
Math 4400, Fall 2014 Solutions to selected exercises and extra homework.
1.1.1 gcd(1084,412) = 4, gcd(1979,531) = 1, gcd(305,185) = 5.
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1.1.3 Since a|b, b|c we have b = ka, c = jb, but then c = jb = jka so that a|c.
1.1.4 The continued fraction of

√
3 is [1 : 1,2,1,2,1,2,1,2, ...]. Since it is not finite

√
3

is not rational.
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1.1.6 The continued fraction of
√

7 is [2 : 1,1,2,1,2,1,2,1,2, ...]. Since it is not finite√
3 is not rational.

1.1.7 2+ 1
1+ 1
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= 13/5 = 2.6∼
√

7 = 2.645751...

1.1.8 1+
√

5
2 .

1.2.1 gcd = 7 = 283 · 6951− 142 · 13853. The solutions are (x,y) = (−142,283) +
k(993,−1979).

1.2.2 The solutions are (x,y) = (−5,18)+ k(61,−105).
1.2.3 Any solution must be divisible by the gcd, but gcd(427,259) = 7.
1.2.4 Let g = gcd(a,b) and k is an integer that divides a,b, then we must show that k

divides g. Since k is an integer that divides a,b, we may write a = ka′, b = kb′

with a′,b′ ∈ N. Since g = gcd(a,b) we may write g = ax+ by where x,y ∈ N.
Thus g = ax+by = ka′x+ kb′y = k(a′x+b′y) i.e. k divides g.

1.2.5 Since gcd(a,b) = 1, we may write ax+by = 1. Since a,b divide c we may write
c = ak, c = b j. But then c = c(ax+ by) = b jax+ akby = ab( jx+ ky) so that ab
divides c.

1.2.6 If g divides a,b, then a = ga′,b = gb′ and so ad = gda′,bd = gdb′ i.e. gd divides
da,db. Conversely if gd divides da,db, then ad = gda′,bd = gdb′ so that by can-
cellation gd divides da,db. It follows immediately that gcd(a,b) ·d = gcd(da,db).

1.2.7 Let l be the lowest common multiple of a,b and m 6= 0 any other multiple. Write
m = l ·q+r where 0≤ r < l, then r = m− l ·q and so r is divisible by a,b (check!).
Since l is the least common multiple, r = 0 and so l divides m.

1.2.8 If gcd(a,b) = 1, then any common multiple of a,b is divisible by ab by Ex. 1.2.5
and so lcm(a,b) = ab. In general, we may write g= gcd(a,b) and a= ga′,b= gb′.
Similarly to Ex. 1.2.6, one checks that lcm(a,b) = lcm(ga′,gb′) = g · lcm(a′,b′) =
ga′b′. But then gcd(a,b)lcm(a,b) = g2a′b′ = ab.

1.2.9 lcm(13853,6951)= 13853 ·6951/gcd(13853,6951)= 13853 ·6951/7= 13756029,
lcm(15750,9150)= 15750 ·9150/gcd(15750,9150)= 15750 ·9150/150= 960750.

1.3.2 Since p = a+ b is prime, gcd(a, p) = 1 so by the FTA, 1 = ax+ py = ax+(a+
b)y = a(x+ y)+by hence gcd(a,b) = 1.

1.3.3 3992003 = 1997 ·1999 and 1340939 = 1153 ·1163.
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Thus fn+2 = fn+1+ fn. To finish the proof we check that f0 = f1 = 1 (easy check).
1.4.2 In the notation of the book b = rn. Assume for simplicity that n = 2m+1 is odd.

Since b = rn ≥ 2rn−2 ≥ 4rn−4 ≥ 8rn−6 ≥ 2mr1 ≥ 2m, it follows that n = 2m+1 =
2log2(2m)+1≤ 2log2(b)+1. The case n is even is similar.

1.4.3 2log2(b) = 2log2(10)log10(b) > 6log10(b) and log10(b)+ 1 is ≥ the number of
digits of b (eg log10(10)+1 = 2).

