Math 4400, Fall 2014 Solutions to selected exercises and extra homework.

1.1.1 $\operatorname{gcd}(1084,412)=4, \operatorname{gcd}(1979,531)=1, \operatorname{gcd}(305,185)=5$.
$1.1 .22+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2+\frac{1}{2+\frac{1}{5}}}}}}, 3+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{23+\frac{1}{2}}}}}}}, 1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{5+\frac{1}{2}}}}}$.
1.1.3 Since $a|b, b| c$ we have $b=k a, c=j b$, but then $c=j b=j k a$ so that $a \mid c$.
1.1.4 The continued fraction of $\sqrt{3}$ is $[1: 1,2,1,2,1,2,1,2, \ldots]$. Since it is not finite $\sqrt{3}$ is not rational.
1.1.5 $1+\frac{1}{1+\frac{1}{2+\frac{1}{T}}}=\frac{7}{4}=1.75 \sim \sqrt{3}=1.73205 \ldots$
1.1.6 The continued fraction of $\sqrt{7}$ is $[2: 1,1,2,1,2,1,2,1,2, \ldots]$. Since it is not finite $\sqrt{3}$ is not rational.
1.1.7 $2+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}=13 / 5=2.6 \sim \sqrt{7}=2.645751 \ldots$
1.1.8 $\frac{1+\sqrt{5}}{2}$.
1.2.1 $\operatorname{gcd}=7=283 \cdot 6951-142 \cdot 13853$. The solutions are $(x, y)=(-142,283)+$ $k(993,-1979)$.
1.2.2 The solutions are $(x, y)=(-5,18)+k(61,-105)$.
1.2.3 Any solution must be divisible by the gcd, but $\operatorname{gcd}(427,259)=7$.
1.2.4 Let $g=\operatorname{gcd}(a, b)$ and k is an integer that divides a, b, then we must show that k divides g. Since k is an integer that divides a, b, we may write $a=k a^{\prime}, b=k b^{\prime}$ with $a^{\prime}, b^{\prime} \in \mathbb{N}$. Since $g=\operatorname{gcd}(a, b)$ we may write $g=a x+b y$ where $x, y \in \mathbb{N}$. Thus $g=a x+b y=k a^{\prime} x+k b^{\prime} y=k\left(a^{\prime} x+b^{\prime} y\right)$ i.e. k divides g.
1.2.5 Since $\operatorname{gcd}(a, b)=1$, we may write $a x+b y=1$. Since a, b divide c we may write $c=a k, c=b j$. But then $c=c(a x+b y)=b j a x+a k b y=a b(j x+k y)$ so that $a b$ divides c.
1.2.6 If g divides a, b, then $a=g a^{\prime}, b=g b^{\prime}$ and so $a d=g d a^{\prime}, b d=g d b^{\prime}$ i.e. $g d$ divides $d a, d b$. Conversely if $g d$ divides $d a, d b$, then $a d=g d a^{\prime}, b d=g d b^{\prime}$ so that by cancellation $g d$ divides $d a, d b$. It follows immediately that $\operatorname{gcd}(a, b) \cdot d=\operatorname{gcd}(d a, d b)$.
1.2.7 Let l be the lowest common multiple of a, b and $m \neq 0$ any other multiple. Write $m=l \cdot q+r$ where $0 \leq r<l$, then $r=m-l \cdot q$ and so r is divisible by a, b (check!). Since l is the least common multiple, $r=0$ and so l divides m.
1.2.8 If $\operatorname{gcd}(a, b)=1$, then any common multiple of a, b is divisible by $a b$ by Ex. 1.2.5 and so $\operatorname{lcm}(a, b)=a b$. In general, we may write $g=\operatorname{gcd}(a, b)$ and $a=g a^{\prime}, b=g b^{\prime}$. Similarly to Ex. 1.2.6, one checks that $\operatorname{lcm}(a, b)=\operatorname{lcm}\left(g a^{\prime}, g b^{\prime}\right)=g \cdot \operatorname{lcm}\left(a^{\prime}, b^{\prime}\right)=$ $g a^{\prime} b^{\prime}$. But then $\operatorname{gcd}(a, b) l c m(a, b)=g^{2} a^{\prime} b^{\prime}=a b$.
1.2.9 $\operatorname{lcm}(13853,6951)=13853 \cdot 6951 / \operatorname{gcd}(13853,6951)=13853 \cdot 6951 / 7=13756029$, $\operatorname{lcm}(15750,9150)=15750 \cdot 9150 / \operatorname{gcd}(15750,9150)=15750 \cdot 9150 / 150=960750$.
1.3.2 Since $p=a+b$ is prime, $\operatorname{gcd}(a, p)=1$ so by the FTA, $1=a x+p y=a x+(a+$ b) $y=a(x+y)+b y$ hence $\operatorname{gcd}(a, b)=1$.
1.3.3 $3992003=1997 \cdot 1999$ and $1340939=1153 \cdot 1163$.
1.4.1 We have $6+2 \sqrt{5}=(1-\sqrt{5})^{2}$, and $6-2 \sqrt{5}=(1-\sqrt{5})^{2}$ so

$$
\begin{aligned}
& \frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{2^{n+1} \sqrt{5}}+\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}= \\
& \frac{(1+\sqrt{5})^{n} 2(1+\sqrt{5}+2)-(1-\sqrt{5})^{n} 2(1-\sqrt{5}+2)}{2^{n+2} \sqrt{5}}=
\end{aligned}
$$

