Math 4400, Fall 2014 Solutions to selected exercises and extra homework.

1.1.1
$$gcd(1084,412) = 4$$
, $gcd(1979,531) = 1$, $gcd(305,185) = 5$.
1.1.2 $2 + \frac{1}{1}$, $3 + \frac{1}{1}$, $1 + \frac{1}{1}$.

$$\begin{array}{c} 2 & 2 \\ 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{5}}}}}, \\ 3 \\ 1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{23 + \frac{1}{2}}}}}, \\ 1 \\ 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{23 + \frac{1}{2}}}}, \\ 1 \\ 1 \\ 1 \\ 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{23 + \frac{1}{2}}}}. \end{array}$$

- 1.1.3 Since a|b, b|c we have b = ka, c = jb, but then c = jb = jka so that a|c.
- 1.1.4 The continued fraction of $\sqrt{3}$ is [1:1,2,1,2,1,2,1,2,...]. Since it is not finite $\sqrt{3}$ is not rational.

1.1.5
$$1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1}}} = \frac{7}{4} = 1.75 \sim \sqrt{3} = 1.73205...$$

1.1.6 The continued fraction of $\sqrt{7}$ is [2:1,1,2,1,2,1,2,1,2,...]. Since it is not finite $\sqrt{3}$ is not rational.

1.1.7
$$2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}} = 13/5 = 2.6 \sim \sqrt{7} = 2.645751...$$

- 1.1.8 $\frac{1+\sqrt{5}}{2}$.
- 1.2.1 $gcd = 7 = 283 \cdot 6951 142 \cdot 13853$. The solutions are (x, y) = (-142, 283) + k(993, -1979).
- 1.2.2 The solutions are (x, y) = (-5, 18) + k(61, -105).
- 1.2.3 Any solution must be divisible by the gcd, but gcd(427,259) = 7.
- 1.2.4 Let g = gcd(a,b) and k is an integer that divides a, b, then we must show that k divides g. Since k is an integer that divides a, b, we may write a = ka', b = kb' with $a', b' \in \mathbb{N}$. Since g = gcd(a,b) we may write g = ax + by where $x, y \in \mathbb{N}$. Thus g = ax + by = ka'x + kb'y = k(a'x + b'y) i.e. k divides g.
- 1.2.5 Since gcd(a,b) = 1, we may write ax + by = 1. Since a, b divide c we may write c = ak, c = bj. But then c = c(ax + by) = bjax + akby = ab(jx + ky) so that ab divides c.
- 1.2.6 If g divides a, b, then a = ga', b = gb' and so ad = gda', bd = gdb' i.e. gd divides da, db. Conversely if gd divides da, db, then ad = gda', bd = gdb' so that by cancellation gd divides da, db. It follows immediately that $gcd(a, b) \cdot d = gcd(da, db)$.
- 1.2.7 Let *l* be the lowest common multiple of *a*, *b* and $m \neq 0$ any other multiple. Write $m = l \cdot q + r$ where $0 \le r < l$, then $r = m l \cdot q$ and so *r* is divisible by *a*, *b* (check!). Since *l* is the least common multiple, r = 0 and so *l* divides *m*.
- 1.2.8 If gcd(a,b) = 1, then any common multiple of a, b is divisible by ab by Ex. 1.2.5 and so lcm(a,b) = ab. In general, we may write g = gcd(a,b) and a = ga', b = gb'. Similarly to Ex. 1.2.6, one checks that $lcm(a,b) = lcm(ga',gb') = g \cdot lcm(a',b') = ga'b'$. But then $gcd(a,b)lcm(a,b) = g^2a'b' = ab$.
- 1.2.9 $lcm(13853,6951) = 13853 \cdot 6951/gcd(13853,6951) = 13853 \cdot 6951/7 = 13756029,$ $lcm(15750,9150) = 15750 \cdot 9150/gcd(15750,9150) = 15750 \cdot 9150/150 = 960750.$
- 1.3.2 Since p = a + b is prime, gcd(a, p) = 1 so by the FTA, 1 = ax + py = ax + (a + b)y = a(x + y) + by hence gcd(a, b) = 1.
- 1.3.3 $3992003 = 1997 \cdot 1999$ and $1340939 = 1153 \cdot 1163$.
- 1.4.1 We have $6 + 2\sqrt{5} = (1 \sqrt{5})^2$, and $6 2\sqrt{5} = (1 \sqrt{5})^2$ so

$$\frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}} + \frac{(1+\sqrt{5})^n-(1-\sqrt{5})^n}{2^n\sqrt{5}} = \frac{(1+\sqrt{5})^n 2(1+\sqrt{5}+2)-(1-\sqrt{5})^n 2(1-\sqrt{5}+2)}{2^{n+2}\sqrt{5}} = \frac{1}{1}$$

$$\frac{(1+\sqrt{5})^{n+2}-(1-\sqrt{5})^{n+2}}{2^{n+2}\sqrt{5}}$$

Thus $f_{n+2} = f_{n+1} + f_n$. To finish the proof we check that $f_0 = f_1 = 1$ (easy check).

