ~. Then

V|t < |Y]. If we fix a point y € |V|°! then in our picture from before we can visualize it as lying in the interior of the
disk:

[wF]=O,6=1
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Note we have named the point 7 = 0 from before «. The local ring at « of ) is
Oy.a = ;i_r)% OVo,01)-

In p-adic Hodge theory it is also denoted by
Oy,q = Ogs.
Here the dagger means “overconvergent”, or convergent over a small neighborhood. It is a Henselian DVR with uniformizer
m, and A
Ogt = O¢
where

o _ {F[m] if = Fy((m))
T \Wo, (F)if [E : /Q,] < .

As we have seen, the residue field at y, k(y), is perfectoid over E and an untilt of a finite extension of F' of degree deg(y).
We can think of these untilts degenerating to F itself as §(y) — 0. We have

Oy =Bl (k)

where the construction B, (k(y)) is one of Fontaine’s rings in p-adic Hodge theory. It is the f-adic completion of A[1/7]
where y = (f) (this is essentially Fontaine’s original definition).

Remark 3. Fontaine’s original point of view was to start with a perfectoid field K of characteristic zero, then take F' = K"
and construct IB%ER by completing the corresponding A. This automatically gives a point y on Y since K is canonically an
untilt of F' = K”.

More precisely, for K/Q, perfectoid, F' = K > Fontaine constructs
0: W(OF) E— OK

' O n
ano[xn]p — Zn;o 357(1 )p

and shows that ker 0[1/p] is a principal ideal in A[1/p] generated by a degree 1 primitive element.

Once can ask whether it is possible to give genuinely different untilts of perfectoid fields in characteristic zero. There is
an action of Auteont(F) on |Vr|¢ by acting on the identification of the tilt with F', and the question can be restated, for
F algebraically closed, as asking whether or not this action is transitive. If I is spherically complete, this action has been
known to be transitive.

—

By recent work of Kedlaya, it is also transitive for F = (CZ = F,((T)), as was conjectured by Fargues-Fontaine. He proves
that Auteont(F') acts transitively on mp\{0}. This result implies that if K~ (CZ, then K ~ C,.
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4. LECTURE 2015-10-22

Recall that E is Fy((7)) or a finite extension of Q,, and F/F, is perfectoid. We defined

Or[lr]] it £ = Fy((m))
Wo,(OF) if [E: Q] < o

Then
Y = Spa(A\V(r, [@wr])

for some 0 < |wp| < 1, and
Y c Y = Spa(A)\V(7) u Spa(A\V ([wF]).
Last time we defined the “classical Tate points”

|V|¢! = {zeroes of primitive elements in A}.

4.1. The geometry of Y. At the end of the last lecture we discussed the structure of Y near a classical point y € |V
Recall that the residue field at y, k(y), is a perfectoid extension of E with [k(y)’ : F] = deg(y), and, writing y = V(f) for f
a primitive irreducible element of A, we have

_— 1
Oy, = Bi;(k(y)) = the f — adic completion of A [—] .

™

We also began to discusss the structure near = = 0. Recall
Og+ = Oy)ﬂ—zo = lim O(YC[O)p])
p—07t
where y[07 ol is the “annulus” 0 < § < p. It is a Henselian DVR with uniformizer 7, and its completion is
_ 5 _ ) Flr if E =TFy((r))
O = O¢+ = .
Wo, (F)if [E:Qp] < 0.
In addition, we define the Robba ring by
R= p1—1>I(TJl+ OVo.n)
where, because of the open inequality, we are allowing an essential singularity at = = 0.

We will now look at the structure near [cwr] = 0. In our picture, we are looking near the boundary of the disk:

To simplify the discussion, we restrict to the case E = Q,.

Remark 4. To adapt the following discussion to a general finite extension E/Q,, one must use n-divided powers. These are
defined in [3] (see also [4, Appendix B]).

Let p = |wr| € (0,1).

+
cris,p

= HO(SpeC(OF/wF)/SPGC(Zp), Ocris)[l/p]

- wor) [Z2] _ 1)



GEOMETRIZATION OF THE LOCAL LANGLANDS CORRESPONDENCE 13

The thing inside of the completion is the divided power envelope of ([wr]), which we can view as living inside of W(Op)[1/p].

This p-adic completion is flat so we do not lose any information. If we did not invert p, we would have the ring known as
Acris,p-

We have
+
O (y[le]) c Bcris,p < O (y[pp_il,l]>
where we note the closed inequality at 1 should be interpreted as taking functions holomorphic at [wr] = 0.

Remark 5. This formula is not valid as written for p = 2; in that case we must replace 2 with 4 as is the case in much of
p-adic Hodge theory for the prime 2. Here and elsewhere we write formulas valid for odd p.

Remark 6. Fontaine originally began with C,, = Q, and F = (C; (which in our language means he has fixed a classical point
on Y corresponding to this untilt). He then took wpr = p where p is an element of (C; such that p(® = p and defined

—

Acris = W(OCZ) |: [w%]

and
Bis = Acris[1/p]-

4.2. Plenty of holomorphic analysis results. There are many holomorphic analysis results that are “easy” for £ =
F,((m)) but more difficult for E/Q,. Such results for Fy((7)) can be found in [11]. For E/Q,, they are in [6], [8], and [7].

The main difficulty in the mixed characteristic case is that the Weierstrass factorization is not unique. For example, because
of this there is no canonical Euclidean division.

Here are two of the main results:

Theorem 4.1. Let I < (0,1) be compact and nonempty with extremities in p%. Then O(Yr) is a PID with mazximal spectrum
equal to |Yr|.

Theorem 4.2. Let f € B = O(Y). Then,
{ Slopes of the Newton polygon of f } = {—log, d(y) |y € V| s.t. f(y) =0}

with multiplicities.

Here if

f=> [In]ﬂ'nEA[l L]

n>*>—ou0 7T7 [WF]
then
Newt(f) = the decreasing convex hull of {(n,v(z,)}nez.

Such elements are dense in B, but as we have seen in the last lecture, not every element of B has a Laurent expansion. To
define the Newton polygon for an arbitrary element, we first introduce some notation. For p € [0, 1], we define v, by

¢ =
o
Then for f € B, Newt(f) is defined to be the inverse Legendre transform of the function
(0,00) —— R
r —— v.(f).
If feA [%, ﬁ], [ =2 o lrnln™, then v,.(f) = infv(xy,) + nr, € Z for r € [0, 00).
Interjection. Drinfeld: To a holomorphic function f on a non-Archimedean disk one can associate 3 types of data:

e the Newton polygon, which is defined in terms of the coefficients of f,

o the collection of norms |f|, (mazimum modulus on the circle of radius p) for all p € [0,1],
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e and the absolute values of the zeros of f.

The theory of non-Archimedean holomorphic functions tells us that the 3 types of data are essentially equivalent: if you know
one of them you can express the other two in terms of it. In the Archimedean case the situation is more complicated: instead
of equalities relating the three types of data one only gets inequalities. So Hadamard might see the non-Archimedean case as
childish games.

Fargues: Yes, the corresponding result to convexity of the Newton polygon for v, in the archimedean case is Hadamard’s 3
circles theorem, which tells us that r — v,.(f) is convex. The fact that the slopes of Newt(f) are the valuations of the zeroes
of f corresponds to Jensen’s theorem, but Jensen’s theorem only gives an inequality rather than equality. On the other hand,
some tools are missing in the p-adic world, e.g. Blaschke products, which also make it more difficult in some sense. More
about this is explained in [7].

One important point for these results is that Vp € [0,1], | - |, is multiplicative, i.e., Vr € [0, +0), v, is a valuation. This
implies that if f,¢g € B, then Newt(f - g) = Newt(f) » Newt(g) where * is tropical convolution (which can be described as
slope-wise concatenation of the polygons).

For example, this gives us that

Newt((r — [a1]) - ... - (7 — [aq])) = Newt(r — [a1]) * ... * Newt(r — [aq]) =

Where the slopes are exactly the valuations of the roots with multiplicity. If you instead expand out the coefficients of this
element using the addition and multiplication laws for Witt vectors it becomes very difficult to compute the Newton polygon.
In general, there are no useful Laurent expansions (at 7 = 0, [cop] = 0, or at a classical point) for computing the Newton
polygon of an arbitrary element of B.

4.3. The adic curve. There is a Frobenius map ¢ : A —» A
2inzolza]m” s 2psolrh]m"

Here, if we think of 7 as the variable, then this is an arithmetic Frobenius since it is taking the coefficient to the gth power
rather than the variable (which would give a geometric Frobenius).

This induces an automorphism ¢ of ). An easy check shows it satisfies

5(e(y)) = d(y)"/

where
§: Y] —1[0,1]

is the map we defined before. In our picture, ¢ fixes the center (7 = 0) and boundary ([cwp] = 0) of the circle while expanding
from the center towards the boundary:
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[wF]=O,6=1

The map ¢ stabilizes the divisors (7) and ([@wr]) and acts properly discontinuously on Y = Y g 1).