$$
\frac{(1+\sqrt{5})^{n+2}-(1-\sqrt{5})^{n+2}}{2^{n+2} \sqrt{5}}
$$

Thus $f_{n+2}=f_{n+1}+f_{n}$. To finish the proof we check that $f_{0}=f_{1}=1$ (easy check).
1.4.2 In the notation of the book $b=r_{n}$. Assume for simplicity that $n=2 m+1$ is odd. Since $b=r_{n} \geq 2 r_{n-2} \geq 4 r_{n-4} \geq 8 r_{n-6} \geq 2^{m} r_{1} \geq 2^{m}$, it follows that $n=2 m+1=$ $2 \log _{2}\left(2^{m}\right)+1 \leq 2 \log _{2}(b)+1$. The case n is even is similar.
1.4.3 $2 \log _{2}(b)=2 \log _{2}(10) \log _{10}(b)>6 \log _{10}(b)$ and $\log _{10}(b)+1$ is \geq the number of digits of $b\left(\operatorname{eg} \log _{10}(10)+1=2\right)$.
2.1.1 Suppose that e, e^{\prime} are identities, then $e=e \cdot e^{\prime}=e^{\prime}$ (the first equality follows as e^{\prime} is an identity and the second as e is an identity).
2.1.2 Let b, b^{\prime} be inverses of a so that $b a=a b=e=a b^{\prime}=b^{\prime} a$, then $b=b e=b\left(a b^{\prime}\right)=$ ($b a) b^{\prime}=e b^{\prime}=b^{\prime}$.
2.1.3 We have $e=(a b)^{2}=a b a b$ thus $a=a a b a b=e b a b=b a b$ and so $a b=b a b b=$ $b a e=b a$.
2.1.4 Given $k n, j n \in n \mathbb{Z}$, we have $k n+j n=(k+j) n \in \mathbb{Z}$ so \mathbb{Z} is closed under addition. Associativity: $(k n+j n)+l n=(k+j) n+l n=((k+j)+l) n=(k+(j+l)) n=$ $k n+(j+l) n=k n+(j n+l n)$. Identity: $0=n 0$, infact $k n+0 n=(k+0) n=$ $k n=(0+k) n=0 n+k n$. Inverses: the inverse of $k n$ is $(-k) n$ since $k n+(-k) n=$ $(k-k) n=0 n=(-k+k) n=(-k) n+k n$.
2.1.5 If $H=\{0\}$, then $H=0 \mathbb{Z}$. If $H \neq\{0\}$, then let $n \in H$ be the smallest non-zero element in H. Let $h \in H$ be any other element and write $h=n q+r$ where $0 \leq r<n$. Since $r=h-q n \in H$ and $0 \leq r<n$, then by definition of n we have $r=0$ so that $h \in n \mathbb{Z}$.
2.2.1 Since $10 \cong_{11}-1$, we have $10^{i} \cong 11(-1)^{i}$ and so $m=\sum_{i=0}^{r} a_{i} 10^{i} \cong_{11} \sum_{i=0}^{r} a_{i}(-1)^{i}$. If 11 divides m then $m \cong_{11} 0$ so that $0 \cong_{11} \sum_{i=0}^{r} a_{i}(-1)^{i}$.
2.2.2 The sum of the digits is 33 which is not divisible by 9 and hence the number is not divisible by 9 . The alternating sum of the digits is -11 which is divisible by 11 and so the number is divisible by 11 (by the previous exercise).
2.2.3 $\sum_{i=1}^{10} i \cdot y_{i} \cong_{11} 2=9-7$ so the number is $3-540-79285-9$.
2.2.4 $\sum_{i=1}^{10} i \cdot y_{i} \cong_{11} 9=9-0$ so the number is $0-31-030360-9$.
2.2.5 By assumption $x-y=n k$ and $y-z=n j$ so $x-z=x-y+y-z=n k+n j=n(k+j)$ i.e. $x \cong_{n} z$.
2.3.6 $1979=131 * 15+14,131=14 * 9+5,14=5 * 2+4,5=4+1$, so the gcd is 1 . We have $1=5-4=3 * 5-14=3 * 131-28 * 14=423 * 131-28 * 1979$. Thus $423 * 131 \cong_{1979} 1$ i.e. $131^{-1}=423$.
2.3.7 $131 x \cong_{1979} 11$ so $x=131^{-1} 11=423 * 11=4653=695$ (modulo 1979).
2.3.8 $1091=127 * 8+75,127=75+52,75=52+23,52=23 * 2+6,23=6 * 3+5$, $6=5+1$ so the gcd is 1 . We have $1=6-5=6 * 4-23=52 * 4-23 * 9=$ $52 * 13-75 * 9=127 * 13-75 * 22=127 * 189-1091 * 22$. Thus $127^{-1}=189$ (modulo 1091).
2.3.9 $127 x \cong_{1091} 11$ so $x=127^{-1} * 11=189 * 11=2079=988$ (modulo 1091).
