
Chapter 7: Laplace Theory

Sample Problem 1. Piecewise Continuous Inputs

Consider a passenger SUV on a one-day trip from Salt Lake City to Pine Bluffs, Wyoming, on
the Nebraska border. The route is I-80 E, 471 miles through Utah and Wyoming. Google maps
estimates 6 hours and 52 minutes hours driving time. The table below shows the distances, time,
road segment and average speed with total trip time 7 hours and 42 minutes. Cities enroute
reduce the freeway speed by 10 mph, the trip time effect not shown in the table.

Miles Minutes Speed mph Road Segment Posted limit mph

18.1 20 54.3 Parley’s Walmart to Kimball 65

11.3 12 56.3 Kimball to Wanship 65− 55

9.1 13 42 Wanship to Coalville 70

5.7 7 48.9 Coalville to Echo Dam 70

16.5 18 55 Echo Dam to 75 mph sign 70

39 36 65 75 mph sign to Evanston 75

308 269 68.7 Evanston to Laramie 75

50.6 50 61.2 Laramie to Cheyenne 75

43 37 69.7 Cheyenne to Pine bluffs 75

The velocity function for the SUV is approximated by

Vpc(t) =





Speed mph Time interval minutes Road segment

54.3 0 < t < 20 Parley’s Walmart to Kimball
56.3 20 < t < 32 Kimball to Wanship
42.0 32 < t < 45 Wanship to Coalville
48.9 45 < t < 52 Coalville to Echo Dam
55.0 52 < t < 70 Echo Dam to 75 mph sign
65.0 70 < t < 106 75 mph sign to Evanston
68.7 106 < t < 375 Evanston to Laramie
61.2 375 < t < 425 Laramie to Cheyenne
69.7 425 < t < 462 Cheyenne to Pine bluffs
0.00 462 < t <∞ SUV stopped

The velocity function Vpc(t) is piecewise continuous, because it has the general form

f(t) =





f1(t) t1 < t < t2
f2(t) t2 < t < t3

...
...

fn(t) tn < t < tn+1

where functions f1, f2, . . . , fn are continuous on the whole real line −∞ < t <∞. We don’t
define f(t) at division points, because of many possible ways to make the definition. As long as
these values are not used, then it will make no difference. Both right and left hand limits exist
at a division point. For Laplace theory, we like the definition f(tk) = limh→0+ f(tk + h), which
makes the function right-continuous.

The Problem. The SUV travels from t = 0 to t = 462
60 = 7.7 hours. The odometer trip

meter reading x(t) is in miles (assume x(0) = 0). The function Vpc(t) is an approximation to the
speedometer reading. Laplace’s method can solve the approximation model

dx

dt
= Vpc(60t), x(0) = 0, x in miles, t in hours,
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obtaining x(t) =
∫ t
0 Vpc(60w)dw, the same result as the method of quadrature. Show the details.

Then display the piecewise linear continuous trip meter reading x(t).

Solution.

Method of Quadrature. The meaning of the differential equation is that x′(t) is piecewise
continuous. We want x(t) to be continuous, because it is the odometer trip meter reading. But
x′(t) cannot be continuous, if we require dx

dt = Vpc(60t), because the right side is piecewise defined
and discontinuous at division points.

Theorem (Fundamental Theorem of Calculus)
If f ′(x) is piecewise continuous and f(x) is continuous on a ≤ x ≤ b, then

∫ b
a f ′(x)dx = f(b)− f(a).

The theorem implies that the method of quadrature works for the equation x′(t) = Vpc(60t). The
quadrature method gives the correct answer

x(t) =

∫ t

0
Vpc(60w)dw.

Another plan is to split x′(t) = Vpc(60t) into 10 simple equations, x′ = 54.3, x(0) = 0 on 0 ≤ t < 20
being the first equation. The next equation is x′ = 56.3, x(20) = x0, on 20 < t < 32. To make x(t)
continuous, we must choose x0 = 1086, which is the value at the division point t = 20 assumed by
the first problem (x′ = 54.3, x(0) = 0 on 0 ≤ t < 20). This tedious process has to be continued for
all 10 segments. The result is that x(t) is piecewise linear between division points.

Laplace’s Method. The piecewise continuous input Vpc(60t) is of exponential order, because it
is zero after t = 462/60. Laplace theory says it has a Laplace transform L(Vpc(60t)). Assuming a
continuous solution x(t), with x′(t) piecewise continuous, then the equation to be satisfied is

sL(x(t))− x(0) = L(x′(t)) = L(Vpc(60t)).

The Laplace integral theorem implies

L(x(t)) =
1

s
L(Vpc(60t)) = L

(∫ t

0
Vpc(60w)dw

)
.