Definition 7. X =Y /p”.

X#d is a quasi-compact, partially proper E-adic space (the condition “partially proper” is similar to the valuative criterion
for schemes; recall that for a finite type adic space over F, being quasi-compact and partially proper would be equivalent to
being proper). It is an adic space over SpaFE but it is not locally of finite type in any sense. We have

HO(X™ 0) = F = B*=1.

Interjection. Drinfeld: It may be useful to think of the Tate curve, defined as G,,/q” for |q| < 1, as a simpler classical
construction that is in some ways similar.

Example 4.1. If E = Fy((7)) then Y = D%. The map to Spa(F) is not Frobenius equivariant so does not descend to X,
but the map to Spa(F) = ]D);q is, and so X is an adic space over Spa(E), but it is not of locally finite type.

4.4. The schematic curve. This section was first called “the algebraic curve”, but it was pointed out in the lecture that
this could be misleading since the object constructed will not be locally of finite type.
We first construct a line bundle O(1) on X?4. Its geometric realization is given by

Y x 2 A — Y/o"

where ¢ acts by 77! on A},. Another way to say this is that O(1) corresponds to the @-equivariant line bundle on Y given
by the trivial bundle Oy with g-equivariant structure f — 7= 1p(f) for f € Oy.

Definition 8. We define the graded ring
P = @40 H'(X*,0(d))

_d
@az0 BT

where
B = (f € Blo(f) = ).
Then,
X = Proj(P) = an E-scheme not locally of finite type.

Remark 7. If E =F,((7)) then for d > 0, B#="" is isomorphic to m¢ via the bijection

d—1
—_n .
(zo,...,T4—1) — Z Z[xf e,

1=0 nezZ

These are the periods of a (local) Drinfeld module of height 1 and dimension d. This is a formal Og-module, and by periods
in this case we mean the Op points of this module.

If £/Q,, this formula is true only if d = 1, and there is no explicit formula for B~ for d > 1. To expand on this, let
aemp, a#0. Then

Dl "I = “2in” in k(y)

nez
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Y

where y = V(7 — [a]) and the 7 in “2in” is not the uniformizer of F but the analog of 3.14... in this setting. Then sections
of O(1) are families of “2in”s. In the case of E = Q,, for e € 1 + mp\{1}, let
Ue = 14 [/P] 4 ... + [P~ D/P],

Then u, is primitive of degree 1 and we let y. = V(u.) be the corresponding classical point of Y. Attached to y. we have
the perfectoid extension k(y.)/E and we can define t. = log([¢]) € B*=P. This is the “2in” associated to y. — note it is only
determined up to Zj -t.. This is a choice of orientation, just like the classical complex 2i7 is only determined after fixing an
2, so up to +1.

We don’t understand the additive structure on Py for d > 1 when E/Q,, but we understand the multiplicative structure
well:

Theorem 4.3. If F' is algebraically closed, then Vx € Py, © # 0 and d > 1, 321, ..., 25 € P; such that

T =21 ... 24

In fact, P is “graded factorial” with irreducible elements of degree 1, i.e., the monoid
L (Pa\loy) /B
d=0

is free on

(P\{0}) /E*.

This is a tough theorem, and uses the Weierstrass factorization result and the results on analytic functions discussed ear-
lier.
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5. LECTURE 2015-10-26

5.1. Properties of the schematic curve. Recall that E is F,((7)) or a finite extension of Q, and F' is a perfectoid field

over F,. From this we defined an adic space Y over E with a frobenius ¢, and in the last lecture we introduced the adic

curve X*! =Y /o? over E and a line bundle O(1) defined by the automorphy factor (1-cocycle) ¢ > 7~ 1.

From this we defined the graded ring
P = @420 H'(X*,0(d))
= Dizo BF=™

and the schematic curve X = Proj(P), a scheme over SpecE (that was discovered in the work of Fargues and Fontaine before
Xad)'

Theorem 5.1.
(1) X is a noetherian regular scheme of dimension 1.
2) There is a morphism of ringed spaces X*¥ — X such that
(2) P f ringed sp
|Xad|cl _~ |X|
is a bijection (where the lefthand side is |Y|*/o” and the right hand side is the set of closed points of X ), and, if
|Xad|cl 9xad > T E |X|
then
OX,x — OXad’mad = B:{R(k‘(l‘ad)).
(8) If F is algebraically closed then
P\{0}/E* ————— [X]
t ———— ooy (where V1 (t) = o0y)
For z € | X|, set deg(z) = [k(z)’ : F] (= 1 if F is algebraically closed). Then, for all f € E(X)*, where E(X) is
(4) g 9 Y

the field of rational functions of X (the stalk of O at the generic point), deg(div(f)) = 0. Thus, in this sense, “X is
complete.”

Remark 8. Combining (2) and (3), for F algebraically closed we get a diagram

X = [y = |X]
S
P\{0}/E>

We can describe the dotted arrow as follows: P;\{0} = B¥=", and thus given ¢t € P;\{0}, we can look at its divisor div()
on Y. Because ¢ satisfies the functional equation ¢(t) = 7(t), its divisor satisfies the functional equation ¢*div(t) = div(t)
(since 7 is invertible on Y'). In this case we find that div(¢) is a single orbit of ¢, and fixing a point y in that orbit we write
that it as ¢?(y). This orbit corresponds to 00, € | X|, and in the above diagram we we have

¢*(y) +— oo
\ g

We now describe the Picard group of X when F' is algebraically closed. Given ¢t € P;\{0} corresponding to oo; € | X|, we can
form the ring
B, = B[1/t]*7 = P[1/t]o

which appears in p-adic Hodge theory. It depends on ¢, even though ¢ is not in the notation.
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Remark 9. We observe that when taking cp-invariants one can Work with many different rings because of the functional

equation. For example, one has B[1/t]*= 2‘21:2 where Beyis, = B, p[l /t]. To see this, first we observe that
ﬂ SD Cl‘lb p (y(() 1])
n=0

because of the expanding nature of ¢ and because

o (y(pxll) = B;i&p (3) 1 1]>
Then, solving the functional equation for Newton polygon shows that for all d > 0,
(BF)#=" = pe=r"

i.e. a function on Y satisfying this ¢-invariance extends holomorphically to the boundary of the disk, [wr] = 0.

We have
X\{ooi} = Spec(Be),
and B, is a PID (here we are using F algebraically closed). To see it is a PID, one uses that
(Be, —ordy,)

is an almost Euclidean ring that is not Euclidean (the function —ord,,, gives a degree function or, in the language of Bourbaki,
“stathme”). By almost Euclidean, it is meant that

Ve,y #0,3a,bs.t.  =ay + b and deg(b) < deg(y).

It would be Euclidean if the inequality on degrees of b and y were strict. Using that B, is almost Euclidean and a bit more,
one can show that B, is a PID. Thus, Pic’(X) vanishes and Pic(X) = Z via degree.

~~
Example 5.1. We give another example of an almost Euclidean ring: Let PL be the Severi-Brauer variety over R associated

to H, which we can describe as

~~ 1
Py =Pg/z ~ =
z

or as a quadric with no real points
~~

Py ={[z:y:2]ePi|z? +y*+ 22 =0}

~ ~
Taking the closed point oo € P§ corresponding to the points 0, 00 € P{ via the first description of P}, we obtain a ring with a
degree function

~
(C(Pg\{o0}, 0), —ordy.)
which is almost Euclidean but not Euclidean. Note this example was not chosen at random — it is pretty clear now that
there is a relation between vector bundles on the curve and Simpson’s twistors.

5.2. Classification of vector bundles on X or X®!. We assume F is algebraically closed and F, is the algebraic closure
of Fy in F. For h > 1, we define E}, to be the degree h unramified extension of F.
Warning. If you replace E by E}, in all constructions before then you get

Ar g =Arg,

but the Frobenius is changed: ¢g, = .

Now, because F, = F, the structure map from Y to Spa(E) factors as

Y
l Spa(E")
Spa(E)

Thus we can make an identification
Ye®g E) = |_| Y&,
Gal(E,/E)
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and the action of pr ® Id on the right hand side is given by cycling the components and mapping via ¢r between them.
So,

X¥ ®p Ep, (Ucai(s, /z) Yr)/cycling action of vp ®1d

= Ye/el = Ye/eh, = X,
and the covering
XEh — XE
is the unfolding covering
Y /" - Y [P
Remark 10. As a sidenote, | X ®g E\“r| has the homotopy type of the solenoid (R x 2)/Z
Definition 9. For \ = % €Q, (d,h) =1, set
Ox,(A) = pushfoward of Ox, (d) via Xg, — Xp.
Remark 11. Since Vf € E(X)*, deg(divf) = 0, 3deg : Pic(X) = Div(X)/ ~— Z. Furthermore, since F' is algebraically
closed, we have Pic’(X) = 0 and
Pic(X) — Z
[O(d)] «— d.