2.1.1 Suppose that e,e′ are identities, then e = e · e′ = e′ (the first equality follows as e′

is an identity and the second as e is an identity).
2.1.2 Let b,b′ be inverses of a so that ba = ab = e = ab′ = b′a, then b = be = b(ab′) =

(ba)b′ = eb′ = b′.
2.1.3 We have e = (ab)2 = abab thus a = aabab = ebab = bab and so ab = babb =

bae = ba.
2.1.4 Given kn, jn ∈ nZ, we have kn+ jn = (k+ j)n ∈ Z so Z is closed under addition.

Associativity: (kn+ jn)+ ln = (k+ j)n+ ln = ((k+ j)+ l)n = (k+( j+ l))n =
kn + ( j + l)n = kn + ( jn + ln). Identity: 0 = n0, infact kn + 0n = (k + 0)n =
kn = (0+ k)n = 0n+ kn. Inverses: the inverse of kn is (−k)n since kn+(−k)n =
(k− k)n = 0n = (−k+ k)n = (−k)n+ kn.

2.1.5 If H = {0}, then H = 0Z. If H 6= {0}, then let n ∈ H be the smallest non-zero
element in H. Let h∈H be any other element and write h= nq+r where 0≤ r < n.
Since r = h−qn ∈ H and 0≤ r < n, then by definition of n we have r = 0 so that
h ∈ nZ.

2.2.1 Since 10∼=11 −1, we have 10i ∼=11 (−1)i and so m = ∑
r
i=0 ai10i ∼=11 ∑

r
i=0 ai(−1)i.

If 11 divides m then m∼=11 0 so that 0∼=11 ∑
r
i=0 ai(−1)i.

2.2.2 The sum of the digits is 33 which is not divisible by 9 and hence the number is not
divisible by 9. The alternating sum of the digits is −11 which is divisible by 11
and so the number is divisible by 11 (by the previous exercise).

2.2.3 ∑
10
i=1 i · yi ∼=11 2 = 9−7 so the number is 3−540−79285−9.

2.2.4 ∑
10
i=1 i · yi ∼=11 9 = 9−0 so the number is 0−31−030360−9.

2.2.5 By assumption x−y= nk and y−z= n j so x−z= x−y+y−z= nk+n j = n(k+ j)
i.e. x∼=n z.

2.3.6 1979 = 131∗15+14, 131 = 14∗9+5, 14 = 5∗2+4, 5 = 4+1, so the gcd is 1.
We have 1 = 5−4 = 3∗5−14 = 3∗131−28∗14 = 423∗131−28∗1979. Thus
423∗131∼=1979 1 i.e. 131−1 = 423.

2.3.7 131x∼=1979 11 so x = 131−111 = 423∗11 = 4653 = 695 (modulo 1979).
2.3.8 1091 = 127∗8+75, 127 = 75+52, 75 = 52+23, 52 = 23∗2+6, 23 = 6∗3+5,

6 = 5+ 1 so the gcd is 1. We have 1 = 6− 5 = 6 ∗ 4− 23 = 52 ∗ 4− 23 ∗ 9 =
52∗13−75∗9 = 127∗13−75∗22 = 127∗189−1091∗22. Thus 127−1 = 189
(modulo 1091).

2.3.9 127x∼=1091 11 so x = 127−1 ∗11 = 189∗11 = 2079 = 988 (modulo 1091).
2.4.1 Let m = qn+ r with 0 ≤ r < n and |g| = n. We have gm = gqn+r = (gn)q · gr =

eq ·gr = gr. Since 0≤ r < |g| it follows that r = 0 i.e. n divides m.
2.4.2 (Z/13Z)∗= {1,2,3,4,5,6,7,8,9,10,11,12}. < 5>=< 50, 51, 52, 53}= {1, 5, 12, 8}

since 54 = 1 modulo 13. Note that 2· < 5 >= {2, 10, 11, 3} and 4· < 5 >=
{4, 7, 9, 6}We then have (Z/13Z)∗ =< 5 > ∪2·< 5 > ∪4·< 5 > is the disjoint
union of the three equivalence classes each of size 4 i.e. 12 = 3 ·4.
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2.5.1 By the FTA we have mx+ny= 1 and by assumption a=mk and a= n j. Therefore
k = kmx+ kny = ax+ kny = n jx+ kny = n( jx+ny), thus a = mk = mn( jx+ny)
and mn divides a.