2.4.1 Let $m=q n+r$ with $0 \leq r<n$ and $|g|=n$. We have $g^{m}=g^{q n+r}=\left(g^{n}\right)^{q} \cdot g^{r}=$ $e^{q} \cdot g^{r}=g^{r}$. Since $0 \leq r<|g|$ it follows that $r=0$ i.e. n divides m.
2.4.2 $\left.(\mathbb{Z} / 13 \mathbb{Z})^{*}=\{1,2,3,4,5,6,7,8,9,10,11,12\} .<5>=<5^{0}, 5^{1}, 5^{2}, 5^{3}\right\}=\{1,5,12,8\}$ since $5^{4}=1$ modulo 13. Note that $2 \cdot<5>=\{2,10,11,3\}$ and $4 \cdot<5>=$ $\{4,7,9,6\}$ We then have $(\mathbb{Z} / 13 \mathbb{Z})^{*}=<5>\cup 2 \cdot<5>\cup 4 \cdot<5>$ is the disjoint union of the three equivalence classes each of size 4 i.e. $12=3 \cdot 4$.
2.5.1 By the FTA we have $m x+n y=1$ and by assumption $a=m k$ and $a=n j$. Therefore $k=k m x+k n y=a x+k n y=n j x+k n y=n(j x+n y)$, thus $a=m k=m n(j x+n y)$ and $m n$ divides a.
2.5.2 $1000=2^{3} 5^{3}$ and so the divisors of 1000 are $1,2,4,8,5,10,20,40,25,50,100$, $200,125,250,500,1000$. We have $\varphi(1)=1, \varphi(2)=1, \varphi(4)=2, \varphi(8)=4$, $\varphi(5)=4, \varphi(10)=4, \varphi(20)=8, \varphi(40)=16, \varphi(25)=20, \varphi(50)=20, \varphi(100)=$ $40, \varphi(200)=80, \varphi(125)=100, \varphi(250)=100, \varphi(500)=200, \varphi(1000)=400$. Finally $1+1+2+4+4+4+8+16+20+20+40+80+100+100+200+400=$ 1000.
2.5.3 $x \cong_{11} 5$ implies $x=5+11 k$ and so $5+11 k \cong_{13} 7$ i.e. $11 k \cong_{13} 2$. The inverse of 11 modulo 13 is $6(6 \cdot 11-5 \cdot 13=1)$ so $k \cong_{13} 6 \cdot 11 \cdot k \cong_{13} 6 \cdot 2 \cong_{13} 12$. Finally $x=5+11 \cdot 12=137$.
2.5.4 $x \cong{ }_{16} 11$ implies $x=11+16 k$ and so $11+16 k \cong{ }_{27} 16$ i.e. $16 k \cong{ }_{27} 5$. The inverse of 16 modulo 27 is $-5(-5 \cdot 16+3 \cdot 27=1)$ so $k \cong{ }_{27}-5 \cdot 16 \cdot k \cong \cong_{27}-5 \cdot 5 \cong_{27}$ $-25 \cong_{27} 2$. Finally $x=11+2 \cdot 16=43$.
2.5.5 We compute the last two digits of powers of two (i.e. 2^{i} modulo 100). $2^{0}=1$, $2^{1}=2,2^{2}=4,2^{4}=4^{2}=16,2^{8}=16^{2} \cong 56,2^{16} \cong 56^{2} \cong 36,2^{32} \cong 36^{2} \cong 96$, $2^{64} \cong 96^{2} \cong 16,2^{128} \cong 16^{2} \cong 56,2^{256} \cong 56^{2} \cong 36,2^{512} \cong 36^{2} \cong 96,2^{1024} \cong$ $96^{2} \cong 16,2^{2048}=16^{2} \cong 56,2^{4096} \cong 56^{2} \cong 36,2^{8192} \cong 36^{2} \cong 96$. Since $9999=$ $8192+1024+512+256+8+4+2+1$, it follows that $2^{9999}=2^{8192} \cdot 2^{1024}$. $2^{(512)} \cdot 2^{256} \cdot 2^{8} \cdot 2^{4} \cdot 2^{2} \cdot 2^{1} \cong 96 \cdot 16 \cdot 96 \cdot 36 \cdot 56 \cdot 16 \cdot 4 \cdot 2 \cong 96^{2} \cdot 16^{2} \cdot 36 \cdot 56 \cdot 8=$ $16 \cdot 56 \cdot 56 \cdot 36 \cdot 8=16 \cdot 36 \cdot 36 \cdot 8 \cong 96 \cdot 16 \cdot 8 \cong(-4) \cdot 28 \cong-112 \cong 88$.
4.1.2 Hint: $\int(x / 2)^{2} d x=x^{3} / 12 . \int(x / 2)^{2} d x=\sum \int(-1)^{k}(x / 2) \frac{\sin (k x)}{k} d x$ and integrating by parts $\int(x / 2) \frac{\sin (k x)}{k} d x=\frac{x}{2} \cdot \frac{-\cos (k x)}{k^{2}}-\int \frac{-\cos (k x)}{k^{2}} d x$ but $\int_{-\pi}^{\pi} \frac{-\cos (k x)}{k^{2}} d x=0$ and $\left.\frac{x}{2} \cdot \frac{-\cos (k x)}{k^{2}}\right|_{-\pi} ^{\pi}=(-1)^{k+1} \frac{\pi}{k^{2}}$.
4.2.1 Define $\varepsilon(n)=0,1,0,-1$ if $n \cong{ }_{4} 0,1,2,3$ and let