That Pic’(X) = 0 is equivalent to cl(B.) = 0, which is true since, as stated in the previous section, F algebraically closed
implies B, is a PID.

We have that deg(O())) = d, rank(O()\)) = h, and
HOM) = A

deg
rank

where p = (a Harder-Narasimhan slope).

Remark 12. For any F, 75°°(Xp g) = Gal(F/F). There is a correspondence
{Slope 0 semistable vector bundles on Xp g} <> Repg, (Gal(F/F))

which is a type of p-adic Narasimhan-Seshadri theorem.

O()) is a stable vector bundle of slope A, and we have the following cohomological computations:
B*"=""if A 2 0
H(O\) ={ EifA=0
0if A <0
HY(OMN) =0ifX>0

and in particular, H'(O) = 0 so the curve has “arithmetic genus 0.” (Note there is no canonical divisor on the curve so
cannot find its geometric genus). In this sense the curve is like P!, however, contrary to P!, H*(O(—1)) # 0.

Remark 13. H'(O) = 0 is equivalent to (B, deg) being almost Euclidean because H'(O) can be computed by the Cech
cohomology of the covering of X by SpecB. and SpecBjy (a formal neighborhood of ;) to give

H'(0) = B:\Bar/Bi

which can then be shown to contain a single element using that B, is almost Euclidean. The fact that H'(O(-1)) # 0 is
similarly equivalent to (B, deg) not being Euclidean. In fact, we find H*(O(—1)) = k(o0), which is infinite dimensional over
E (for experts in p-adic Hodge theory, we note that it is a finite dimensional vector space in the sense of Colmez).

Theorem 5.2.
(1) Any slope A semistable vector bundle on X is isomorphic to a finite sum of O(\).
(2) The Harder-Narasimhan filtration of a vector bundle is split.
(8) Bunx/~~{\ = .. =2 A\ neN, )\ € Q} via (\;) & @O(N\,).
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Here (3) is a direct consequence of (1) and (2), and (2) is a direct consequence of (1) and the homological computation
since

Ext' (O(A), O(n)) = H'(O(1) ® O(=)))
and the latter is equal to 0 if A < p since O(u) @ O(—A) can be decomposed into a finite sum of O(u — A) (it is semistable
of slope p — A).

Remark 14. Earlier Drinfeld pointed out that for classical algebraic curves, the theory of vector bundles was first described
explicitly for the projective line (Grothendieck) and for elliptic curves (Atiyah), each of which is simpler than the general
theory for higher genus algebraic curves. We might say that the complexity of the theory of vector bundles on the curve lies
somewhere inbetween the theory for P! and the theory for an elliptic curve. In any case, this is a very difficult theorem.

Remark 15. We make some historical remarks about Theorem 5.2.

e For E = F,(m)) and X, this is due to Hartl-Pink [0]. (They did not introduce X4, however; instead they classified
p-equivariant vector bundles on D¥%..)

¢ Recall the Robba ring R = lim,_,o+ O(Y0,,])), Which is a Bezout ring. Kedlaya [10] classified ¢-modules over R,
and the “expanding” property of Frobenius implies

¢ — Modg = Vector Bundles on X9,

So, Kedlaya’s theorem is equivalent to the classical theorem on X4, (In fact, Kedlaya’s work allowed for a general
characteristic p field F, e.g. F' = F,((m)), after replacing W by a Cohen ring. His applications focused on F' a
characteristic p local field).

e For X the schematic curve, Fargues and Fontaine did the classification. At the beginning of the work they did not
have X; they had constructed |Y| as a set plus a bijection |Y|?/¢%>|X|, but did not know the sheaf property
for the structure sheaf. Scholze’s work on perfectoid spaces later provided this.

From the adic viewpoint developed here, the proof of Theorem 5.2 depends principally on the following two results:
Theorem 5.3.
(1) (Lafaille/Gross-Hopkins). If
0-€&-0 (%) — ipxk(0) =0
is a degree -1 modification of O (%), then & = O™.

(2) (Drinfeld) If
0> 0" 5 & >igek(0) >0

then 3r € {1, ..,n} such that € ~O" " @O (1).

Admitting these two results, the proof can be explained in an hour. The details for the rank 2 case, where all the ideas are
already present, are contained in [7]. There is a complete proof in the main article about the curve [5] (which is a very long
article). It is also described in the notes from a course given by Fargues at Jussieu in Spring 2014 (available at
http://webusers.imj-prg.fr/~laurent.fargues/Notes.html).
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6. LECTURE 2015-11-05 — PROOF OF THE CLASSIFICATION OF VECTOR BUNDLES

In this lecture we discuss the proof of the classification theorem for vector bundles on the curve.

We first fix some notation: L
Let E/Q, be a finite extension and let F'/F, be algebraically closed. Let F, the algebraic closure of F, in F'. Let X be the
curve over E. For every n > 1, we take F,,/E to be the degree n unramified extension of F, and then

X, =XQ®gE, = Xg,.

As discussed in the previous lecture, we have a tower

(Xn)nz1
lzfprocyclic
X=X
where the maps to the base are the unfolding maps
X = Y [on®
l |
xad _ Y /2

The proof of the theorem proceeds simultaneously for all n, and involves moving between different levels of the tower.
Theorem 6.1. For all £ € Bunx, 3(\;); such that £ = ®O(N;).

Here O();) are the stable vector bundles of slope A; introduced before. The proof begins with a series of dévissages to reduce
to a statement about modifications of vector bundles which can be understood using p-adic periods.

6.1. Dévissage.

First dévissage: Ext'(O(X),0(u)) = 0 if A\ < p, so we are reduced to proving that for all A and for all £ € Buni?’)‘,

€ = Ox(A)" for some n € N.
Second dévissage: Denoting by m, the map X,, - X, for £ a vector bundle over X we have
H(TEE) = n- (E).

By using descent along 7, we can thus reduce to A\ € Z. Then, by twisting and using u(€(d)) = u(€) +d for all d € Z, we
reduce to A =0, i.e.

3 v70
& € Buny.
Third dévissage: Given & € Buni?o, which is an abelian category, it suffices to prove that H°(X,€) # 0. This is because if
there is a nonzero global section, then we obtain a short exact sequence

0-0x -E-E >0

where £’ is also semistable of slope zero. Arguing by induction on rank, we obtain that £ =~ O% and using Ext'(0,0) =0
(because H'(Ox) = 0), we conclude.

Fourth dévissage:

Theorem 6.2. The classification theorem is equivalent to the statement that ¥n = 1, if
1
0->0x(——)—>E&—-0x(1)—>0
n

where & is of degree 0 (and rank n + 1 since Ox(—21) is rank n) then H°(X,€) # 0.
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Proof. Starting with the classification theorem, & = @®; Ox (\;), and since deg& = 0, there must be an i such that A; > 0.
Thus, H°(X, &) # 0 (because H(X,O()\)) # 0 if A > 0).

In the other direction, we proceed by induction on the rank of £ to prove that H°(X,£) # 0: Let rank(£) = n + 1, and
let £ < %€ be a sub line bundle of maximal degree d = deg(L). By the computation of the Picard group of X, we have
L = Ox, (d). Because 7€ is semistable of slope 0, d < 0. Let & = n*E/L, so that we have a short exact sequence

0— Ox, (d) > 7 - & — 0.
We now break up into cases based on the value of d:
o If d =0 then Ox, c n*€. Thus, H(X,,, 7€) # 0. This is equal to H*(X,€) ®g E,, and thus H°(X, ) # 0.

o If d < —2 then deg(€’) = 0 (because the degree is additive in short exact sequences and the middle term has degree
0). Thus, by the induction hypothesis applied to &', H(X,,,£’) # 0. Taking a non-zero section of & and composing
it with a nontrivial map Oy, (d +2) — Ox, (which exists because d + 2 < 0), we obtain a nontrivial map

v:0x, (d+2)—> &

We pullback via v to get a new short exact sequence

0—— OXn(d) o OXn(d-i-?) — 0
0 —— Ox.(d) TrE g 0

Twisting the top row, we obtain
0—0x, (-1) > &(-d—1) > O0x,(1) >0
and thus by the statement we have assumed, H°(X,,,E”(—d — 1)) # 0. Taking a non-zero section we get a map
Ox,(d+1) = & — xX&.

But this contradicts the maximality of d among degrees of sub line bundles of 7*&, thus this case (d < —2) cannot
occur.

e If d = —1, then our sequence reads
0—- Ox,(-1) > 7 > & —0.