- 1.4.2 In the notation of the book $b = r_n$. Assume for simplicity that n = 2m + 1 is odd. Since $b = r_n \ge 2r_{n-2} \ge 4r_{n-4} \ge 8r_{n-6} \ge 2^m r_1 \ge 2^m$, it follows that $n = 2m + 1 = 2log_2(2^m) + 1 \le 2log_2(b) + 1$. The case *n* is even is similar.
- 1.4.3 $2log_2(b) = 2log_2(10)log_{10}(b) > 6log_{10}(b)$ and $log_{10}(b) + 1$ is \geq the number of digits of *b* (eg $log_{10}(10) + 1 = 2$).
- 2.1.1 Suppose that e, e' are identities, then $e = e \cdot e' = e'$ (the first equality follows as e' is an identity and the second as e is an identity).
- 2.1.2 Let b, b' be inverses of a so that ba = ab = e = ab' = b'a, then b = be = b(ab') = (ba)b' = eb' = b'.
- 2.1.3 We have $e = (ab)^2 = abab$ thus a = aabab = ebab = bab and so ab = babb = bae = ba.
- 2.1.4 Given $kn, jn \in n\mathbb{Z}$, we have $kn + jn = (k + j)n \in \mathbb{Z}$ so \mathbb{Z} is closed under addition. Associativity: (kn + jn) + ln = (k + j)n + ln = ((k + j) + l)n = (k + (j + l))n = kn + (j + l)n = kn + (jn + ln). Identity: 0 = n0, infact kn + 0n = (k + 0)n = kn = (0 + k)n = 0n + kn. Inverses: the inverse of kn is (-k)n since kn + (-k)n = (k - k)n = 0n = (-k + k)n = (-k)n + kn.
- 2.1.5 If $H = \{0\}$, then $H = 0\mathbb{Z}$. If $H \neq \{0\}$, then let $n \in H$ be the smallest non-zero element in *H*. Let $h \in H$ be any other element and write h = nq + r where $0 \le r < n$. Since $r = h qn \in H$ and $0 \le r < n$, then by definition of *n* we have r = 0 so that $h \in n\mathbb{Z}$.
- 2.2.1 Since $10 \cong_{11} 1$, we have $10^i \cong_{11} (-1)^i$ and so $m = \sum_{i=0}^r a_i 10^i \cong_{11} \sum_{i=0}^r a_i (-1)^i$. If 11 divides *m* then $m \cong_{11} 0$ so that $0 \cong_{11} \sum_{i=0}^r a_i (-1)^i$.
- 2.2.2 The sum of the digits is 33 which is not divisible by 9 and hence the number is not divisible by 9. The alternating sum of the digits is -11 which is divisible by 11 and so the number is divisible by 11 (by the previous exercise).
- 2.2.3 $\sum_{i=1}^{10} i \cdot y_i \cong_{11} 2 = 9 7$ so the number is 3 540 79285 9.
- 2.2.4 $\sum_{i=1}^{n} i \cdot y_i \cong_{11}^{n} 9 = 9 0$ so the number is 0 31 030360 9.
- 2.2.5 By assumption x y = nk and y z = nj so x z = x y + y z = nk + nj = n(k+j)i.e. $x \cong_n z$.
- 2.3.6 1979 = 131 * 15 + 14, 131 = 14 * 9 + 5, 14 = 5 * 2 + 4, 5 = 4 + 1, so the gcd is 1. We have 1 = 5 - 4 = 3 * 5 - 14 = 3 * 131 - 28 * 14 = 423 * 131 - 28 * 1979. Thus $423 * 131 \cong_{1979} 1$ i.e. $131^{-1} = 423$.
- 2.3.7 $131x \cong_{1979} 11$ so $x = 131^{-1}11 = 423 * 11 = 4653 = 695$ (modulo 1979).
- 2.3.8 1091 = 127 * 8 + 75, 127 = 75 + 52, 75 = 52 + 23, 52 = 23 * 2 + 6, 23 = 6 * 3 + 5, 6 = 5 + 1 so the gcd is 1. We have 1 = 6 - 5 = 6 * 4 - 23 = 52 * 4 - 23 * 9 = 52 * 13 - 75 * 9 = 127 * 13 - 75 * 22 = 127 * 189 - 1091 * 22. Thus $127^{-1} = 189$ (modulo 1091).
- 2.3.9 $127x \cong_{1091} 11$ so $x = 127^{-1} * 11 = 189 * 11 = 2079 = 988$ (modulo 1091).
- 2.4.1 Let m = qn + r with $0 \le r < n$ and |g| = n. We have $g^m = g^{qn+r} = (g^n)^q \cdot g^r = e^q \cdot g^r = g^r$. Since $0 \le r < |g|$ it follows that r = 0 i.e. *n* divides *m*.
- 2.4.2 $(\mathbb{Z}/13\mathbb{Z})^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}. < 5 >= <5^0, 5^1, 5^2, 5^3\} = \{1, 5, 12, 8\}$ since $5^4 = 1$ modulo 13. Note that $2 \cdot < 5 >= \{2, 10, 11, 3\}$ and $4 \cdot < 5 >= \{4, 7, 9, 6\}$ We then have $(\mathbb{Z}/13\mathbb{Z})^* = <5 > \cup 2 \cdot <5 > \cup 4 \cdot <5 >$ is the disjoint union of the three equivalence classes each of size 4 i.e. $12 = 3 \cdot 4$.