2.5.2 1000 = 2353 and so the divisors of 1000 are 1, 2, 4, 8, 5, 10, 20, 40, 25, 50, 100,
200, 125, 250, 500, 1000. We have ϕ(1) = 1, ϕ(2) = 1, ϕ(4) = 2, ϕ(8) = 4,
ϕ(5) = 4, ϕ(10) = 4, ϕ(20) = 8, ϕ(40) = 16, ϕ(25) = 20, ϕ(50) = 20, ϕ(100) =
40, ϕ(200) = 80, ϕ(125) = 100, ϕ(250) = 100, ϕ(500) = 200, ϕ(1000) = 400.
Finally 1+1+2+4+4+4+8+16+20+20+40+80+100+100+200+400=
1000.

2.5.3 x ∼=11 5 implies x = 5+ 11k and so 5+ 11k ∼=13 7 i.e. 11k ∼=13 2. The inverse of
11 modulo 13 is 6 (6 · 11− 5 · 13 = 1) so k ∼=13 6 · 11 · k ∼=13 6 · 2 ∼=13 12. Finally
x = 5+11 ·12 = 137.

2.5.4 x∼=16 11 implies x = 11+16k and so 11+16k ∼=27 16 i.e. 16k ∼=27 5. The inverse
of 16 modulo 27 is −5 (−5 · 16+ 3 · 27 = 1) so k ∼=27 −5 · 16 · k ∼=27 −5 · 5 ∼=27
−25∼=27 2. Finally x = 11+2 ·16 = 43.

2.5.5 We compute the last two digits of powers of two (i.e. 2i modulo 100). 20 = 1,
21 = 2, 22 = 4, 24 = 42 = 16, 28 = 162 ∼= 56, 216 ∼= 562 ∼= 36, 232 ∼= 362 ∼= 96,
264 ∼= 962 ∼= 16, 2128 ∼= 162 ∼= 56, 2256 ∼= 562 ∼= 36, 2512 ∼= 362 ∼= 96, 21024 ∼=
962 ∼= 16, 22048 = 162 ∼= 56, 24096 ∼= 562 ∼= 36, 28192 ∼= 362 ∼= 96. Since 9999 =
8192 + 1024 + 512 + 256 + 8 + 4 + 2 + 1, it follows that 29999 = 28192 · 21024 ·
2(512) ·2256 ·28 ·24 ·22 ·21 ∼= 96 ·16 ·96 ·36 ·56 ·16 ·4 ·2∼= 962 ·162 ·36 ·56 ·8 =
16 ·56 ·56 ·36 ·8 = 16 ·36 ·36 ·8∼= 96 ·16 ·8∼= (−4) ·28∼=−112∼= 88.

4.1.2 Hint:
∫
(x/2)2dx = x3/12.

∫
(x/2)2dx = ∑

∫
(−1)k(x/2) sin(kx)

k dx and integrating
by parts

∫
(x/2) sin(kx)

k dx = x
2 ·
−cos(kx)

k2 −
∫ −cos(kx)

k2 dx but
∫

π

−π

−cos(kx)
k2 dx = 0 and

x
2 ·
−cos(kx)

k2 |π−π = (−1)k+1 π

k2 .
4.2.1 Define ε(n) = 0,1,0,−1 if n∼=4 0,1,2,3 and let

L = ∑
n≥1

(
ε(n)

n
) = Πp prime

(
∑
i≥0

(
ε(p)

p
)i

)

= Πp∼=41(1+
1
p
+

1
p2 + . . .)Πp∼=43(1−

1
p
+

1
p2 + . . .).

If there are finitely many p∼=4 1, then this behaves like

Πp prime(1−
1
p
+

1
p2 + . . .) = Πp prime

p
p+1

= 0.

If there are finitely many p∼=4 3, then this behaves like

Πp prime(1+
1
p
+

1
p2 + . . .) = Πp prime

p
p−1

=+∞.