Using that 7* = 7!, (since , is étale), by adjunction we get a nonzero map
1
v:0x(—=)—€&.
n

We take Imr < £ to be the saturation of the image of v (so that £/Imv is a vector bundle, i.e. there is no torsion).

Because Imv < £ and £ is semistable of slope 0, p(Imr) < 0. On the other hand, the image of v is a quotient
of Ox(—1) and thus has slope > —1 (by semistability of Ox(—21)) and since taking the saturation can only raise
degree, we also have —1 < p(Imv). Thus

1
— < p(Imv) <0.
n

Since Imv has rank n, the slope is a rational number with denominator n, and we see that p(Imv) must be either
—% or 0. We consider each possibility:

(a) p(Imr) = 0. In this case, Imv is semistable of slope zero and rank n, and so, by the inductive hypothesis
HO(X,Imv) # 0, and thus H(X,€) # 0.

(b) p(Imy) = Ox(—2L). In this case, v is an isomorphism onto Imv because they have equal rank and degree. Thus,

we have an exact sequence

1
0— OX(_E) - &> &/lmv -0

and, by considering the degrees and ranks of the first two terms, we find that £/Imv has rank 1 and degree 1,
and thus is isomorphic to Ox(1). So, we can write our sequence as

1)—>5—>(9X(1)—>0

n

0— Ox(
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and, by the statement we have assumed, we conclude H°(X, &) # 0.

Fifth dévissage:
Theorem 6.3. The classification theorem is equivalent to the combination of the following two statements:

(1) 1If
1
O—>5—>O<E> - F -0
with F a degree 1 torsion sheaf (i.e. F = izxk(x) for a closed point x) then £ ~ O%.
(2) If
0->0">E&—>F—->0
with F a degree 1 torsion sheaf then 3r € {1,..,n} such that € ~O" " @O (1) .

Proof. The proof that classification implies these two statements is left as an exercise. In the other direction, we give here the
proof for rank 2 vector bundles. We will proceed by proving the equivalent statement of the fourth dévissage. So, suppose £
is of degree 0 and there is a short exact sequence

1
0— OX(_E) - & - 0x(1)—0.

We will show that H(X, £) # 0.
We begin by choosing an embedding of Ox(—1) into Ox (1) and then forming the pushout diagram to obtain a new bundle
&

0 —— Ox(-1) —— & —— Ox(1) —— 0

[ Lo

0 —— O0x(1) —— & —— Ox(1) —— 0
O

We have that &' is isomorphic to Ox(1)? since Ext'(O(1),O(1)) = 0 (X has arithmetic genus 0). We denote by F the
cokernel of & — &', which, because it is also the cokernel of Ox(—1) — Ox(1), is a degree 2 torsion sheaf. We have an exact
sequence

2

0—— & — Ox(1)) — F —— 0.

We now choose F' c F of degree 1, and define a new &£’ via pullback along the inclusion F' c F:
0 & & F' 0

/ |

2

0 — & — Ox(1)) — F —— 0.

Now, F/F' is torsion of degree 1, and we have an exact sequence

2

0—— & —— Ox(1)) — F/F' —— 0.

Taking duals and twisting by 1, we obtain
0—— 0% —— &V(1) —— (F/F)Y — 0

where here (F/F')Y = Ext(F/F',Ox) is the Pontryagin dual of the torsion sheaf F/F’, and is again of degree 1. Now,
applying hypothesis (2) to £V (1) then taking duals and untwisting, we find two possibilities for £’
’ {OX @Ox(l) or

~ox(1/2)
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We consider each of these cases separately. For the first, we have an exact sequence
00— & — O0x®0x(1) — F" —— 0

where F” = F/F' is torsion of degree 1, and we can consider ker(Ox (1) — F”) c €. Because F” has degree 1, this must be
either Ox (1) or Ox, and either way it has a non-zero section, so H°(X, &) # 0.

In the second case we have an exact sequence

0 — & — O0x(1)2) — F" —— 0
where F” = F/F' is torsion of degree 1, and applying hypothesis (1) we see see that £ =~ 0% and thus H(X, &) # 0.
This completes the proof of the fifth dévissage in the rank 2 case. For any rank, we proceed similarly by starting with

0 —— Ox(-1/n) — & —— Ox(1)" —— 0

I l

|
00— Ox(1) & Ox(l) —— 0

which gives & =~ Ox (1)"*! and thus a modification
0 —— & —— Ox()"*t — = F —— 0

where F is torsion of degree n + 1. We then write this as a sequence of modifications until we obtain the desired result, using
(1) or (2) at each step.

6.2. Construction of modifications via p-adic periods. Let L = E' be the completion of the maximal unramified
extension of E. The residue field of L is F;. We recall F is algebraically closed so F'/F,/F,. Because of this, the structure
morphism Y — SpaF factors as

Y —— SpaF
Spal

We denote by ¢ — Mod, the category of isocrystals over L in the sense of Dieudonné-Manin), that is of pairs (D, ¢) with D
a finite dimensional L vector space and ¢ a semilinear automorphism of D.

We have the functor ¢ — Mody, — Bunyaa, (D, @) — £(D, ¢)*!, where the geometric realization of £(D, ¢)*? is as
Y x,2D—Y/p",

i.e. £(D, ) corresponds to the p-equivariant vector bundle on Y
(D®L Oy, 9 ®¢).

Via GAGA, we have Bunx =~ Bun??, and so there is a corresponding algebraic vector bundle £(D, ¢) over X. We can
describe £(D, ¢) concretely as

—

E(D,p) = @ H(X*,E(D,¢)*(d))

or equivalently
e

E(D.¢p) = @ (D@L B)?®7="

where B = O(Y). To make sense of this, recall that we have defined
X =Proj ® H(X*,03(d)) = Proj ® B*="".
d>0 d>0

If (D, ) is simple of slope A, then (D, ¢) = Ox(—A). Here to define the slope of an isocrystal we set ht(D, ¢) = dim D
and dim(D, ¢) to be the terminal point of the Newton polygon Newt(D, ¢) (note also that det(D, ) = L(dim(D, ¢))), and
then the slope is the dimension divided by the height. Then deg(€(D,¢)) = —dim(D, ¢) and rank(€E(D, ¢)) = ht(D, ¢),
which accounts for the change of sign in the slope as one passes from isocrystal to vector bundle.
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Suppose now we have fixed a point o € | X| with residue field C/E (so C” = F). As before, we denote
Bjy = Bin(C) = Ox »
which is a discrete valuation ring with uniformizer ¢ € B¥=" such that {o0} = VT (¢). Then,
5(’5\@)’& =D®L Bng
as a Bjz-module and
P(X\{o0}, £(D, ) = (D @z, B[ ;1)* ™
as a B, = B[1]*~!9-module.

We recall that B is a PID, and thus £(D, ¢) is determined by D ®, B, (D ®r B[+])?='¢, and gluing datum, which is the
isomorphism

1. _
(D®L B[;])“’Jd ®B, Bar = D ®r, Bar.

Thus, as sets,
~ 1
Buny ~ {(M,W,u) | M a free B. — module, W a free Bj; — module ,u: M ®@p, Bar — W[;]}/ ~

and
Bun$"*=" ~ GL,(B.)\GLy(Bar)/GLn(BR)-

We define
Gr(D) = {Bjy — lattices in D ®;, Bar} = G(Bar)/G(BiR)
where G = GL(D). If A € Gr(D), then £(D, ¢, A) is defined to be the modification of £(D, ¢) at oo such that

—

E(D, ¢, A), = A.

Thus, we have that deg(€(D, ¢,A)) = —dim(D, ) + [A : D ® Bj]. Because the comparison theorem for algebraic varieties
gives us isocrystals and lattices like this (this is one way to think of periods) with the corresponding underlying vector bundles
trivial (with basis given by the étale cohomology), enough varieties will give us enough periods to find all modifications and
thus prove the theorem, as we will see.

It is interesting to consider this construction of modifications further in two specific cases — the “U(1)-equivariant” case and
the “minuscule case”. We discuss the U(1)-equivariant case now, which we will return to again next lecture along with the
minuscule case.

The “U(1)-equivariant” case:

Suppose C' = K for K/E discretely valued with perfect residue field, and let Gx = Gal(K/K), which we will think of as
being a non-archimedean version of U(1). Then Gk acts on X stabilizing co: for our ¢ such that V*(¢) = {00}, Vo € Gk,
1% = Xecyc(0)t where Xcyc is the cyclotomic character Gg — Zy . In fact, and Gk < Aut(F) is equal to the stabilizer of
0.