- 2.5.1 By the FTA we have mx + ny = 1 and by assumption a = mk and a = nj. Therefore k = kmx + kny = ax + kny = njx + kny = n(jx + ny), thus a = mk = mn(jx + ny)and *mn* divides *a*.
- 2.5.2 $1000 = 2^3 5^3$ and so the divisors of 1000 are 1, 2, 4, 8, 5, 10, 20, 40, 25, 50, 100, 200, 125, 250, 500, 1000. We have $\varphi(1) = 1$, $\varphi(2) = 1$, $\varphi(4) = 2$, $\varphi(8) = 4$, $\varphi(5) = 4, \varphi(10) = 4, \varphi(20) = 8, \varphi(40) = 16, \varphi(25) = 20, \varphi(50) = 20, \varphi(100) = 20,$ 40, $\varphi(200) = 80$, $\varphi(125) = 100$, $\varphi(250) = 100$, $\varphi(500) = 200$, $\varphi(1000) = 400$. Finally 1 + 1 + 2 + 4 + 4 + 4 + 8 + 16 + 20 + 20 + 40 + 80 + 100 + 100 + 200 + 400 =1000.
- 2.5.3 $x \cong_{11} 5$ implies x = 5 + 11k and so $5 + 11k \cong_{13} 7$ i.e. $11k \cong_{13} 2$. The inverse of 11 modulo 13 is 6 $(6 \cdot 11 - 5 \cdot 13 = 1)$ so $k \cong_{13} 6 \cdot 11 \cdot k \cong_{13} 6 \cdot 2 \cong_{13} 12$. Finally $x = 5 + 11 \cdot 12 = 137.$
- 2.5.4 $x \cong_{16} 11$ implies x = 11 + 16k and so $11 + 16k \cong_{27} 16$ i.e. $16k \cong_{27} 5$. The inverse of 16 modulo 27 is $-5(-5 \cdot 16 + 3 \cdot 27 = 1)$ so $k \cong_{27} -5 \cdot 16 \cdot k \cong_{27} -5 \cdot 5 \cong_{27}$ $-25 \cong_{27} 2$. Finally $x = 11 + 2 \cdot 16 = 43$.
- 2.5.5 We compute the last two digits of powers of two (i.e. 2^i modulo 100). $2^0 = 1$, $\begin{array}{l} 2^{1} = 2, \ 2^{2} = 4, \ 2^{4} = 4^{2} = 16, \ 2^{8} = 16^{2} \cong 56, \ 2^{16} \cong 56^{2} \cong 36, \ 2^{32} \cong 36^{2} \cong 96, \\ 2^{64} \cong 96^{2} \cong 16, \ 2^{128} \cong 16^{2} \cong 56, \ 2^{256} \cong 56^{2} \cong 36, \ 2^{512} \cong 36^{2} \cong 96, \ 2^{1024} \cong 96^{2} \cong 16, \ 2^{2048} = 16^{2} \cong 56, \ 2^{4096} \cong 56^{2} \cong 36, \ 2^{8192} \cong 36^{2} \cong 96. \end{array}$ 8192 + 1024 + 512 + 256 + 8 + 4 + 2 + 1, it follows that $2^{9999} = 2^{8192} \cdot 2^{1024}$. $16 \cdot 56 \cdot 56 \cdot 36 \cdot 8 = 16 \cdot 36 \cdot 36 \cdot 8 \cong 96 \cdot 16 \cdot 8 \cong (-4) \cdot 28 \cong -112 \cong 88.$
- 4.1.2 Hint: $\int (x/2)^2 dx = x^3/12$. $\int (x/2)^2 dx = \sum \int (-1)^k (x/2) \frac{\sin(kx)}{k} dx$ and integrating by parts $\int (x/2) \frac{\sin(kx)}{k} dx = \frac{x}{2} \cdot \frac{-\cos(kx)}{k^2} \int \frac{-\cos(kx)}{k^2} dx$ but $\int_{-\pi}^{\pi} \frac{-\cos(kx)}{k^2} dx = 0$ and 4.2.1 Define $\varepsilon(n) = 0, 1, 0, -1$ if $n \cong_4 0, 1, 2, 3$ and let

$$L = \sum_{n \ge 1} \left(\frac{\varepsilon(n)}{n}\right) = \prod_{p \text{ prime}} \left(\sum_{i \ge 0} \left(\frac{\varepsilon(p)}{p}\right)^i\right)$$
$$= \prod_{p \ge 41} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots\right) \prod_{p \ge 43} \left(1 - \frac{1}{p} + \frac{1}{p^2} + \dots\right).$$

If there are finitely many $p \cong_4 1$, then this behaves like

$$\Pi_{p \text{ prime}}(1 - \frac{1}{p} + \frac{1}{p^2} + \ldots) = \Pi_{p \text{ prime}} \frac{p}{p+1} = 0.$$

If there are finitely many $p \cong_4 3$, then this behaves like

$$\Pi_{p \text{ prime}}(1 + \frac{1}{p} + \frac{1}{p^2} + \ldots) = \Pi_{p \text{ prime}} \frac{p}{p-1} = +\infty.$$