The above argument is not correct because L is not absolutely convergent. How-
ever, let L(s) = ∑n≥1(

ε(n)
n )s, then L(s) is absolutely convergent for all s > 1 and

taking the limit as s−→ 1, the above argument becomes correct.
4.2.2 We know that Πp∼=31

p
p−1 = +∞ and Πp∼=32

p+1
p = 0. But then Πp∼=32

p
p+1 = +∞

(prove this using limm−→∞ Πp∼=32, p≤m
p+1

p = 0+). It is easy to check that p
p−1 ≥

p
p+1 . Thus Πp∼=32

p
p−1 ≥Πp∼=32

p
p+1 =+∞.

4.3.1 σ(32k+1)= (32k+2−1)/(3−1). Now 32∼=8 1 so 32k+2 =(32)k+1∼=8 1 so 32k+2−1
is divisible by 8 so 32k+2−1)/(3−1) is divisible by 4. So σ(n) = σ(32k+1)σ(r)
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is divisible by 4. But if n is perfect, then σ(n) = 2n so σ(n) is not divisible by 4
(as n is odd).

4.3.2 2047 = 23 ·89.
4.3.2 The number of digits is log(232,582,657−1) The number is about 32,582,657

1600 log(2).
5.1.1 Modulo 1979, we have 52 = 25, 54 = 625, 58 = 390625 = 762, 516 = 7622 =

580644 = 797, 532 = 7972 = 635209 = 1929 =−50, 564 = 25, 5128 = 625 and so
5143 = 51285854525 = 625 ·762 ·625 ·25 ·5 = 99625 = 675.

5.1.3 The order of (Z/Z35)
∗ is ϕ(35) = ϕ(5)ϕ(7) = 4 · 6 = 24. Since 24 and 11 are

coprime, we write 1 = 11 · 11− 5 · 24 and we can solve x11 =35 13 by letting
x = 1311. We have 132 = 169 = −6, 134 = 36 = 1 and so x = 1311 = 133 =
−6 · 13 = −78 = −8. (Note that (−8)2 = 64 = −6 and (−8)4 = (−6)2 = 1 and
so (−8)11 = (−8)3 =−8 ·−6 = 48 = 13.)

5.3.1 Let µn be the set of all n-th roots of 1 in F∗. Clearly 1 ∈ µn so µn 6= /0. If x,y ∈ µn,
then by assumption xn = yn = 1. Now (xy)n = xnyn = 1 ·1 = 1 so that µn is closed
under multiplication. Finally (x−1)n = (xn)−1 = 1−1 = 1 so that µn is closed under
inverses and henve µn is a subgroup of F .

5.3.2 Taking the term of degree n−1 in the equation

xn−1 = (x−1)(x−ζ ) · · ·(x−ζ
n−1)

we obtain 0 =−1−ζ − . . .−ζ n−1.
5.3.3 The possible orders of 3 in F31 are the divisors of |F31|= 30 i.e. 1,2,3,5,6,10,15,30.

However 32 = 9, 33 = 27, 35 = 9 ·27 = 9 · (−4) =−36 =−5, 36 =−15, 310 = 25
and 315 =−125 =−1 are all 6= 1.

The 6-th roots of 1 are 30 = 1, 35 = −5, 310 = 25, 315 = −1, 320 = 5 and
325 = 6. Their sum is of course 0.

5.4.1 I(7)+ I(x) = I(5) (modulo 10) so 7+ I(x) = 4, so I(X) =−3∼=10 7 so x = 27 = 7.
5.4.2 I(4)+ 2I(x) = I(9) so 2+ 2I(x) = 6 (modulo 10) so I(x) = 2,7 so x = 22 = 4 or

x = 27 = 7.
5.4.3 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16 = −3, 25 = −6 = 13, 26 = 7, 27 = 14,

28 = 9, 29 = 18 = −1, 210 = −2 = 17, 211 = −4 = 15, 212 = −8 = 11, 213 =
−16 = 3, 214 = 6, 215 = 12, 216 = 5, 217 = 10, 218 = 1.