We will explain in a moment (and expand on it in the next lecture) that G g-equivariant modifications can be encoded in
terms of filtrations on the isocrystal. Before doing so, we recall the Archimedean analog:

Let Gr be the usual affine Grassmannian associated to G/C, so that
Gr(C) = G(C(1))/G(C[Z]D-
There is an action of C* on Gr via t — At. Using this action one can decompose Gr into affine Schubert cells
Gr = U Gry,.
neXy(T)+
Each affine Schubert cell has a natural morphism to a corresponding flag variety

Gr, — G/P,
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which is an affine fibration. The left hand side has a C* action as described above, and the map is C*-equivariant for the
trivial action on G/P,. It induces an isomorphism

G, = G/P,

and, if p is minuscule, GrsX = Gry,. In the next lecture we will refine this picture for the twistor space IP’}Q, which does not
carry an action of all of C* but only of U(1) inside of C*, which is why we call this the U(1)-equivariant case.

Going back to the non-archimedean world, the analog of the affine Grassmannian with its action of C* (or U(1)) is
Gr = G(Ban)/G(By)
with the action of Gk (where G is again GL(D)).

We note that there is a unique G equivariant map K — B;R that is a section of 6 : B;R — C. If K/Ky/E, where Kj is
the maximal unramified extension, and D € ¢ — Mod,, then

Gri« = (G/P,)(K).
There is a bijection

{finite decreasing filtrations of D Qk, K} ——— {Gk — invariant lattices in D ®x, Bar}

Fil* D + Fil'(Dx ®k Bar) = Y, Filp, ® 7Bl

Now, £(D, ) is a Gg-equivariant vector bundle on X for (D,¢) € ¢ — Modg,, and, by this discussion, to give a Gk-
equivariant modification of £(D, ¢) is the same as to give a finite decreasing filtration of D ®xk, K. So, Fontaine’s filtered
p-modules are the same as G i-equivariant modifications at oo of £(D, ).
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7. LECTURE 2015-11-09 — PROOF OF THE CLASSIFICATION OF VECTOR BUNDLES (CONTINUED)

Recall that we had reduced the proof of classification to two statements about modifications of vector bundles on X:
(1) It

1

n

0—»5—)(9( )—».7:—>0

with F a degree 1 torsion sheaf (i.e. F = igz.k(z) for a closed point ) then £ ~ O%.
(2) If
0-0">E->F—-0
with F a degree 1 torsion sheaf then 3r € {1,..,n} such that £ ~ 0" @O (1).

We now return to our discussion of periods and modifications.

7.1. Periods give modifications of vector bundles. As in the last lecture, let L = E be the completion of the maximal
unramified extension of E. We again consider ¢ —Modj, the category of isocrystals over L in the sense of Dieudonné-Manin),
that is of pairs (D, ) with D a finite dimensional L vector space and ¢ a semilinear automorphism of D. As before, there
is a map from isocrystals to vector bundles on X sending (D, ¢) to E(D, p).

We fix a point o € | X | with residue field C/FE, and denote
B;—R = @I‘X?a
and, for t € B¥=" such that V*(¢) = {0},

— 1
Bar = FracOx o = BJR[;]

For any B ;R-lattice

——

A c DL Bz =&(D,¢).[1/t],

we associate the bundle £(D, ¢, A) which is the modification of £(D, ¢) at 0o with E(Z)’,EA) = A.

The U(1)-equivariant case:

Suppose K /F is a discrete valuation ring with perfect residue field, and K is the maximal unramified subextension (K /Ko/E),
C = K, and G = Gal(K/K. Then G acts on X stabilizing oo (the action of Gk on Bgg is the same as that defined by

Fontaine a long time ago). We denote

¢ — Mod Filgx, = {(D, »), Fil* |(D, ¢) an isocrystal over Ko and Fil* a filtration of D ®x, K}.

Then, as discussed last time, to give an object of ¢ — Mod Filg f, is the same as to give an isocrystal (D, ) and a
G g-invariant lattice in D ®, Bar, where a lattice A is obtained as
A=) Fil'Dk ®x t "By
i€Z
and we use the canonical Gi-invariant section of 6 from K to BCTR to form the tensor product. In geometric terms, there is
an equivalence between ¢ — Mod Filg /x, and Gk equivariant modifications of vector bundles £(D, ¢).

Theorem 7.1 (reformulation of comparison results by many people in p-adic Hodge theory, the most general of which is
due to Tsuji). Let E/Q,, let X/Ox be proper and smooth, and let i € N. Denoting by (D, ¢) the isocrystal

(D, ) = (Hio(Xni /W (ki))[1/p], crystalline Frobenius)

cris
where ki is the residue field of K, and by Fil* Dy the Hodge filtration on
Hli® K = Hig (X /K),

cris
there is an isomorphism of G -equivariant vector bundles on X

E(D,,FiI'Dg) = H (X, Q) @ Ox.
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A classical crystalline comparison theorem is obtained by taking global sections which gives (when E = Q,)
Hét(%?v Qp) = FHO(DKO ® BcriS)@zld
as G g-modules.

We now discuss the Archimedean analog. We consider the twistor P*,
~o _1

Py = Pg/ (Z ~ T)
Z

and the Z/27Z covering 7 : ]P’%: — PL which is the analog of the 7 covering (X, )n>1 of X = X7 (recall the maps X,, — X are,
in terms of adic spaces, the unfolding covering Y /¢"Z — Y /¢?). We denote by oo € P} the point such that
7 (o0) = {00, 0}

and set ¢ = % to be the local coordinate at oo (for P%). There is an action of C* on P given by A -t = At and the action of
~

U(1) € C* descends to an action of U(1) on P}.

For each A\ € %Z we can define a vector bundle O()) on P} such that
(1) If X e Z, O(}) is a line bundle such that 7*(O(\)) = O(2))
(2) If A€ £Z\Z, O()) is a rank 2 vector bundle given by
O(A) = 7 Op1 (2N).

~
We can classify the vector bundles on ]Pnlxz any vector bundle is a direct sum of O(\), A € %Z. Now, if V' is a finite dimensional
real vector space, then we have a bijection

{Filtrations of V¢} = {U(1) — equivariant modifications of V ®g (9[?1}
R

Here we should think of U(1) as playing the same role as Gk in the non-Archimedean case.

Moreover, we have that
(V,Fil*V¢)
is a weight w real Hodge structure if and only if
E(V,Fil* V),

~
the associated vector bundle on Py, is semistable of slope w/2, i.e. isomorphic to O(g)" for some n € N.

Thus, we can reformulate Hodge theory as the following result:

Theorem 7.2. If X/C is proper and smooth then for all i € N the U(1)-equivariant modification of H'(X(C),R) ® (’)P~1

R
~~

coming from the Hodge filtration is a slope i/2 vector bundle on Pk.

The minuscule case:
We now discuss the second interesting case. For us, minuscule will mean we are looking at, for a fixed (D, ) € ¢ — Mody,
lattices A such that

D®tBjz « Ac D®Bj;.
Giving such a lattice is equivalent to giving a subspace FilD¢c of D¢ via A = 071 (FilD¢), where 6 here is the map
6:D®r Biz — D¢
deduced from

6‘:B§R—>C.

We will now discuss the comparison theorem for p-divisible groups in this context.
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Let G/O¢ be a p-divisible group, for example, G = A[p™] for A/O¢ an abelian scheme. To such a G we can attach an
isocrystal (D, ¢), the rational covariant Dieudonné module of G ®o . k¢, where k¢ is the residue field of C, and a subspace
FilDe € D¢, the Hodge filtration. We have
Dc/Fich = LieG[l/p]
and
FilDo = wgn[1/p]
where GP denotes the Cartier dual of G. The comparison theorem in this case is an exact sequence of sheaves on X
0— V,(G)®qg, Ox = E(D,p '¢) = ixxLieG[1/p] > 0
where V,,(G) is the rational Tate module and the p~! shows up in the central term as a matter of normalization.

In particular, if LieG[1/p] is one dimensional, we obtain a degree 1 modification of £(D,p~t¢) that gives a trivial vector
bundle. If we can show every modification arises in this way, then we will be able to deduce (1) from the start of the lecture.
We now focus on this case.

The Lubin-Tate space: L
let G be the 1-dimensional formal p-divisible group over I, of height n. Let X be the formal deformation space of G. After
choosing coordinates, we have L
X ~ Spt(W(Fp)[[z1, .y Tn—1]])-
There is a Gross-Hopkins period map
étale n—1
TdR : Xy — P

where X, is the rigid analytic generic fiber, which is isomorphic (via our choice of coordinates) to the open unit ball
on—1

B

Remark 16. In the case of a p-divisible group attached to an ordinary elliptic curve, the analogous map is ¢ — 7 = loggq,
where ¢ is the Serre-Tate coordinate.

The map mqgr is such that if
(G,p) € Xy(C) = X(Oc)
where G is a p-divisible group over O¢ and p: G ®]F—p ke = G ®o kc, then
mar(G, p) = pi (FIID(Gyc)c) € B(D(G)o)(C)

where py is the induced isomorphism D(G)g ® W (kc)g — D(G ®o,, kc)o and Fil(D(Gk. )c) is the Hodge filtration, which
is a subspace of dimension n — 1.