The above argument is not correct because L is not absolutely convergent. However, let $L(s) = \sum_{n \ge 1} \left(\frac{\varepsilon(n)}{n}\right)^s$, then L(s) is absolutely convergent for all s > 1 and taking the limit as $s \longrightarrow 1$, the above argument becomes correct. 4.2.2 We know that $\prod_{p \ge 31} \frac{p}{p-1} = +\infty$ and $\prod_{p \ge 32} \frac{p+1}{p} = 0$. But then $\prod_{p \ge 32} \frac{p}{p+1} = +\infty$

- (prove this using $\lim_{m \to \infty} \prod_{p \cong 3^2} p = 0^{p-3^2} p$). It is easy to check that $\frac{p}{p-1} \ge \frac{p}{p+1}$. $\frac{p}{p+1}$. Thus $\prod_{p\cong 3^2} \frac{p}{p-1} \ge \prod_{p\cong 3^2} \frac{p}{p+1} = +\infty$. 4.3.1 $\sigma(3^{2k+1}) = (3^{2k+2}-1)/(3-1)$. Now $3^2 \cong_8 1$ so $3^{2k+2} = (3^2)^{k+1} \cong_8 1$ so $3^{2k+2}-1$ is divisible by 8 so $3^{2k+2}-1)/(3-1)$ is divisible by 4. So $\sigma(n) = \sigma(3^{2k+1})\sigma(r)$

is divisible by 4. But if *n* is perfect, then $\sigma(n) = 2n$ so $\sigma(n)$ is not divisible by 4 (as *n* is odd).

- $4.3.2 \ 2047 = 23 \cdot 89.$
- 4.3.2 The number of digits is $\log(2^{32,582,657} 1)$ The number is about $\frac{32,582,657}{1600} \log(2)$. 5.1.1 Modulo 1979, we have $5^2 = 25$, $5^4 = 625$, $5^8 = 390625 = 762$, $5^{16} = 762^2 =$ 580644 = 797, $5^{32} = 797^2 = 635209 = 1929 = -50$, $5^{64} = 25$, $5^{128} = 625$ and so $5^{143} = 5^{128}5^85^45^25 = 625 \cdot 762 \cdot 625 \cdot 25 \cdot 5 = 99625 = 675.$
- 5.1.3 The order of $(\mathbb{Z}/\mathbb{Z}_{35})^*$ is $\varphi(35) = \varphi(5)\varphi(7) = 4 \cdot 6 = 24$. Since 24 and 11 are coprime, we write $1 = 11 \cdot 11 - 5 \cdot 24$ and we can solve $x^{11} = {}_{35} 13$ by letting $x = 13^{11}$. We have $13^2 = 169 = -6$, $13^4 = 36 = 1$ and so $x = 13^{11} = 13^3 = -6 \cdot 13 = -78 = -8$. (Note that $(-8)^2 = 64 = -6$ and $(-8)^4 = (-6)^2 = 1$ and so $(-8)^{11} = (-8)^3 = -8 \cdot -6 = 48 = 13.)$
- 5.3.1 Let μ_n be the set of all *n*-th roots of 1 in F^* . Clearly $1 \in \mu_n$ so $\mu_n \neq \emptyset$. If $x, y \in \mu_n$, then by assumption $x^n = y^n = 1$. Now $(xy)^n = x^n y^n = 1 \cdot 1 = 1$ so that μ_n is closed under multiplication. Finally $(x^{-1})^n = (x^n)^{-1} = 1^{-1} = 1$ so that μ_n is closed under inverses and hence μ_n is a subgroup of *F*.
- 5.3.2 Taking the term of degree n-1 in the equation

$$x^{n} - 1 = (x - 1)(x - \zeta) \cdots (x - \zeta^{n-1})$$

we obtain $0 = -1 - \zeta - ... - \zeta^{n-1}$.

5.3.3 The possible orders of 3 in \mathbb{F}_{31} are the divisors of $|\mathbb{F}_{31}| = 30$ i.e. 1, 2, 3, 5, 6, 10, 15, 30. However $3^2 = 9$, $3^3 = 27$, $3^5 = 9 \cdot 27 = 9 \cdot (-4) = -36 = -5$, $3^6 = -15$, $3^{10} = 25$ and $3^{1}5 = -125 = -1$ are all $\neq 1$.

The 6-th roots of 1 are $3^{0} = 1$, $3^{5} = -5$, $3^{10} = 25$, $3^{15} = -1$, $3^{20} = 5$ and $3^{25} = 6$. Their sum is of course 0.