$$
\begin{gathered}
L=\sum_{n \geq 1}\left(\frac{\varepsilon(n)}{n}\right)=\Pi_{p \text { prime }}\left(\sum_{i \geq 0}\left(\frac{\varepsilon(p)}{p}\right)^{i}\right) \\
=\Pi_{p \cong_{4} 1}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\ldots\right) \Pi_{p \cong_{43}}\left(1-\frac{1}{p}+\frac{1}{p^{2}}+\ldots\right) .
\end{gathered}
$$

If there are finitely many $p \cong_{4} 1$, then this behaves like

$$
\Pi_{p \text { prime }}\left(1-\frac{1}{p}+\frac{1}{p^{2}}+\ldots\right)=\Pi_{p \text { prime }} \frac{p}{p+1}=0
$$

If there are finitely many $p \cong_{4} 3$, then this behaves like

$$
\Pi_{p \text { prime }}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\ldots\right)=\Pi_{p \text { prime }} \frac{p}{p-1}=+\infty .
$$

The above argument is not correct because L is not absolutely convergent. However, let $L(s)=\sum_{n \geq 1}\left(\frac{\varepsilon(n)}{n}\right)^{s}$, then $L(s)$ is absolutely convergent for all $s>1$ and taking the limit as $s \longrightarrow 1$, the above argument becomes correct.
4.2.2 We know that $\Pi_{p \cong_{3} 1} \frac{p}{p-1}=+\infty$ and $\Pi_{p \cong_{3} 2} \frac{p+1}{p}=0$. But then $\Pi_{p \cong_{3} 2} \frac{p}{p+1}=+\infty$ (prove this using $\lim _{m \longrightarrow \infty} \Pi_{p \cong 3} 2, p \leq m \frac{p+1}{p}=0^{+}$). It is easy to check that $\frac{p}{p-1} \geq$ $\frac{p}{p+1}$. Thus $\Pi_{p \cong_{3} 2} \frac{p}{p-1} \geq \Pi_{p \cong_{3} 2} \frac{p}{p+1}=+\infty$.
4.3.1 $\sigma\left(3^{2 k+1}\right)=\left(3^{2 k+2}-1\right) /(3-1)$. Now $3^{2} \cong_{8} 1$ so $3^{2 k+2}=\left(3^{2}\right)^{k+1} \cong_{8} 1$ so $3^{2 k+2}-1$ is divisible by 8 so $\left.3^{2 k+2}-1\right) /(3-1)$ is divisible by 4 . So $\sigma(n)=\sigma\left(3^{2 k+1}\right) \sigma(r)$
is divisible by 4 . But if n is perfect, then $\sigma(n)=2 n$ so $\sigma(n)$ is not divisible by 4 (as n is odd).
4.3.2 $2047=23 \cdot 89$.
4.3.2 The number of digits is $\log \left(2^{32,582,657}-1\right)$ The number is about $\frac{32,582,657}{1600} \log (2)$.
5.1.1 Modulo 1979, we have $5^{2}=25,5^{4}=625,5^{8}=390625=762,5^{16}=762^{2}=$ $580644=797,5^{32}=797^{2}=635209=1929=-50,5^{64}=25,5^{128}=625$ and so $5^{143}=5^{128} 5^{8} 5^{4} 5^{2} 5=625 \cdot 762 \cdot 625 \cdot 25 \cdot 5=99625=675$.
5.1.3 The order of $\left(\mathbb{Z} / \mathbb{Z}_{35}\right)^{*}$ is $\varphi(35)=\varphi(5) \varphi(7)=4 \cdot 6=24$. Since 24 and 11 are coprime, we write $1=11 \cdot 11-5 \cdot 24$ and we can solve $x^{11}=3513$ by letting $x=13^{11}$. We have $13^{2}=169=-6,13^{4}=36=1$ and so $x=13^{11}=13^{3}=$ $-6 \cdot 13=-78=-8$. (Note that $(-8)^{2}=64=-6$ and $(-8)^{4}=(-6)^{2}=1$ and so $(-8)^{11}=(-8)^{3}=-8 \cdot-6=48=13$.)
5.3.1 Let μ_{n} be the set of all n-th roots of 1 in F^{*}. Clearly $1 \in \mu_{n}$ so $\mu_{n} \neq \emptyset$. If $x, y \in \mu_{n}$, then by assumption $x^{n}=y^{n}=1$. Now $(x y)^{n}=x^{n} y^{n}=1 \cdot 1=1$ so that μ_{n} is closed under multiplication. Finally $\left(x^{-1}\right)^{n}=\left(x^{n}\right)^{-1}=1^{-1}=1$ so that μ_{n} is closed under inverses and henve μ_{n} is a subgroup of F.
5.3.2 Taking the term of degree $n-1$ in the equation

$$
x^{n}-1=(x-1)(x-\zeta) \cdots\left(x-\zeta^{n-1}\right)
$$

we obtain $0=-1-\zeta-\ldots-\zeta^{n-1}$.
5.3.3 The possible orders of 3 in \mathbb{F}_{31} are the divisors of $\left|\mathbb{F}_{31}\right|=30$ i.e. $1,2,3,5,6,10,15,30$. However $3^{2}=9,3^{3}=27,3^{5}=9 \cdot 27=9 \cdot(-4)=-36=-5,3^{6}=-15,3^{10}=25$ and $3^{1} 5=-125=-1$ are all $\neq 1$.