Theorem 7.3 (Lafaille, Gross-Hopkins). mqr s surjective on C points.

Thus, any codimension 1 filtration of D(G)¢ is the Hodge filtration of a p-divisible group that is a lift of G. Now,
E(D(G),p~"¢) = Ox(1/n)
and so the exact sequence of vector bundles on X from before gives
0 — V,(G) ®g, Ox — Ox(1/n) — iypsLieG[1/p] — 0

and the surjectivity of mqr on C points (for every choice of 00) implies that any degree 1 modification can be realized in this
way, thus every such modification is a trivial vector bundle.

To finish the lecture, we now explain how the theorem of Lafaille/Gross-Hopkins can be given a very concrete formula-
tion.

Let

k™ n T 2n
(1) =] = T + ot T € Q,[[T1]]
(if n =1 then exp(f(T)) is the Artin-Hasse exponential in Z,[[T]]). Then
F(X,Y) = [T (f(X) + f(Y) € Z,[[X,Y]]

and thus F is a 1-dimensional formal group law over Z, with f = logp. It has height n.
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We define the module of quasilogarithms
Qlogr = {g € TQp[[T]] | g(X +£ Y) — g(X) — g(Y) € Z,[[X, Y]][1/p] (i-e. is bounded)}

Then, the contravariant Dieudonné module of F ®z, Fp can be described as

D = Qlogp/ ~= Qlogp/TZy[[T]][1/p]-
(The standard definition for the contravariant Dieudonné modules of a p-divisible group G is DC°™*(G) = Hom(G, CW)
where CW is the Witt covectors, CW = lim W,,.)

There is a Frobenius ¢ on Qlogy/ ~ given by ¢(g) = g(T?). Then Qlogy/ ~ is n-dimensional with basis

QlogF/ ~= <10gF7 <P(1OgF)7 ey </7n_1(10gF)>
We have ¢"(logr) ~ plogp so in this basis we can write

0 0 P

1 0 0

L 1 0 0
| 0 0 1 0 |

and (logry < Qlogr/ ~ is the Hodge filtration defined by the lift F' of F ® F,. Then Laffaille/Gross-Hopkins says that for
any (Ao, ..., An—1) € C™\(0, ..., 0), there exists € C* such that

n—1

D7 it (log) = pg
1=0

with g € T'- C[[T]]] the logarithm of a formal group over O¢ (i.e. such that g=!(g(z) + g(y)) € Oc[[X,Y]]). Thus we obtain
a completely concrete formulation in terms of power series.
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8. LECTURE 2015-11-12

8.1. The space Ys g.
Let E be a complete valued field with finite residue field Fy. If E is a discretely valued, then as before either £ = Fy((r)) or
E is a finite extension of Q,. We will also keep in mind the case where E is perfectoid, in particular the cases E = Fy((7'/7”))

and E = EE where E’ is a finite extension of Q, and E/, /E’ is generated by the torsion points of a Lubin-Tate formal group
over O%.

Let wg be a pseudo-uniformizer of E such that wg|p (we take wg to be a uniformizer = if E is discretely valued).

Let R be a perfectoid F, algebra. In characteristic p, a perfectoid algebra is a perfect algebra complete with respect to a
power-multiplicative norm || - || and such that there exists a topologically nilpotent unit, i.e. such that R* n R% # ¢ where
R is the set of topologically nilpotent elements, R < R® = {z € R | ||z|| < 1}.

Given such an E and R, there is a unique wg-adic flat Og-algebra A such that
AJwg = RO ®r, Op/wE.
Example 8.1. We describe A explicitly for the E above:
o If £ =F,((m)) then A = R[[~]].
o If [E:Qp] < 0 then
A=Wo,(R) ={) [xa]n" | xn € R},
n=0

o If E=T,((x'/7")) then A = RO[[x'/P"]].

o~

o If E=FE/ then
A=Wo,,(R)®o,, Op,

We equip A with the (wg, [wr])-adic topology, where wgr € R n RX is a topologically nilpotent unit. We set
YR,E = Spa(A)\V(wE [’(DR])
This construction for affinoid perfectoid spaces over I, glues to give a functor

Perfr, —— Analytic adic spaces over £

S Ys e

such that
Yspa(r),E = YRr.E
for R as above. The construction satisfies:
(1) If charE = p then Yop =25 X SpaF, SpakF.
(2) If B =TFy((m)),
Ys.r =D¥ =1{0<|r| <1} c AL,
the punctured open disk over S, and if E = F,((7'/?")) then

*1/p” : *
Ys,p =Dy = lim Dg,
Frob

the perfectoid punctured open disk over S.
(3) If E'/E then Ys g = Y5 pQF'.
(4) If E is perfectoid, then Yg g is perfectoid, and YSbE =Yg p-

We define the relative curve by Xg g = Ys g/¢? where p([z]) = [29].
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Example 8.2. If charF = p then
Xs.5 = (S x Spa(E))/Frob% x Id.
If B =Fy((m)), Xsr=D§/¢"
The same properties as above for the relative Y hold for the relative curve:
o X5 p®pE = Xs.p

e E perfectoid implies Xg g is perfectoid and XEE = Xg pr-
8.2. Diamonds.

8.2.1. Spa(Q,)°. Consider Perfr, equipped with the pro-étale topology. We define Spa(Q,)°® € f’—er\f]F: (where this denotes
the category of sheaves for the pro-étale topology) by

Spa(Q,)°(S) = {(S8%,1) | S* a perfectoid space over Q, and ¢ : S = (§#)’}/ ~

i.e. Spa(Q,)°(S) is the set of isomorphisms classes of untilts of S by perfectoid spaces over Q,. (Note that a pair (S,¢) as
above has no automorphisms, so it is ok to define this as a set instead of a groupoid).

This is a sheaf thanks to Scholze’s purity theorem which says that for any untilt S# of S, there is an equivalence

(=) : (Perf/S#)proct — (Perf/S)proct-

For F e IE?fQ;, define F° € i)?f]pp/ by
F°(S) = {(S*,s) | S* € Spa(Q,)°(S) and s € F(S)}.
Example 8.3. If X € Perfgp, then, viewing X as its functor of points on Perfg,, X° is represented by X’

The same argument as for Spa(Q,)® will show F® is a sheaf.

This defines an equivalence of topoi
(=)° : Perfg, — Perfg, /Spa(Q,)°
where the right hand side is the localized topos of objects equipped with a morphism to Spa(Q,)°.

Let X be a rigid analytic space over Q,. Then X has a pro-étale cover.
Example 8.4. Spa((Cp<T1i1/pl‘, ...,Tfl/pw» — Spa(C (T, ..., TF'Y) is a pro-étale cover of the d-dimensional annulus

|T1| = ... = |Tu| = 1 by a perfectoid space. This can be used to deduce the existence of a pro-etale cover for any smooth rigid
analytic variety.

Moreover, the functor
Normal rigid analytic spaces/Q, — Perfq,

is fully faithful. The proof uses the fact that rigid analytic varieties have pro-étale covers, plus something else that uses the
normal hypothesis.

Thus, we have an embedding

Normal rigid analytic spaces/Q, —— f/’—eEp:;/Spau(Qp)o
X X°

If Y — X is a pro-étale cover with Y perfectoid over Q,, then

X°=Y°/R
where R =Y xx Y cY xY is a perfectoid equivalence relation that can be tilted. Thus, X is an alebraic space for Perfy,
in the pro-étale topology.

For the pro-étale topology and some examples, one can consult Scholze’s Berkeley notes, which use a different site than before
that however still gives the same topos.
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Definition 10. A diamond is an algebraic space for the pro-étale topology on Perfp, .

—

We now give another description of Spa(Q,)° in this light: Let Q¥¢ = Qp((p=). Then Z) acts on Q¢ as the continuous
automorphisms (coming from the Galois action on Q,((,»)) and it is a fact that

Qe = Fy(T"),
Thus we obtain an action of Z; on F,((T/?)) which is given by a € Z, acting by

a:Te (1+T) —1= ) (Z)T’“

k=1
Then, _
Spa(Qy)° = Spa(F, (TV7"))/Z5 .
Another example of a diamond.

Definition 11. An adic space X /E is pre-perfectoid if for all E'/E with E’ perfectoid, X®gFE’ is perfectoid.
Example 8.5. X = Spa(Q,(TP"))) is preperfectoid.

If X is pre-perfectoid, then X° is a diamond:
X° = (X@pE)’ /Gal(E/E).