- 5.4.1 I(7) + I(x) = I(5) (modulo 10) so 7 + I(x) = 4, so $I(X) = -3 \cong_{10} 7$ so $x = 2^7 = 7$.
- 5.4.2 I(4) + 2I(x) = I(9) so 2 + 2I(x) = 6 (modulo 10) so I(x) = 2,7 so $x = 2^2 = 4$ or $x = 2^7 = 7$.
- 5.4.3 $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16 = -3$, $2^5 = -6 = 13$, $2^6 = 7$, $2^7 = 14$, $2^{8} = 9, 2^{9} = 18 = -1, 2^{10} = -2 = 17, 2^{11} = -4 = 15, 2^{12} = -8 = 11, 2^{13} = -16 = 3, 2^{14} = 6, 2^{15} = 12, 2^{16} = 5, 2^{17} = 10, 2^{18} = 1.$ 5I(x) = I(7) (modulo 18) so $I(x) = -7 \cdot 5 \cdot I(x) = -7 \cdot 6 = -42 \approx_{18} 12$ so $x = 2^{12} = 11$.
- 6.2.1 We have $6^2 = 36 = -5$, $6^4 = 25$, $6^8 = 625 = 10$ and $6^{16} = 1000 = 18$ so $6^{(p-1)/2} = 1000 = 1000$ $6^{20} = 18 \cdot 25 = 450 = 40 = -1$. (But we knew this as 6^{20} is a square root of 1 so is ± 1 , but it can't be 1 as otherwise the order of 6 would be ≤ 20 but we assumed it is a primitive root i.e. it has order 40.)
- 6.2.2 $2^{(31-1)/2} = 2^{15} = 32^3 = 1^3 = 1$ so 2 is a square mod 31. $3^{15} = (27)^5 = (-4)^5 = ($ $-1 \cdot 2^5 \cdot 2^5 = -1$ (as $2^5 = 32 = 1 \mod 31$). So 3 is not a square modulo 31. $7^{(29-1)/2} = 7^{1}4 = (20)^{7} = (-4)^{7} = -64 \cdot 64 \cdot 4 = -6 \cdot 6 \cdot 4 = -6 \cdot 24 = -6 \cdot (-5) = -6 \cdot$ 30 = 1 so 7 is a square modulo 29.
- 6.3.1 The order of 6 is 40, so the order of $g = 6^5$ is 8. Now, $g = 6^5 = 36 \cdot 36 \cdot 6 = 6^5$ $(-5)^2 \cdot 6 = 150 = 27$. We also have $g^7 = g^{-1} = -3$ (as $1 = 2 \cdot 41 - 3 \cdot 27$). So $g + g^7 = 24$ is a square root of 2.
- 6.3.2 The order of 5 is 72 (in \mathbb{F}_{73}^*). So $g = 5^9$ has order 8. Now $g = 5^9 = (125)^3 =$ $(-21)^3 = -441 \cdot 21 = 3 \cdot 21 = 63$. We have $g^7 = g^{-1} = -22$ (since $1 = 19 \cdot 63 - 63$) 22.63). So $g + g^7 = 63 - 22 = 41$ is a square root of 2.
- 6.3.3 $g = 3 + 4 \cdot 3 = 15 = -2$ is a primitive 8-th root of 1.

- 6.3.4 $x^2 6x + 11 = 0$ is equivalent to $(x 3)^2 = -2$. We have $\left(\frac{-2}{131}\right) = \left(\frac{2}{131}\right) \left(\frac{-1}{131}\right)$. Since $131 \cong_8 3$, we have $\left(\frac{2}{131}\right) = -1$ and since $131 \cong 3_4$, we have $\left(\frac{-1}{131}\right) = -1$. Thus $\left(\frac{-2}{131}\right) = (-1)^2 = 1$ and we can solve this equation.
- 8.1.1 221 = $13 \cdot 17 = (3^2 + 2^2)(4^2 + 1^2) = 14^2 + 5^2$.
- 8.1.2 $8^2 + 1^2 = 5 \cdot 13$. Pick 5/2 < u = -2, $v = 1 \le 5/2$ then xu + yv = -15 and xv yu = -10. Dividing by -5 we get (3, 2) and $3^2 + 2^2 = 13$.
- 8.1.3 Since 5 is a primitive root of 1 modulo 73, it has order 72, thus $(5^{18})^2 = 5^{36} \cong_{73}$ -1. We have $5^3 = 125 \cong 52$, $5^4 \cong 260 \cong 41$, $5^5 \cong 205 \cong -14$, $5^6 \cong -70 \cong 3$, $5^{18} \cong 27$ and in fact $(27)^2 + 1^2 = 729 + 1 = 10 \cdot 73$. By descent, we pick 5 < u = -3, $v = 1 \le 5$ and so xu + yv = -80, xv - yu = 30 and dividing by 10 we have $8^2 + 3^2 = 64 + 9 = 73$.
- 8.1.4 Suppose $p \cong_8 \pm 1$, then $2 = b^2$ and so a necessary condition is to solve $x^2 + z^2 \cong_p 0$ where z = by. If $p \cong_8 -1$, then $p \cong_4 -1$ and so there is no such solution. If $p \cong_8 1$, then $p \cong_4 1$ and so there is a solution, i.e. we can write $x^2 + z^2 = kp$ for some 0 < x, z < p and k > 0. Letting $y = b^{-1}z$, we may assume that $x^2 + 2y^2 = kp$. By an argument similar to Fermat descent, we **hope** to show that $x^2 + 2Y^2 = p$ has a solution.

Suppose $p \cong_8 \pm 3$, then $(x/y)^2 \cong_p -2$. If $p \cong_8 1$, then $p \cong_4 1$ and so $-1 = b^2$ (modulo p). But then $(x/by)^2 \cong_p 2$ which is impossible as 2 is not a square. If $p \cong_8 -1$, then $p \cong_4 -1$ and so both 2 and -1 are not squares and hence -2 is a square, say $-2 = b^2$ (modulo p). But then $(x/by)^2 \cong_p 1$ has a solution, eg. x = byso that $x^2 - b^2 y \cong_p 0$ i.e. $x^2 + 2y^2 = kp$. By an argument similar to Fermat descent, we **hope** to show that $x^2 + 2Y^2 = p$ has a solution.