5I(x) = I(7) (modulo 18) so I(x) = −7 · 5 · I(x) = −7 · 6 = −42 ∼=18 12 so
x = 212 = 11.

6.2.1 We have 62 = 36=−5, 64 = 25, 68 = 625= 10 and 616 = 1000= 18 so 6(p−1)/2 =
620 = 18 ·25 = 450 = 40 =−1. (But we knew this as 620 is a square root of 1 so
is ±1, but it can’t be 1 as otherwise the order of 6 would be ≤ 20 but we assumed
it is a primitive root i.e. it has order 40.)

6.2.2 2(31−1)/2 = 215 = 323 = 13 = 1 so 2 is a square mod 31. 315 = (27)5 = (−4)5 =
−1 · 25 · 25 = −1 (as 25 = 32 = 1 mod 31). So 3 is not a square modulo 31.
7(29−1)/2 = 714= (20)7 = (−4)7 =−64 ·64 ·4=−6 ·6 ·4=−6 ·24=−6 ·(−5) =
30 = 1 so 7 is a square modulo 29.

6.3.1 The order of 6 is 40, so the order of g = 65 is 8. Now, g = 65 = 36 · 36 · 6 =
(−5)2 · 6 = 150 = 27. We also have g7 = g−1 = −3 (as 1 = 2 · 41− 3 · 27). So
g+g7 = 24 is a square root of 2.

6.3.2 The order of 5 is 72 (in F∗73). So g = 59 has order 8. Now g = 59 = (125)3 =

(−21)3 =−441 ·21 = 3 ·21 = 63. We have g7 = g−1 =−22 (since 1 = 19 ·63−
22 ·63). So g+g7 = 63−22 = 41 is a square root of 2.

6.3.3 g = 3+4 ·3 = 15 =−2 is a primitive 8-th root of 1.
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6.3.4 x2− 6x+ 11 = 0 is equivalent to (x− 3)2 = −2. We have
( −2

131

)
=
( 2

131

)( −1
131

)
.

Since 131 ∼=8 3, we have
( 2

131

)
= −1 and since 131 ∼= 34, we have

( −1
131

)
= −1.

Thus
( −2

131

)
= (−1)2 = 1 and we can solve this equation.

8.1.1 221 = 13 ·17 = (32 +22)(42 +12) = 142 +52.
8.1.2 82+12 = 5 ·13. Pick 5/2< u=−2,v= 1≤ 5/2 then xu+yv=−15 and xv−yu=

−10. Dividing by −5 we get (3,2) and 32 +22 = 13.
8.1.3 Since 5 is a primitive root of 1 modulo 73, it has order 72, thus (518)2 = 536 ∼=73

−1. We have 53 = 125 ∼= 52, 54 ∼= 260 ∼= 41, 55 ∼= 205 ∼= −14, 56 ∼= −70 ∼= 3,
518 ∼= 27 and in fact (27)2 +12 = 729+1 = 10 ·73. By descent, we pick 5 < u =
−3,v = 1 ≤ 5 and so xu+ yv = −80, xv− yu = 30 and dividing by 10 we have
82 +32 = 64+9 = 73.

8.1.4 Suppose p∼=8 ±1, then 2= b2 and so a necessary condition is to solve x2+z2 ∼=p 0
where z= by. If p∼=8 −1, then p∼=4 −1 and so there is no such solution. If p∼=8 1,
then p ∼=4 1 and so there is a solution, i.e. we can write x2 + z2 = kp for some
0 < x,z < p and k > 0. Letting y = b−1z, we may assume that x2 +2y2 = kp. By
an argument similar to Fermat descent, we hope to show that x2 +2Y 2 = p has a
solution.

Suppose p ∼=8 ±3, then (x/y)2 ∼=p −2. If p ∼=8 1, then p ∼=4 1 and so −1 = b2

(modulo p). But then (x/by)2 ∼=p 2 which is impossible as 2 is not a square. If
p ∼=8 −1, then p ∼=4 −1 and so both 2 and −1 are not squares and hence −2 is a
square, say −2 = b2 (modulo p). But then (x/by)2 ∼=p 1 has a solution, eg. x = by
so that x2−b2y∼=p 0 i.e. x2+2y2 = kp. By an argument similar to Fermat descent,
we hope to show that x2 +2Y 2 = p has a solution.