The 6 -th roots of 1 are $3^{0}=1,3^{5}=-5,3^{10}=25,3^{15}=-1,3^{20}=5$ and $3^{25}=6$. Their sum is of course 0 .
5.4.1 $I(7)+I(x)=I(5)($ modulo 10$)$ so $7+I(x)=4$, so $I(X)=-3 \cong{ }_{10} 7$ so $x=2^{7}=7$.
5.4.2 $I(4)+2 I(x)=I(9)$ so $2+2 I(x)=6$ (modulo 10) so $I(x)=2,7$ so $x=2^{2}=4$ or $x=2^{7}=7$.
5.4.3 $2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16=-3,2^{5}=-6=13,2^{6}=7,2^{7}=14$, $2^{8}=9,2^{9}=18=-1,2^{10}=-2=17,2^{11}=-4=15,2^{12}=-8=11,2^{13}=$ $-16=3,2^{14}=6,2^{15}=12,2^{16}=5,2^{17}=10,2^{18}=1$.
$5 I(x)=I(7)$ (modulo 18) so $I(x)=-7 \cdot 5 \cdot I(x)=-7 \cdot 6=-42 \cong_{18} 12$ so $x=2^{12}=11$.
6.2.1 We have $6^{2}=36=-5,6^{4}=25,6^{8}=625=10$ and $6^{16}=1000=18$ so $6^{(p-1) / 2}=$ $6^{20}=18 \cdot 25=450=40=-1$. (But we knew this as 6^{20} is a square root of 1 so is ± 1, but it can't be 1 as otherwise the order of 6 would be ≤ 20 but we assumed it is a primitive root i.e. it has order 40.)
6.2.2 $2^{(31-1) / 2}=2^{15}=32^{3}=1^{3}=1$ so 2 is a square $\bmod 31.3^{15}=(27)^{5}=(-4)^{5}=$ $-1 \cdot 2^{5} \cdot 2^{5}=-1\left(\right.$ as $\left.2^{5}=32=1 \bmod 31\right)$. So 3 is not a square modulo 31 . $7^{(29-1) / 2}=7^{1} 4=(20)^{7}=(-4)^{7}=-64 \cdot 64 \cdot 4=-6 \cdot 6 \cdot 4=-6 \cdot 24=-6 \cdot(-5)=$ $30=1$ so 7 is a square modulo 29 .
6.3.1 The order of 6 is 40 , so the order of $g=6^{5}$ is 8 . Now, $g=6^{5}=36 \cdot 36 \cdot 6=$ $(-5)^{2} \cdot 6=150=27$. We also have $g^{7}=g^{-1}=-3$ (as $1=2 \cdot 41-3 \cdot 27$). So $g+g^{7}=24$ is a square root of 2 .
6.3.2 The order of 5 is 72 (in \mathbb{F}_{73}^{*}). So $g=5^{9}$ has order 8. Now $g=5^{9}=(125)^{3}=$ $(-21)^{3}=-441 \cdot 21=3 \cdot 21=63$. We have $g^{7}=g^{-1}=-22$ (since $1=19 \cdot 63-$ $22 \cdot 63$). So $g+g^{7}=63-22=41$ is a square root of 2 .
6.3.3 $g=3+4 \cdot 3=15=-2$ is a primitive 8 -th root of 1 .
6.3.4 $x^{2}-6 x+11=0$ is equivalent to $(x-3)^{2}=-2$. We have $\left(\frac{-2}{131}\right)=\left(\frac{2}{131}\right)\left(\frac{-1}{131}\right)$. Since $131 \cong_{8} 3$, we have $\left(\frac{2}{131}\right)=-1$ and since $131 \cong 3_{4}$, we have $\left(\frac{-1}{131}\right)=-1$. Thus $\left(\frac{-2}{131}\right)=(-1)^{2}=1$ and we can solve this equation.
8.1.1 $221=13 \cdot 17=\left(3^{2}+2^{2}\right)\left(4^{2}+1^{2}\right)=14^{2}+5^{2}$.
8.1.2 $8^{2}+1^{2}=5 \cdot 13$. Pick $5 / 2<u=-2, v=1 \leq 5 / 2$ then $x u+y v=-15$ and $x v-y u=$ -10 . Dividing by -5 we get $(3,2)$ and $3^{2}+2^{2}=13$.
8.1.3 Since 5 is a primitive root of 1 modulo 73 , it has order 72 , thus $\left(5^{18}\right)^{2}=5^{36} \cong{ }_{73}$ -1 . We have $5^{3}=125 \cong 52,5^{4} \cong 260 \cong 41,5^{5} \cong 205 \cong-14,5^{6} \cong-70 \cong 3$, $5^{18} \cong 27$ and in fact $(27)^{2}+1^{2}=729+1=10 \cdot 73$. By descent, we pick $5<u=$ $-3, v=1 \leq 5$ and so $x u+y v=-80, x v-y u=30$ and dividing by 10 we have $8^{2}+3^{2}=64+9=73$.
8.1.4 Suppose $p \cong_{8} \pm 1$, then $2=b^{2}$ and so a necessary condition is to solve $x^{2}+z^{2} \cong_{p} 0$ where $z=$ by. If $p \cong_{8}-1$, then $p \cong_{4}-1$ and so there is no such solution. If $p \cong_{8} 1$, then $p \cong_{4} 1$ and so there is a solution, i.e. we can write $x^{2}+z^{2}=k p$ for some $0<x, z<p$ and $k>0$. Letting $y=b^{-1} z$, we may assume that $x^{2}+2 y^{2}=k p$. By an argument similar to Fermat descent, we hope to show that $x^{2}+2 Y^{2}=p$ has a solution.