8.1.5 Easy direct computation, but the formula is wrong. It should be:

$$(x^{2}+2y^{2})(u^{2}+2v^{2}) = (xu-2yv)^{2}+2(yu+xv)^{2}.$$

- 8.1.6 $8^2 + 2 = 6 \cdot 11 = (2^2 + 2 \cdot 1^2)(3^2 + 2 \cdot 1^2) = (2 \cdot 3 2 \cdot 1 \cdot 1)^2 + 2(1 \cdot 3 + 2 \cdot 1)^2 = 4^2 + 2 \cdot 5^2.$
- 8.2.1 (11+7i) = 2(5+3i) + (1+i) and (5 = 3i) = (4-i)(1+i) so gcd((11+7i), (5+3i)) = 1+i.
- 8.2.2 N(11+3i) = 130 so the primes have norm 2, 5 or 13. The irreducible elements with $N(\pi) = 2$ are 1+i. Then we see (11+3i) = (1+i)(7-4i). The irreducible elements with $N(\pi) = 5$ are $2 \pm i$ and one sees that (7-4i) = (2+i)(2-3i). Since N(2-3i) = 13, (2-3i) is irreducible.

Math 4400, Fall 2014 Extra homework.

- 3.2.3 Find the inverse of 1 + i in $\mathbb{F}_{11}[i]$.
- 3.2.4 Show that $\mathbb{F}_5[i]$ and $\mathbb{F}_{13}[i]$ are not fields. (Hint: solve $a^2 + b^2 = 0$ and give a zero divisor.)
- 3.2.5 Show that $\mathbb{F}_3[i]$, $\mathbb{F}_7[i]$ and $\mathbb{F}_{11}[i]$ are fields. (Hint: compute all possible values of $a^2 + b^2$.)
- 3.2.6 What is a 0 divisor and why do fields not have any 0 divisors?
- 3.2.7 Show that every element of $\mathbb{F}_{11}[i]$ satisfies the equation $x^{121} x = 0$.
- 3.2.8 Repeat 3.2.7 for $\mathbb{F}_5[i]$. (Hint: compute $\mathbb{F}_5[i]^*$.)
- 3.2.9 Explain why \mathbb{F}_3 is contained in any field *F* of characteristic 3.
- 3.2.10 Explain why the solutions to $x^6 + x^4 + x^2 + 1$ in $\mathbb{F}_3[i]$ are exactly the elements of $\mathbb{F}_3[i] \setminus \mathbb{F}_3$.
- 3.2.11 If $a + bi \in \mathbb{F}_p[i]$ then let $N(a + ib) = a^2 + b^2$. Show that N((a + ib)(c + id)) = N(a + ib)N(c + id) and deduce that $a + bi \in \mathbb{F}_p[i]^*$ if and only if $N(a + ib) \neq 0$.

- 4.1.4 Define L(s), show that it diverges for s = 1 and converges absolutely for s > 1.
- 4.1.5 Show that $\prod_{p \text{ prime } \frac{p}{p-1}}$ diverges.
- 4.1.6 Show that $\prod_{p \text{ prime } p p+1} = 0$. (Hint: note that $\frac{p}{p-1} \frac{p}{p+1} = \frac{p^2}{p^2-1}$ and consider $\zeta(2)$).
- 4.1.7 Compute $\sum_{m,n\geq 0} \frac{1}{2^{m} \cdot 3^{n}}$.
- 4.2.5 Let $\varepsilon(n) = 0, 1, -1$ if $n \cong_3 0, 1, 2$. Define the Dirichlet L-series $L = \sum_{n>0} \frac{\varepsilon(n)}{n}$. Show that this series converges to a value $\frac{1}{2} < L < 1$ and show that

$$L = \Pi_p \text{ prime}\left(\sum_{i \ge 0} \left(\frac{\boldsymbol{\varepsilon}(p)}{p}\right)^i\right).$$

- 4.3.4 Show that if M_l is a Marsenne prime, then l is prime.
- 4.3.5 Let $\sigma(n)$ be the sum of all divisors of n (including 1 and n). If p is prime then
- compute $\sigma(p^k)$. Show that if *m*, *n* are coprime, then $\sigma(mn) = \sigma(m)\sigma(n)$. 5.1.1 $5^2 = 25$, $5^4 = 625$, $5^8 = 762$, $5^{16} = 797$, $5^{32} = -50$, $5^{64} = 521$, $5^{128} = 318$, $5^{143} = 5^{128}5^85^45^25 = 318 \cdot 762 \cdot 625 \cdot 25 \cdot 5 = 568 \cdot 944 = 1862$, 5.3.1 If $x^n = 1$ and $y^n = 1$, then $(xy)^n = x^n y^n = 1 \cdot 1 = 1$ and $(x^{-1})^n = x^{-n} = (x^n)^{-1} = 1$
- $1^{-1} = 1$. Moreover $1^n = 1$. Therefore the set of all *n*-th roots is a non-empty subset of F^* closed under multiplication and inverses and hence it is a subgroup of F^* .
- 5.3.2 Since ζ is a primitive *n*-th root of 1, we have $z^n = 1$ and $z^k \neq 1$ for $1 \le k \le n-1$. But then $1, \zeta, \zeta^2, ..., \zeta^{n-1}$ are distinct elements (if in fact $\zeta^a = \zeta^b$ for $0 \le a < b \le n-1$, then $\zeta^{b-a} = 1$ which is impossible as $1 \le b-a \le n-1$). Clearly each ζ^k is an *n*-th root of 1 (since $(\zeta^k)^n = \zeta^{nk} = (\zeta^n)^k = 1^k = 1$). We have that