Thus for S € Perfy,, Ys g and Xg g are pre-perfectoid and
Ysp =25 X Spa(F,) Spa(E)°®,
X& g =S Xspagr,) Spa(E)°/Frobg x Id.
Example 8.6. Take [E : Q,] < o0 and E,/E generated by the torsion points of a Lubin-Tate formal group over Of so that
Gal(E,/E) = OF. Then
Yop = (Vo) /O5 = Y, /05 =D 0.
When E = Q, and T' is the variable on D the action of a € Z is described as before by
a:T—(1+17)"-1.

8.3. Untilts as degree 1 Cartier divisors on Xg. Let us work in the case [E : Q,] < o0, let R be a perfectoid F,-algebra,
and fix an untilt R¥ of R.
Fontaine’s map

0:Weo,(R") —— R#0

ano[l‘n]ﬂ'n — Zn>0 zHan

is surjective, where we define z# to be 3° where our untilting isomorphism R = R#?" is written z — (y(")) (recall the latter
is a system such that (y(+1)P = y(),

Furthermore, ker 6 is generated by a degree 1 primitive element

f = [za]n" € Wo, (Ro)

n=0
(by degree 1 primitive we mean xo € R* n R% and z; € R*). This defines a bijection

{Untilts of R} = {degree 1 primitive elements}/Weo,, (R°)*.

Let S € Perfr,, and let S¥ be a untilt of S given by a morphism S — Spa(E)°. This gives a section of the map
YSo,E =5 x Spa(E)° )
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and thus we have a commuting diagram

gi#o — — Y n
Spa(E)°

and by full faithfulness, we obtain a map
S#* YsE

which is a closed immersion given locally by V(f) as above.

Mapping down to X we obtain a closed immersion

S# 5 X S.E
and from this a map from untilts to degree 1 Cartier divisors on Xg . We knew this before Scholze when S was the spectrum
of a field (the Fontaine-Fargues curve).

When S = Spa(R), S# = Spa(R#), the formal completion of X r along S# can be described as
(Xs,5/S%)" = Spf(BjzR?).
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9. LECTURE 2015-11-23

9.1. Extension of the classification theorem. Let E/Q, be a finite extension with residue field Fy, let F//F, algebraically
closed, and let G be a reductive group over E. Let IE‘_q be the algebraic closure of Fy in F', and let L = EY" with residue field
F,. We denote by o the Frobenius on L.

Let B(G) = G(L)/o — conjugacy as studied by Kottwitz. The set B(G) classifies G-isocrystals. From a Tannakian viewpoint,
to b € G(L) representing a o-conjugacy class in B(G) we obtain a functor

RepG ———— ¢ — Mody,
(V.p) —— (V ®g L, p(b)o)

Let X /E be the schematical curve (recall this depends on the choice of both E and F'), then by composition we obtain a
functor

RepG —— ¢ — Mody, ﬂ Buny

\_/

Here we view a G-bundle in the Tannakian sense as a vector bundle with G-structure. It is equivalent to give a G-torsor on
X, and given b € G(L) we denote the corresponding G-torsor by &.
Theorem 9.1.

B(G) —— Hét(X,G)

br—m &

For G a torus this is an isomorphism of abelian groups; in general it is a bijection of pointed sets. The classification theorem
for vector bundles is equivalent to this statement for GL,, and it is used to proved the general case.

This isomorphism satisfies some further nice properties:

e The unit root (slope 0) G-isocrystals are classified by H'(E,G) ¢ B(G). Viewing these as G-bundles on X, this
inclusion is given by pullback of vector bundles via X — SpecE.

e There is a dictionary between Kottwitz’s theory and the generalization of Harder-Narasimhan to G-bundles. For
example, we have

b e B(G) is basic (the slope morphism vy, is central) < &, is semistable.

e Denote by J, the o-centralizer of b, which is an algebraic group over E. Then b is basic if and only if .J, is an inner
form of G. Given [b] € H(E,G) < B(G), Jp is a pure inner form of G in the sense of Vogan (i.e. coming from
the map H'(E,G) — H'(E,G.q)). Note that, for example, for GL,, there is only one pure inner form by Hilbert’s
theorem 90. In general the groups Jy for b basic are called extended pure inner forms of G, and Kottwitz formulates
local Langlands for extended pure inner forms in the quasi-split case.

Now, if b is basic, J, x X is a pure inner form of G x X (obtained by twisting by [£,] € H!(X,G)), so all extended
pure inner forms become pure inner forms after pullback to the curve. For example, if D{(/n is the multiplicative

group of the division algebra of invariant 1/n over F, then Dlx/n x X = Aut(Ox (1/n)).

9.2. The stack Bung. Recall that for S € Perfr, we have defined Xg, an adic space over E (the relative curve). Then Bung
is a stack on Perfp, for the pro-étale topology defined by

Bung(S) = {G — bundles on Xg}

where a G-bundle on Xg can be taken in the Tannakian sense as a tensor functor RepG — Bunx, and the right hand side
is a groupoid.
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The classification result for G-bundles implies B(G) = |Bung ® F,| where the right hand side can be defined as

|Bung ® F,| = | ] Bung(F) |/ ~
F/F, perfectoid

where the equivalence relation is given by isomorphism after pullback to a common perfectoid field extension.
We equip |Bung ® F,| with the topology whose open subsets are |U{| where U < Bung ®F, F, is an open substack.

We now discuss the connected components of Bung: Kottwitz defines a map x : B(G) — (m1(G)r) where I' = Gal(E/E) and
m1(G) is Borovoi’s my.

Theorem 9.2. & is locally constant.

We can think of x as a G-equivariant first Chern class c§'.

Example 9.1. For G = GL,, k is the degree of a vector bundle.

Conjecture 9.1. The fibers of k are connected.

If the conjecture holds, then combined with the theorem that x is locally constant this implies x cuts out the connected
components.

We now discuss the Harder-Narasimhan stratification when G is quasi-split. Consider a Borel B containing a maximal torus
T and a maximal split torus A ¢ T. The map

HN : |Bung ® F,| — X*(A)6

is semicontinuous. The semistable locus (i.e. the basic locus in Kottwitz’ language) is open.
Theorem 9.3 (Kottwitz). & : B(G)pesic — 71(G)r
This is variant of the Dieudonné-Manin classification for GL,,, which gives that an isoclinic isocrystal is determined by its
right endpoint.
For us, this implies that for each connected component x~!(a), a € w1 (G)r,

|(Bung ® F)™*| = {pt}
where the superscript a means we look at x~!(a) and the superscript ss stands for the semistable/open locus.
If [b] € B(G)basic; k(b) = a then there exists a natural morphism

Spa(F,) = Bung ® F,
defined by the construction for any perfectoid S /F_q of &.

Theorem 9.4. The map xp induces an isomorphism

[Spa(Fy)/Jy(E)] = (Bung @ Fy)*=

The space on the left is the classifying stack of pro-étale J,(F) torsors.

This is a difficult theorem. There is a big difference here between the study of G-bundles on the curve and G-bundles on the
projective line: here automorphisms are given by the topological group J,(E) instead of by an algebraic group.

Now, a Q;-local system on [Spa(F,/J,(E)], suitably interpreted, is a smooth admissible [-adic representation of J,(E).
We now discuss the Hecke correspondences: for p € X, (A)*, we have a diagram
Heckeg,,
‘(E/ \7{

Bung Bung x (SpaE)®
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Here

Hecke,,(S) = {(&1, Ea,u, ST)}
where & and & are in Bung(S), S# is an untilt of S (so an element of Spa(E)?(S)) which can be viewed as a “degree 1
Cartier divisor” S# < Xg, and wu:&; » & is a modification along S# — Xg bounded by p. The maps giving the
correspondence are

(&1, E2,u, S7)) = &
T (&1, 82,u,5%)) = (&1, 5%).

To understand properly Bung and the modification in the Hecke correspondence we must introduce the Bgg-affine grass-
mannian. One of the main points of Scholze’s Berkeley lectures was to prove this space is a diamond for G = GL,,.

We define the Bgr-affine Grassmannian Gr — Spa(E)° as a sheaf on Perfr_ by
Gr(R#) = {G-torsors T on Spec(Bj;(R¥)) with a trivialization of T ®pt (r#) Bar(R¥)}/ ~

where R#/E is an untilt of a perfectoid affinoid F,-algebra R (recall that to give an R point of Spa(FE)® is to give such an
untilt.)

Alternatively, Gr is the sheaf associated to
R*  G(Bar(R"))/G(BjR (R™)).

Inside of Gr we have the closed Schubert cells Gr#, and Gr = Uu GrsH,

Theorem 9.5 (Scholze). For all € X(A)*, GrS* is a diamond.

Note that for 4 minuscule, Gr<F = Gr* = Fly, where Fl, = G/P, is the associated flag variety.

Interjection. Drinfeld: In the equal characteristic case, local Langlands in general is still open, and morally the unequal
characteristics case is part of the equal characteristic case. What does the program do in this case, where many complications
might disappear?