Suppose $p \cong_{8} \pm 3$, then $(x / y)^{2} \cong_{p}-2$. If $p \cong_{8} 1$, then $p \cong_{4} 1$ and so $-1=b^{2}$ (modulo p). But then $(x / b y)^{2} \cong{ }_{p} 2$ which is impossible as 2 is not a square. If $p \cong_{8}-1$, then $p \cong_{4}-1$ and so both 2 and -1 are not squares and hence -2 is a square, say $-2=b^{2}$ (modulo p). But then $(x / b y)^{2} \cong_{p} 1$ has a solution, eg. $x=b y$ so that $x^{2}-b^{2} y \cong_{p} 0$ i.e. $x^{2}+2 y^{2}=k p$. By an argument similar to Fermat descent, we hope to show that $x^{2}+2 Y^{2}=p$ has a solution.
8.1.5 Easy direct computation, but the formula is wrong. It should be:

$$
\left(x^{2}+2 y^{2}\right)\left(u^{2}+2 v^{2}\right)=(x u-2 y v)^{2}+2(y u+x v)^{2} .
$$

8.1.6 $8^{2}+2=6 \cdot 11=\left(2^{2}+2 \cdot 1^{2}\right)\left(3^{2}+2 \cdot 1^{2}\right)=(2 \cdot 3-2 \cdot 1 \cdot 1)^{2}+2(1 \cdot 3+2 \cdot 1)^{2}=$ $4^{2}+2 \cdot 5^{2}$.
8.2.1 $(11+7 i)=2(5+3 i)+(1+i)$ and $(5=3 i)=(4-i)(1+i)$ so $\operatorname{gcd}((11+7 i),(5+$ $3 i))=1+i$.
8.2.2 $N(11+3 i)=130$ so the primes have norm 2,5 or 13 . The irreducible elements with $N(\pi)=2$ are $1+i$. Then we see $(11+3 i)=(1+i)(7-4 i)$. The irreducible elements with $N(\pi)=5$ are $2 \pm i$ and one sees that $(7-4 i)=(2+i)(2-3 i)$. Since $N(2-3 i)=13,(2-3 i)$ is irreducible.

Math 4400, Fall 2014 Extra homework.

3.2.3 Find the inverse of $1+i$ in $\mathbb{F}_{11}[i]$.
3.2.4 Show that $\mathbb{F}_{5}[i]$ and $\mathbb{F}_{13}[i]$ are not fields. (Hint: solve $a^{2}+b^{2}=0$ and give a zero divisor.)
3.2.5 Show that $\mathbb{F}_{3}[i], \mathbb{F}_{7}[i]$ and $\mathbb{F}_{11}[i]$ are fields. (Hint: compute all possible values of $a^{2}+b^{2}$.)
3.2.6 What is a 0 divisor and why do fields not have any 0 divisors?
3.2.7 Show that every element of $\mathbb{F}_{11}[i]$ satisfies the equation $x^{121}-x=0$.
3.2.8 Repeat 3.2.7 for $\mathbb{F}_{5}[i]$. (Hint: compute $\mathbb{F}_{5}[i]^{*}$.)
3.2.9 Explain why \mathbb{F}_{3} is contained in any field F of characteristic 3.
3.2.10 Explain why the solutions to $x^{6}+x^{4}+x^{2}+1$ in $\mathbb{F}_{3}[i]$ are exactly the elements of $\mathbb{F}_{3}[i] \backslash \mathbb{F}_{3}$.
3.2.11 If $a+b i \in \mathbb{F}_{p}[i]$ then let $N(a+i b)=a^{2}+b^{2}$. Show that $N((a+i b)(c+i d))=$ $N(a+i b) N(c+i d)$ and deduce that $a+b i \in \mathbb{F}_{p}[i]^{*}$ if and only if $N(a+i b) \neq 0$.
4.1.4 Define $L(s)$, show that it diverges for $s=1$ and converges absolutely for $s>1$.
4.1.5 Show that $\prod_{p \text { prime }} \frac{p}{p-1}$ diverges.
4.1.6 Show that $\prod_{p \text { prime }} \frac{p}{p+1}=0$. (Hint: note that $\frac{p}{p-1} \frac{p}{p+1}=\frac{p^{2}}{p^{2}-1}$ and consider $\zeta(2)$).
4.1.7 Compute $\sum_{m, n \geq 0} \frac{1}{2^{m} \cdot 3^{n}}$.
4.2.5 Let $\varepsilon(n)=0,1,-1$ if $n \cong_{3} 0,1,2$. Define the Dirichlet L-series $L=\sum_{n>0} \frac{\varepsilon(n)}{n}$. Show that this series converges to a value $\frac{1}{2}<L<1$ and show that

$$
L=\Pi_{p \text { prime }}\left(\sum_{i \geq 0}\left(\frac{\varepsilon(p)}{p}\right)^{i}\right)
$$

4.3.4 Show that if M_{l} is a Marsenne prime, then l is prime.
4.3.5 Let $\sigma(n)$ be the sum of all divisors of n (including 1 and n). If p is prime then compute $\sigma\left(p^{k}\right)$. Show that if m, n are coprime, then $\sigma(m n)=\sigma(m) \sigma(n)$.
5.1.1 $5^{2}=25,5^{4}=625,5^{8}=762,5^{16}=797,5^{32}=-50,5^{64}=521,5^{128}=318$, $5^{143}=5^{128} 5^{8} 5^{4} 5^{2} 5=318 \cdot 762 \cdot 625 \cdot 25 \cdot 5=568 \cdot 944=1862$,
5.3.1 If $x^{n}=1$ and $y^{n}=1$, then $(x y)^{n}=x^{n} y^{n}=1 \cdot 1=1$ and $\left(x^{-1}\right)^{n}=x^{-n}=\left(x^{n}\right)^{-1}=$ $1^{-1}=1$. Moreover $1^{n}=1$. Therefore the set of all n-th roots is a non-empty subset of F^{*} closed under multiplication and inverses and hence it is a subgroup of F^{*}.
5.3.2 Since ζ is a primitive n-th root of 1 , we have $z^{n}=1$ and $z^{k} \neq 1$ for $1 \leq k \leq n-1$. But then $1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}$ are distinct elements (if in fact $\zeta^{a}=\zeta^{b}$ for $0 \leq a<b \leq$ $n-1$, then $\zeta^{b-a}=1$ which is impossible as $\left.1 \leq b-a \leq n-1\right)$. Clearly each ζ^{k} is an n-th root of $1\left(\right.$ since $\left.\left(\zeta^{k}\right)^{n}=\zeta^{n k}=\left(\zeta^{n}\right)^{k}=1^{k}=1\right)$. We have that