$$x^{n} - 1 = (x - 1)(x - \zeta)(x - \zeta^{2}) \cdots (x - \zeta^{n-1}) = x^{n} + (\sum_{i=0}^{n-1} \zeta^{i})x^{n-1} + Q(x)$$

where degQ(x) = n-2. Therefore equating the coefficients of x^{n-1} we get $\sum_{i=0}^{n-1} \zeta^i =$ 0.

- 5.3.3 Since $|(\mathbb{Z}/31\mathbb{Z})^*| = \varphi(31) = 30$, the order of 3 divides 30 (by Lagrange's theorem). Thus, if the order of 3 is not 30, then either $3^6 = 1$ or $3^{10} = 1$ or $3^{15} = 1$. Now $3^5 = 243 = -5$ so $3^{10} = 25 = -6$ so $3^{15} = (-5)^3 = -125 = -1$ and $3^6 = -15$ are all $\neq 1$.
- 5.3.4 Find ζ a primitive 12-th root of 1 in \mathbb{C} . What is the order of ζ^2 and ζ^3 in \mathbb{C}^* ?
- 5.3.5 Given that 3 is a primitive root of 1 in \mathbb{F}_{31} , find all other primitive roots of 1 in \mathbb{F}_{31} . What is the order of 9?
- 5.3.6 Show that $e^{ix} = \cos(x) + i\sin(x)$ (formally) by comparing their taylor series expansions.
- 5.3.7 Show that

$$(\cos(x) + i\sin(x))(\cos(y) + i\sin(y)) = \cos(x+y) + i\sin(x+y).$$

(You can do this using the previous exercise or using the addition laws for sines and cosines.)

- 9.2.5 Given that (161,72) and (2889,1292) are the 2nd and 3rd solutions to $X^2 5Y^2 =$ 1, find the 1st and 4th solution.
- 9.2.6 Given that (17, 12) and (99, 70) are the 2nd and 3rd solutions to $X^2 2Y^2 = 1$. find the 1st and 4th solution.

Math 4400, Fall 2014 solutions to the Extra homework.

3.2.3 $(1+i)^{-1} = (1-i)2^{-1} = (1-i)6 = 6+5i.$

3.2.4 Since a field has no 0 divisors, it suffices to give 0 divisors.

 $1^2 + 2^2 \cong_5 0$ so (1+2i)(1-2i) = 0 in $F_5[i]$.

 $2^2 + 3^2 \cong_{13} 0$ and so (2+3i)(2-3i) = 0 in $F_{13}[i]$.

3.2.5 In $\mathbb{F}_3[i]$ we have that the possible squares are $0^2 = 0$, $1^2 = 1$, $2^2 = 1$ and so for $a+ib \neq 0$, $N(a+ib) = a^2 + b^2 \in \{1, 2\}$ is always invertible and hence $(a+ib)^{-1} = (a-ib)(a^2+b^2)^{-1}$.

In $\mathbb{F}_7[i]$ we have that the possible squares are $0^2 = 0$, $1^2 = 6^2 = 1$, $2^2 = 5^2 = 4$, $3^2 = 4^2 = 2$ and so for $a + ib \neq 0$, $N(a + ib) = a^2 + b^2 \in \{1, 2, 3, 4, 6\}$ is always invertible and hence $(a + ib)^{-1} = (a - ib)(a^2 + b^2)^{-1}$.