8.1.5 Easy direct computation, but the formula is wrong. It should be:

(x2 +2y2)(u2 +2v2) = (xu−2yv)2 +2(yu+ xv)2.

8.1.6 82 + 2 = 6 · 11 = (22 + 2 · 12)(32 + 2 · 12) = (2 · 3− 2 · 1 · 1)2 + 2(1 · 3+ 2 · 1)2 =
42 +2 ·52.

8.2.1 (11+7i) = 2(5+3i)+(1+ i) and (5 = 3i) = (4− i)(1+ i) so gcd((11+7i),(5+
3i)) = 1+ i.

8.2.2 N(11+ 3i) = 130 so the primes have norm 2, 5 or 13. The irreducible elements
with N(π) = 2 are 1+ i. Then we see (11+3i) = (1+ i)(7−4i). The irreducible
elements with N(π) = 5 are 2± i and one sees that (7−4i) = (2+ i)(2−3i). Since
N(2−3i) = 13, (2−3i) is irreducible.

Math 4400, Fall 2014 Extra homework.
3.2.3 Find the inverse of 1+ i in F11[i].
3.2.4 Show that F5[i] and F13[i] are not fields. (Hint: solve a2 +b2 = 0 and give a zero

divisor.)
3.2.5 Show that F3[i], F7[i] and F11[i] are fields. (Hint: compute all possible values of

a2 +b2.)
3.2.6 What is a 0 divisor and why do fields not have any 0 divisors?
3.2.7 Show that every element of F11[i] satisfies the equation x121− x = 0.
3.2.8 Repeat 3.2.7 for F5[i]. (Hint: compute F5[i]∗.)
3.2.9 Explain why F3 is contained in any field F of characteristic 3.

3.2.10 Explain why the solutions to x6 + x4 + x2 + 1 in F3[i] are exactly the elements of
F3[i]\F3.

3.2.11 If a+ bi ∈ Fp[i] then let N(a+ ib) = a2 + b2. Show that N((a+ ib)(c+ id)) =
N(a+ ib)N(c+ id) and deduce that a+bi ∈ Fp[i]∗ if and only if N(a+ ib) 6= 0.
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4.1.4 Define L(s), show that it diverges for s = 1 and converges absolutely for s > 1.
4.1.5 Show that ∏p prime

p
p−1 diverges.

4.1.6 Show that ∏p prime
p

p+1 = 0. (Hint: note that p
p−1

p
p+1 = p2

p2−1 and consider ζ (2)).

4.1.7 Compute ∑m,n≥0
1

2m·3n .

4.2.5 Let ε(n) = 0,1,−1 if n ∼=3 0,1,2. Define the Dirichlet L-series L = ∑n>0
ε(n)

n .
Show that this series converges to a value 1

2 < L < 1 and show that

L = Πp prime

(
∑
i≥0

(
ε(p)

p
)i

)
.

4.3.4 Show that if Ml is a Marsenne prime, then l is prime.
4.3.5 Let σ(n) be the sum of all divisors of n (including 1 and n). If p is prime then

compute σ(pk). Show that if m,n are coprime, then σ(mn) = σ(m)σ(n).
5.1.1 52 = 25, 54 = 625, 58 = 762, 516 = 797, 532 = −50, 564 = 521, 5128 = 318,

5143 = 51285854525 = 318 ·762 ·625 ·25 ·5 = 568 ·944 = 1862,
5.3.1 If xn = 1 and yn = 1, then (xy)n = xnyn = 1 ·1 = 1 and (x−1)n = x−n = (xn)−1 =

1−1 = 1. Moreover 1n = 1. Therefore the set of all n-th roots is a non-empty subset
of F∗ closed under multiplication and inverses and hence it is a subgroup of F∗.