$$
x^{n}-1=(x-1)(x-\zeta)\left(x-\zeta^{2}\right) \cdots\left(x-\zeta^{n-1}\right)=x^{n}+\left(\sum_{i=0}^{n-1} \zeta^{i}\right) x^{n-1}+Q(x)
$$

where $\operatorname{deg} Q(x)=n-2$. Therefore equating the coefficients of x^{n-1} we get $\sum_{i=0}^{n-1} \zeta^{i}=$ 0.
5.3.3 Since $\left|(\mathbb{Z} / 31 \mathbb{Z})^{*}\right|=\varphi(31)=30$, the order of 3 divides 30 (by Lagrange's theorem). Thus, if the order of 3 is not 30 , then either $3^{6}=1$ or $3^{10}=1$ or $3^{15}=1$. Now $3^{5}=243=-5$ so $3^{10}=25=-6$ so $3^{15}=(-5)^{3}=-125=-1$ and $3^{6}=-15$ are all $\neq 1$.
5.3.4 Find ζ a primitive 12 -th root of 1 in \mathbb{C}. What is the order of ζ^{2} and ζ^{3} in \mathbb{C}^{*} ?
5.3.5 Given that 3 is a primitive root of 1 in \mathbb{F}_{31}, find all other primitive roots of 1 in \mathbb{F}_{31}. What is the order of 9 ?
5.3.6 Show that $e^{i x}=\cos (x)+i \sin (x)$ (formally) by comparing their taylor series expansions.
5.3.7 Show that

$$
(\cos (x)+i \sin (x))(\cos (y)+i \sin (y))=\cos (x+y)+i \sin (x+y) .
$$

(You can do this using the previous exercise or using the addition laws for sines and cosines.)
9.2.5 Given that $(161,72)$ and $(2889,1292)$ are the 2 nd and 3 rd solutions to $X^{2}-5 Y^{2}=$ 1 , find the 1 st and 4 th solution.
9.2.6 Given that $(17,12)$ and $(99,70)$ are the 2 nd and 3 rd solutions to $X^{2}-2 Y^{2}=1$, find the 1st and 4th solution.

Math 4400, Fall 2014 solutions to the Extra homework.

3.2.3 $(1+i)^{-1}=(1-i) 2^{-1}=(1-i) 6=6+5 i$.
3.2.4 Since a field has no 0 divisors, it suffices to give 0 divisors.

$$
\begin{aligned}
& 1^{2}+2^{2} \cong_{5} 0 \text { so }(1+2 i)(1-2 i)=0 \text { in } F_{5}[i] . \\
& 2^{2}+3^{2} \cong_{13} 0 \text { and so }(2+3 i)(2-3 i)=0 \text { in } F_{13}[i] .
\end{aligned}
$$

3.2.5 In $\mathbb{F}_{3}[i]$ we have that the possible squares are $0^{2}=0,1^{2}=1,2^{2}=1$ and so for $a+i b \neq 0, N(a+i b)=a^{2}+b^{2} \in\{1,2\}$ is always invertible and hence $(a+i b)^{-1}=$ $(a-i b)\left(a^{2}+b^{2}\right)^{-1}$.