- 3.2.6 If $a, b \neq 0$ and ab = 0, then a and b are 0 divisors. If $a, b \in F$ a field and $a \neq 0$, then ab = 0 implies $b = eb = a^{-1}ab = a^{-1}0 = 0$.
- 3.2.7 Since $\mathbb{F}_{11}[i]$ is a field, $\mathbb{F}_{11}[i]^*$ is a group of order 120 so by Lagrange's Theorem every element has order dividing 120 i.e. satisfies the equation $x^{120} 1 = 0$. The only other element is 0 and hence every element satisfies the equation $x^{121} x = 0$.
- 3.2.8 The non invertible elements of $\mathbb{F}_5[i]$ are the ones of norm 0. There are 9 such elements: 0, 1+2i, 1-2i, 2+i, 2-i, 1+3i, 1-3i, 3+i, 3-i. so $|\mathbb{F}_5[i]^*| = 16$ so every element of $\mathbb{F}_5[i]^*$ satisfies $x^{16} = 1$. The elements 1+2i, 1-2i, 1+3i, 1-3i satisfy $x^3 x = 0$, the elements 2+i, 2-i satisfy $x^2 + x = 0$ and the elements 3+i, 3-i satisfy $x^2 x = 0$. Thus every element of $\mathbb{F}_5[i]$ satisfies the degree 24 polynomial $x(x^{16}-1)(x^3-x)(x^2-x)(x^2+x)$.
- 3.2.9 We define $f: \mathbb{F}_3 \longrightarrow F$ by f(0) = 0, f(1) = 1 and f(2) = 1 + 1. Since the characteristic of *F* is 3, 0, 1, 1 + 1 are distinct elements (but 1 + 1 + 1 = 0). Thus we see that we have identified \mathbb{F}_3 with a subset of *F*. We denote $1 + 1 \in F$ simply by 2. We must check that, this identification respects addition and multiplication. This can be done by checking all operations. Eg 2 + 2 = 1 in \mathbb{F}_3 and (1 + 1) + (1 + 1) = 1 + (1 + 1 + 1) = 1 + 0 = 1 in *F* because 1 + 1 + 1 = 0 as the characteristic of *F* is 3. Similarly, $2 \cdot 2 = 1$ in \mathbb{F}_3 and $(1 + 1) \cdot (1 + 1) = 1 + (1 + 1 + 1) = 1 + 0 = 1$ in *F*.
- 3.2.10 By Lagrange's Theorem, the elements of \mathbb{F}_3 satisfy $x^3 x = 0$ and the elements of $\mathbb{F}_3[i]$ satisfy $x^9 x = 0$ (since $\mathbb{F}_3[i]$ is a field with 9 elements). Since the order of \mathbb{F}_3 is 3, then its elements are the only ones to satisfy $x^3 x = 0$. Therefore writing $x^9 x = (x^3 x)(x^6 + x^4 + x^2 + 1)$ it follows that the other 6 elements of $\mathbb{F}_3[i]$ are precisely the solutions to $x^6 + x^4 + x^2 + 1 = 0$.
- precisely the solutions to $x^6 + x^4 + x^2 + 1 = 0$. 4.1.4 $L(s) = \sum_{i=1}^{\infty} \frac{1}{i^s}$. Now $\sum_{i=2^{k-1}}^{2^{k+1}} \frac{1}{i} \ge 2^k \cdot \frac{1}{2^{k+1}} \ge \frac{1}{2}$ because there are 2^k terms each $\ge \frac{1}{2^{k+1}}$. Then $\sum_{i=0}^{2^{k+1}} \frac{1}{i} \ge 1 + \frac{k+1}{2}$ and so

$$\sum_{i=1}^{\infty} \frac{1}{i} = \lim_{k \longrightarrow \infty} \sum_{i=0}^{2^{k+1}} \frac{1}{i} \ge \lim_{k \longrightarrow \infty} (1 + \frac{k+1}{2}) = \infty.$$

The absolute convergence of L(s) for s > 1 follows reasily by the integral test from the convergence of $\int_1^{\infty} x^s dx$.

- 4.1.5 For any n > 0, n is the product of powers of prime numbers $p \le n$ and so it is easy to see that $\sum_{i=1}^{n} \frac{1}{i} \le \prod_{p \le n \text{ prime}} \frac{p}{p-1}$ (recall that $\frac{p}{p-1} = 1 + \frac{1}{p} + \frac{1}{p^2} + \dots$). But it is also easy to see that $\lim_{k \to \infty} \sum_{i=1}^{n} \frac{1}{i} = \infty$.
- 4.1.7 $\frac{2}{1} \cdot \frac{3}{2}$.
- 5.3.4 $\zeta = e^{i\pi/6}$. ζ^2 has order 12/2 = 6 and ζ^3 has order 12/3 = 4.
- 5.3.5 gcd(k,30) = 1 implies k = 1, 7, 11, 13, 17, 19, 23, 29 and so the primitive roots are $3, 3^7, 3^{11}, 3^{13}, 3^{17}, 3^{19}, 3^{23}, 3^{29}$. The order of $9 = 3^2$ is 30/2 = 15.

5.3.6

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2} + \frac{(ix)^3}{3} + \frac{(ix)^4}{4} + \frac{(ix)^5}{5} + \frac{(ix)^6}{6} + \dots =$$

= $1 + ix - \frac{x^2}{2} - i\frac{x^3}{3} + \frac{x^4}{4} + i\frac{x^5}{5} - \frac{x^6}{6} + \dots =$
 $(1 - \frac{x^2}{2} + \frac{x^4}{4} - \frac{x^6}{6} + \dots) + i(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots) =$
= $\cos(x) + i\sin(x).$

5.3.7

$$(\cos(x) + i\sin(x))(\cos(y) + i\sin(y)) = (\cos(x)\cos(y) - \sin(x)\sin(y)) + i(\cos(x)\sin(y) + \sin(x)\cos(y)) =$$
$$= \cos(x + y) + i\sin(x + y).$$

Where we have used the addition laws for sines and cosines. Alternatively using (5.3.6) we have

 $(\cos(x) + i\sin(x))(\cos(y) + i\sin(y)) = e^{ix}e^{iy} = e^{i(x+y)} = \cos(x+y) + i\sin(x+y).$

9.2.5 The first solution is computed by

$$\frac{2889 + 1292\sqrt{5}}{161 + 72\sqrt{5}} = \frac{(2889 + 1292\sqrt{5})(161 - 72\sqrt{5})}{(161 + 72\sqrt{5})(161 - 72\sqrt{5})} = 9 + 4\sqrt{5}$$

and the forth solution is computed by

 $(161 + 72\sqrt{5})^2 = 51841 + 23184.$