5.3.2 Since ζ is a primitive n-th root of 1, we have zn = 1 and zk 6= 1 for 1≤ k ≤ n−1.
But then 1,ζ ,ζ 2, . . . ,ζ n−1 are distinct elements (if in fact ζ a = ζ b for 0≤ a < b≤
n−1, then ζ b−a = 1 which is impossible as 1≤ b−a≤ n−1). Clearly each ζ k is
an n-th root of 1 (since (ζ k)n = ζ nk = (ζ n)k = 1k = 1). We have that

xn−1 = (x−1)(x−ζ )(x−ζ
2) · · ·(x−ζ

n−1) = xn +(
n−1

∑
i=0

ζ
i)xn−1 +Q(x)

where degQ(x)= n−2. Therefore equating the coefficients of xn−1 we get ∑
n−1
i=0 ζ i =

0.
5.3.3 Since |(Z/31Z)∗| = ϕ(31) = 30, the order of 3 divides 30 (by Lagrange’s theo-

rem). Thus, if the order of 3 is not 30, then either 36 = 1 or 310 = 1 or 315 = 1. Now
35 = 243 = −5 so 310 = 25 = −6 so 315 = (−5)3 = −125 = −1 and 36 = −15
are all 6= 1.

5.3.4 Find ζ a primitive 12-th root of 1 in C. What is the order of ζ 2 and ζ 3 in C∗?
5.3.5 Given that 3 is a primitive root of 1 in F31, find all other primitive roots of 1 in

F31. What is the order of 9?
5.3.6 Show that eix = cos(x)+ isin(x) (formally) by comparing their taylor series expan-

sions.
5.3.7 Show that

(cos(x)+ isin(x))(cos(y)+ isin(y)) = cos(x+ y)+ isin(x+ y).

(You can do this using the previous exercise or using the addition laws for sines
and cosines.)

9.2.5 Given that (161,72) and (2889,1292) are the 2nd and 3rd solutions to X2−5Y 2 =
1, find the 1st and 4th solution.

9.2.6 Given that (17,12) and (99,70) are the 2nd and 3rd solutions to X2− 2Y 2 = 1,
find the 1st and 4th solution.

Math 4400, Fall 2014 solutions to the Extra homework.
3.2.3 (1+ i)−1 = (1− i)2−1 = (1− i)6 = 6+5i.
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3.2.4 Since a field has no 0 divisors, it suffices to give 0 divisors.
12 +22 ∼=5 0 so (1+2i)(1−2i) = 0 in F5[i].
22 +32 ∼=13 0 and so (2+3i)(2−3i) = 0 in F13[i].

3.2.5 In F3[i] we have that the possible squares are 02 = 0, 12 = 1, 22 = 1 and so for
a+ ib 6= 0, N(a+ ib)= a2+b2 ∈{1, 2} is always invertible and hence (a+ ib)−1 =
(a− ib)(a2 +b2)−1.

In F7[i] we have that the possible squares are 02 = 0, 12 = 62 = 1, 22 = 52 =
4, 32 = 42 = 2 and so for a+ ib 6= 0, N(a+ ib) = a2 + b2 ∈ {1, 2, 3, 4, 6} is
always invertible and hence (a+ ib)−1 = (a− ib)(a2 +b2)−1.

3.2.6 If a,b 6= 0 and ab = 0, then a and b are 0 divisors. If a,b ∈ F a field and a 6= 0,
then ab = 0 implies b = eb = a−1ab = a−10 = 0.

3.2.7 Since F11[i] is a field, F11[i]∗ is a group of order 120 so by Lagrange’s Theorem
every element has order dividing 120 i.e. satisfies the equation x120−1 = 0. The
only other element is 0 and hence every element satisfies the equation x121−x = 0.

3.2.8 The non invertible elements of F5[i] are the ones of norm 0. There are 9 such
elements: 0, 1+2i, 1−2i, 2+ i, 2− i, 1+3i, 1−3i, 3+ i, 3− i. so |F5[i]∗|= 16
so every element of F5[i]∗ satisfies x16 = 1. The elements 1+2i, 1−2i, 1+3i, 1−
3i satisfy x3− x = 0, the elements 2+ i, 2− i satisfy x2 + x = 0 and the elements
3+ i, 3− i satisfy x2− x = 0. Thus every element of F5[i] satisfies the degree 24
polynomial x(x16−1)(x3− x)(x2− x)(x2 + x).