In $\mathbb{F}_{7}[i]$ we have that the possible squares are $0^{2}=0,1^{2}=6^{2}=1,2^{2}=5^{2}=$ $4,3^{2}=4^{2}=2$ and so for $a+i b \neq 0, N(a+i b)=a^{2}+b^{2} \in\{1,2,3,4,6\}$ is always invertible and hence $(a+i b)^{-1}=(a-i b)\left(a^{2}+b^{2}\right)^{-1}$.
3.2.6 If $a, b \neq 0$ and $a b=0$, then a and b are 0 divisors. If $a, b \in F$ a field and $a \neq 0$, then $a b=0$ implies $b=e b=a^{-1} a b=a^{-1} 0=0$.
3.2.7 Since $\mathbb{F}_{11}[i]$ is a field, $\mathbb{F}_{11}[i]^{*}$ is a group of order 120 so by Lagrange's Theorem every element has order dividing 120 i.e. satisfies the equation $x^{120}-1=0$. The only other element is 0 and hence every element satisfies the equation $x^{121}-x=0$.
3.2.8 The non invertible elements of $\mathbb{F}_{5}[i]$ are the ones of norm 0 . There are 9 such elements: $0,1+2 i, 1-2 i, 2+i, 2-i, 1+3 i, 1-3 i, 3+i, 3-i$. so $\left|\mathbb{F}_{5}[i]^{*}\right|=16$ so every element of $\mathbb{F}_{5}[i]^{*}$ satisfies $x^{16}=1$. The elements $1+2 i, 1-2 i, 1+3 i, 1-$ $3 i$ satisfy $x^{3}-x=0$, the elements $2+i, 2-i$ satisfy $x^{2}+x=0$ and the elements $3+i, 3-i$ satisfy $x^{2}-x=0$. Thus every element of $\mathbb{F}_{5}[i]$ satisfies the degree 24 polynomial $x\left(x^{16}-1\right)\left(x^{3}-x\right)\left(x^{2}-x\right)\left(x^{2}+x\right)$.
3.2.9 We define $f: \mathbb{F}_{3} \longrightarrow F$ by $f(0)=0, f(1)=1$ and $f(2)=1+1$. Since the characteristic of F is $3,0,1,1+1$ are distinct elements (but $1+1+1=0$). Thus we see that we have identified \mathbb{F}_{3} with a subset of F. We denote $1+1 \in F$ simply by 2 . We must check that, this identification respects addition and multiplication. This can be done by checking all operations. Eg $2+2=1$ in \mathbb{F}_{3} and $(1+1)+(1+1)=1+(1+1+1)=1+0=1$ in F because $1+1+1=0$ as the characteristic of F is 3 . Similarly, $2 \cdot 2=1$ in \mathbb{F}_{3} and $(1+1) \cdot(1+1)=$ $(1+1)+(1+1)=1+(1+1+1)=1+0=1$ in F.
3.2.10 By Lagrange's Theorem, the elements of \mathbb{F}_{3} satisfy $x^{3}-x=0$ and the elements of $\mathbb{F}_{3}[i]$ satisfy $x^{9}-x=0$ (since $\mathbb{F}_{3}[i]$ is a field with 9 elements). Since the order of \mathbb{F}_{3} is 3 , then its elements are the only ones to satisfy $x^{3}-x=0$. Therefore writing $x^{9}-x=\left(x^{3}-x\right)\left(x^{6}+x^{4}+x^{2}+1\right)$ it follows that the other 6 elements of $\mathbb{F}_{3}[i]$ are precisely the solutions to $x^{6}+x^{4}+x^{2}+1=0$.
4.1.4 $L(s)=\sum_{i=1}^{\infty} \frac{1}{i^{j}}$. Now $\sum_{i=2^{k}-1}^{2^{k+1}} \frac{1}{i} \geq 2^{k} \cdot \frac{1}{2^{k+1}} \geq \frac{1}{2}$ because there are 2^{k} terms each $\geq \frac{1}{2^{k+1}}$. Then $\sum_{i=0}^{2^{k+1}} \frac{1}{i} \geq 1+\frac{k+1}{2}$ and so

$$
\sum_{i=1}^{\infty} \frac{1}{i}=\lim _{k \longrightarrow \infty} \sum_{i=0}^{2^{k+1}} \frac{1}{i} \geq \lim _{k \longrightarrow \infty}\left(1+\frac{k+1}{2}\right)=\infty .
$$

The absolute convergence of $L(s)$ for $s>1$ follows reasily by the integral test from the convergence of $\int_{1}^{\infty} x^{s} d x$.
4.1.5 For any $n>0, n$ is the product of powers of prime numbers $p \leq n$ and so it is easy to see that $\sum_{i=1}^{n} \frac{1}{i} \leq \prod_{p \leq n}$ prime $\frac{p}{p-1}$ (recall that $\frac{p}{p-1}=1+\frac{1}{p}+\frac{1}{p^{2}}+\ldots$). But it is also easy to see that $\lim _{i \longrightarrow \infty} \sum_{i=1}^{n} \frac{1}{i}=\infty$.
4.1.7 $\frac{2}{1} \cdot \frac{3}{2}$.
5.3.4 $\zeta=e^{i \pi / 6}$. ζ^{2} has order $12 / 2=6$ and ζ^{3} has order $12 / 3=4$.
5.3.5 $\operatorname{gcd}(k, 30)=1$ implies $k=1,7,11,13,17,19,23,29$ and so the primitive roots are $3,3^{7}, 3^{11}, 3^{13}, 3^{17}, 3^{19}, 3^{23}, 3^{29}$. The order of $9=3^{2}$ is $30 / 2=15$.
5.3.6

$$
\begin{gathered}
e^{i x}=1+i x+\frac{(i x)^{2}}{2}+\frac{(i x)^{3}}{3}+\frac{(i x)^{4}}{4}+\frac{(i x)^{5}}{5}+\frac{(i x)^{6}}{6}+\ldots= \\
=1+i x-\frac{x^{2}}{2}-i \frac{x^{3}}{3}+\frac{x^{4}}{4}+i \frac{x^{5}}{5}-\frac{x^{6}}{6}+\ldots= \\
\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{4}-\frac{x^{6}}{6}+\ldots\right)+i\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots\right)= \\
=\cos (x)+i \sin (x) .
\end{gathered}
$$

5.3.7

$$
\begin{gathered}
(\cos (x)+i \sin (x))(\cos (y)+i \sin (y))=(\cos (x) \cos (y)-\sin (x) \sin (y))+i(\cos (x) \sin (y)+\sin (x) \cos (y))= \\
=\cos (x+y)+i \sin (x+y) .
\end{gathered}
$$

Where we have used the addition laws for sines and cosines. Alternatively using (5.3.6) we have
$(\cos (x)+i \sin (x))(\cos (y)+i \sin (y))=e^{i x} e^{i y}=e^{i(x+y)}=\cos (x+y)+i \sin (x+y)$.
9.2.5 The first solution is computed by

$$
\frac{2889+1292 \sqrt{5}}{161+72 \sqrt{5}}=\frac{(2889+1292 \sqrt{5})(161-72 \sqrt{5})}{(161+72 \sqrt{5})(161-72 \sqrt{5})}=9+4 \sqrt{5}
$$

and the forth solution is computed by

$$
(161+72 \sqrt{5})^{2}=51841+23184
$$