Fargues: In the equal characteristic case one studies bundles on Dg’perf/goz and thus the pro-étale site and perfectoid spaces

are still necessary, but you can remove diamonds from the picture. One reason to prefer characteristic zero is that in
characteristic p there is a technical obstruction to deducing a Harder-Narasimhan theory for arbitrary G from a Harder-
Narasimhan theory for GL,.

One should be able to define a perverse sheaf IC,, on Gr=" such that for p minuscule, IC,, = Q;({p, ))[{2p, ], and one
expects to have a geometric Satake correspondence in this setting between perverse sheaves on Gr and representations of G
such that

IC, &7y
where 7, |5 has highest weight p.

Finally, because
T : Hecke<yt — Bung x (SpaFE)°

is a locally trivial fibration with fiber Gr<*, one can define I C), on Heckeg .

9.3. The conjecture. Let G/E be quasi-split, and let “G be the [-adic Langlands dual. Let T' = Gal(E/E).

If ¢ : Wg =% G is a Langlands parameter, we define

S, =1{g€ Glgpg™ = o).

Then Z((’i)F c S,, and we say ¢ is discrete if S’g,/Z((’i)F is finite (for G = GL,, this means indecomposable).

Conjecture 9.2. Let ¢ be a discrete Langlands parameter, and fix a Whittaker datum (this is nothing if G = GL,,). Then,
there exists a Weil perverse l-adic sheaf F; on Bung ®p, F_q equipped with an action of S, such that

(1) For all v € m(G)r = X*(Z(@)F), the action of S, on ‘F¢|Bunc®pqﬁ restricted to Z(é)F is given by o
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(5)
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If ¢ is cuspidal (p(Ig) is finite; this should correspond to supercuspidal L-packets), and
j: (Bung ®1F_q)SS — Bung ®F_q,
then j*F, is a local system and
Fo = gj*F,.
For all [b] € B(GQ)pasic, recall the map

[Spa(E)/Jb(E)] —— (Bung ® E)R(b),ss

x l B
Bung ® Fy

Then writing
o Fe= ® (x5 Fo)o
peS, s.t. pl g, =r(b)
(note that xf F, is a representation of Jy(E) x S, ),
{(xlffsa)p}p
is an L-packet for the local Langlands correspondence for Jy (which is an inner form of G.)

Furthermore, for b =1 so that Jy = G, (€} F)trivial 15 the generic representation associated to the choice of Whittaker
datum.

Hecke Property: For u € X, (A)t we have the Hecke correspondence

Hecke<, ® F,
g L
Bung ®F, Bung x (Spaﬁ‘m)o

where we use that Spa(E/‘;‘)‘) = Spa(E)° ®F,. We also have an l-adic representation v, o ¢ of Wg, where 1, is the
representation of “G attached to I C\, via geometric Satake in this setting as described above, which can be thought

of as an l-adic Weil local system on Spa(E/‘E)O. Then,
ﬁ)g((ﬁ*]—}, ®IC,) =~ F,Kryop
compatibly with the S, action (which is diagonal on the right).
Further, a factorization sheaf property holds when you compose Hecke correspondences.

A local-global compatibility holds with Caraiani-Scholze [2] (to be explained in the next lecture).
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10. LECTURE 2015-11-24

Today we will discuss the local-global compatibility part of Conjecture 9.2. We begin by explaining a specific example of
Conjecture 9.2.

Let G = GL,/E, ¢ : Wg — GL,(Q;) irreducible, and u(z) = (2, 1, ..., 1).

Let
z1 : [Spa(F,)/GL,(E)] — Bung, &

be the classifying map for the trivial vector bundle of rank n. Then there is a Cartesian diagram

[(P"=1)°/GL,(F)] Hecke,,

J Y

[Spa(F,)/GLy (E)] x SpaE® ™™ Bung, 5 x Spa(E)°.

Here (P%}j)‘) parameterizes modifications
u: 0" — &
with cokeru a length 1 torsion coherent sheaf: an S-point of (]P%:\j)‘) gives an untilt S¥ of S and a map S¥ — IP’%:\:, ie a

line bundle £ on S* and a surjection O3, — L. This data gives the desired modification of O along the closed embedding
St Xs.

The action of GL,, (E) is by automorphism of O™ —in fact, GL,,(E) = Aut(O™). This is because I'( X g, Og) = C(|S], E).
Now, we can define a F; perverse sheaf on []P’%}j/GLn(E)]: first, we define a smooth sheaf.

Consider F a GL,(E)-equivariant étale sheaf on (]P%:\j)ad. By a result of Berkovich, if U — ]P’%:\nl is an étale map and

U is quasi-compact, then there exists a compact open K < GL,,(F) such that K lifts to an action on U (Elkik’s approx-
imation/Krasner lemma). Furthermore, the germ of lifts of this action on sufficiently small K is unique, i.e. for any two
lifts to two potentially different compact opens, there is a smaller compact open subgroup contained in both where the lifts
agree.

Definition 12.
(1) F is smooth if for all U as above, the action of K on F(U) is discrete.

(2) Let A be the category of smooth GL,,(E)-equivariant sheaves in F;-vector spaces on (P%}j)ét. Then F € D?(A) is

perverse if for all C /E/‘;‘ complete and algebraically closed, U — Pg‘l étale, U a p-adic integral model of U, and
K c GL,(F) a sufficiently small compact open, we have

Ry(Flu)X € Perv(U,T;)
where R is the nearby cycles.

We return to our cartesian diagram and give a name to the top horizontal arrow:

[(P"=1)° /GL,(E)] ! Hecke,, 7

J I

[Spa(F,)/GLy (E)] x SpaE® ™% Bung, = x Spa(En)°.

In this setting, Conjecture 9.2 - (4) says (using that 7, is the standard representation and that IC,, = Q; (25*) [n—1])

R (M) = = 7wy
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Then, proper base change applied to our diagram gives
-1
RO ¥ F,) (" 5 ) [n-1]=7®¢

for the GL,(FE) x Wg action, where m = zfF, is the irreducible representation of GL,(E) associated to ¢ from (3) of
Conjecture 9.2.

Now, what is f*(ﬁ*]-"w? Recall (2) of Conjecture 9.2 says that F, = jij*F, where j : (Bung ® F,)* — Bung @ F,. Then,
in the diagram

[P"—1°/G L, (E)] —— Hecke,

~—_ I

BunG
we have -
(h o f)~ (Bung) = [Q°/GLa(E)],
i.e. Q° is the locus where the modification
0-0% >E&—->F—-0
is such that & is semistable. (Here Q = P51\ Urepvn-1(m) H?4 is the generalization of the Drinfeld upper half plane P*\P*(E)

for n = 2). Now, & is supersingular if and only if £ is locally isomorphic for the pro-etale topology to O(1/n). Then, since

Aut(O(1/n)) = Dlx/n, Isom(O(1/n),&) — Q°is a Dl/n - torsor which in fact is given by the Drinfeld covering. We have

zfF, = p, a smooth irreducible representation of D} In where p < ¢ by local Langlands if and only if JL(p) = 7. Then,

f *(E*}}, is the extension by 0 of the local system associated to p via Drinfeld’s covering. It is a known result that

R (@ tower T (5 ) (=1 = 7@

and thus this special case was a strong motivation for the conjecture.

n—1

10.1. Local-global compatibility.

TYPESETTER’S WARNING — This section needs clarification (my fault) and some things might not be
right; this will be addressed in a future update

Here we explain the local-global compatibility in the simple case G = GLy. In the setting of Caraiani-Scholze, there is a
perfectoid Shimura variety Sh., kx» where oo refers to the level at p and K? c G(A(p )) is a compact open. In this setting
there is a Hodge-Tate period map

7t : Shyoxr — P! Hecke,,.

It can be described in the following way: on the curve for Sh?f_‘ kv there is a modification
0? €&
where € is the bundle attached to the F-isocrystal of the universal p-divisible group [TYPESETTER’S NOTE — I'm not quite

sure what is meant by the F-isocrystal of the universal p-divisible group in this context; to be clarified in a later update].
The modification is along the divisor corresponding to the untilt Sh, k»r, coming from a surjection

Vi®0 - w
which can be deduced from Scholze’s relative comparison theorem and which can be thought of as a surjection
0 5w

by using the canonical trivialization of V,, coming from the infinite level structure at p. This data induces a map Sho x» — P!,
which is the Hodge-Tate period map.

Scholze and Caraiani consider Rryr+Q; and show that it is perverse in the preceding sense. The conjecture then predicts
that for an automorphic 7 with m, supercuspidal corresponding to ¢,

RTFHT*@[TF:D] = ]:ST
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(for a multiplicity m determined by the prime to p level).

The conjecture applies more generally to Hodge-type Shimura Varieties where Scholze and Caraiani also prove perver-
sity.
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