3.2.9 We define f : F3 −→ F by f (0) = 0, f (1) = 1 and f (2) = 1+1. Since the char-
acteristic of F is 3, 0,1,1 + 1 are distinct elements (but 1 + 1 + 1 = 0). Thus
we see that we have identified F3 with a subset of F . We denote 1 + 1 ∈ F
simply by 2. We must check that, this identification respects addition and mul-
tiplication. This can be done by checking all operations. Eg 2 + 2 = 1 in F3
and (1+ 1)+ (1+ 1) = 1+(1+ 1+ 1) = 1+ 0 = 1 in F because 1+ 1+ 1 = 0
as the characteristic of F is 3. Similarly, 2 · 2 = 1 in F3 and (1+ 1) · (1+ 1) =
(1+1)+(1+1) = 1+(1+1+1) = 1+0 = 1 in F .

3.2.10 By Lagrange’s Theorem, the elements of F3 satisfy x3−x = 0 and the elements of
F3[i] satisfy x9− x = 0 (since F3[i] is a field with 9 elements). Since the order of
F3 is 3, then its elements are the only ones to satisfy x3−x = 0. Therefore writing
x9− x = (x3− x)(x6 + x4 + x2 +1) it follows that the other 6 elements of F3[i] are
precisely the solutions to x6 + x4 + x2 +1 = 0.

4.1.4 L(s) = ∑
∞
i=1

1
is . Now ∑

2k+1

i=2k−1
1
i ≥ 2k · 1

2k+1 ≥ 1
2 because there are 2k terms each

≥ 1
2k+1 . Then ∑

2k+1

i=0
1
i ≥ 1+ k+1

2 and so

∞

∑
i=1

1
i
= lim

k−→∞

2k+1

∑
i=0

1
i
≥ lim

k−→∞
(1+

k+1
2

) = ∞.

The absolute convergence of L(s) for s > 1 follows reasily by the integral test from
the convergence of

∫
∞

1 xsdx.
4.1.5 For any n > 0, n is the product of powers of prime numbers p≤ n and so it is easy

to see that ∑
n
i=1

1
i ≤∏p≤n prime

p
p−1 (recall that p

p−1 = 1+ 1
p +

1
p2 + . . .). But it is

also easy to see that limi−→∞ ∑
n
i=1

1
i = ∞.

4.1.7 2
1 ·

3
2 .

5.3.4 ζ = eiπ/6. ζ 2 has order 12/2 = 6 and ζ 3 has order 12/3 = 4.
5.3.5 gcd(k,30) = 1 implies k = 1,7,11,13,17,19,23,29 and so the primitive roots are

3,37,311,313,317,319,323,329. The order of 9 = 32 is 30/2 = 15.
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5.3.6

eix = 1+ ix+
(ix)2

2
+

(ix)3

3
+

(ix)4

4
+

(ix)5

5
+

(ix)6

6
+ . . .=

= 1+ ix− x2

2
− i

x3

3
+

x4

4
+ i

x5

5
− x6

6
+ . . .=

(1− x2

2
+

x4

4
− x6

6
+ . . .)+ i(x− x3

3
+

x5

5
− x7

7
+ . . .) =

= cos(x)+ isin(x).
5.3.7

(cos(x)+isin(x))(cos(y)+isin(y))= (cos(x)cos(y)−sin(x)sin(y))+i(cos(x)sin(y)+sin(x)cos(y))=

= cos(x+ y)+ isin(x+ y).
Where we have used the addition laws for sines and cosines. Alternatively using
(5.3.6) we have

(cos(x)+ isin(x))(cos(y)+ isin(y)) = eixeiy = ei(x+y) = cos(x+ y)+ isin(x+ y).

9.2.5 The first solution is computed by

2889+1292
√

5
161+72

√
5

=
(2889+1292

√
5)(161−72

√
5)

(161+72
√

5)(161−72
√

5)
= 9+4

√
5

and the forth solution is computed by

(161+72
√

5)2 = 51841+23184.