Lerch’s theorem then implies that the symbol L cancel from each side, giving the odometer trip meter
reading in terms of the integral of the piecewise continuous input Vpc(60t):

x(t) =

∫ t

0
Vpc(60w)dw.

We’ll use technology to program and evaluate the integral, even though it can be done by hand. The
plan is to plot the trip meter reading, then comment on the slow and fast segments of the route,
by using a clever plot involving the average speed. The last display is the piecewise linear trip meter
reading x(t).

Maple

Xpc:=t->piecewise(t<0,0,

t < 20 ,54.3, t < 32, 56.3, t < 45, 42, t < 52, 48.9,

t < 70 ,55, t < 106, 65, t < 375, 68.7, t < 425, 61.2,

t < 462, 69.7, 0.0);

X:=t->int(Xpc(60*w),w=0..t);

plot(X(t),t=0..480/60); # Almost a straight line.

Average Speed

Define the average value of a function f(w) on a ≤ w ≤ b by 1
b−a

∫ b
a f(w)dw. Then the average

speed in the example is ∫ 462/60
0 Vpc(60w)dw

462/60
= 65.14956710.
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A Clever Plot

An average driver would try to maintain 65.15 mph. The clever plot will create a graphic of x(t)−65.15t
on interval 0 ≤ t ≤ T1, where T1 is the 471 mile trip time at 65.15 mph.

# Maple code

Xpc:=t->piecewise(t<0,0,

t < 20 ,54.3, t < 32, 56.3, t < 45, 42, t < 52, 48.9,

t < 70 ,55, t < 106, 65, t < 375, 68.7, t < 425, 61.2,

t < 462, 69.7, 0.0);

X:=t->int(Xpc(60*w),w=0..t);

AVEspeed:=X(462/60)/(462/60); # AVEspeed = 65.14956710 mph

T1:=solve(AVEspeed*t=471,t); # T1 = 7.229518491 hours

plot(X(t)-AVEspeed*t,t=0..T1);

We see from the graphic that segments of the road cause a slowdown of up to 15 mph, but for a brief
interval it is possible to exceed the average speed, due to a 75 mph speed limit.

# Maple code for piecewise linear display

X:=t->int(Xpc(60*w),w=0..t);

convert(X(t),piecewise,t):evalf(%,4);

Trip meter at time t =





0.0 t ≤ 0.0
54.30 t t ≤ 0.3333
56.30 t− 0.6667 t ≤ 0.53
42.0 t + 6.960 t ≤ 0.75
48.90 t + 1.785 t ≤ 0.8667
55.0 t− 3.502 t ≤ 1.167
65.0 t− 15.17 t ≤ 1.767
68.70 t− 21.70 t ≤ 6.25
61.20 t + 25.17 t ≤ 7.083
69.70 t− 35.04 t ≤ 7.7
501.7 7.7 < t
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Chapter 7: Laplace Theory

Background. Switches and Impulses

Laplace’s method solves differential equations. It is the preferred
method for solving equations containing switches or impulses.

Unit Step Define u(t− a) =

{
1 t ≥ a,
0 t < a.

. It is a switch, turned on at t = a.

Ramp Define ramp(t − a) = (t − a)u(t − a) =

{
t− a t ≥ a,
0 t < a.

, whose graph shape is

a continuous ramp at 45-degree incline starting at t = a.

Unit Pulse Define pulse(t, a, b) =

{
1 a ≤ t < b,
0 otherwise

= u(t−a)−u(t−b). The switch is ON

at time t = a and then OFF at time t = b.

Impulse of a Force

Define the impulse of an applied force F (t) on time interval a ≤ t ≤ b by the equation

Impulse of F =

∫ b

a
F (t)dt =

(∫ b
a F (t)dt

b− a

)
(b− a) = Average Force × Duration Time.

Dirac Unit Impulse

A Dirac impulse acts like a hammer hit, a brief injection of energy into a system. It is a special
idealization of a real hammer hit, in which only the impulse of the force is deemed important,
and not its magnitude nor duration.

Define the Dirac Unit Impulse by the equation δ(t − a) =
du

dt
(t − a), where u(t − a) is the

unit step. Symbol δ makes sense only under an integral sign, and the integral in question must be
a generalized Riemann integral (definition pending), with new evaluation rules. Symbol δ is an
abbreviation like etc or e.g., because it abbreviates a paragraph of descriptive text.

• Symbol Mδ(t− a) represents an ideal impulse of magnitude M at time t = a. Value M is the
change in momentum, but Mδ(t−a) contains no detail about the applied force or the duraction.
A common force approximation for a hammer hit of very small duration 2h and impulse M is
Dirac’s approximation

Fh(t) =
M

2h
pulse(t, a− h, a+ h).

• Symbol δ is not manipulated as an ordinary function. It is a special modeling tool with rules for
application and rules for algebraic manipulation.

THEOREM (Second Shifting Theorem). Let f(t) and g(t) be piecewise continuous and of expo-
nential order. Then for a ≥ 0,

e−as L(f(t)) = L
(
f(t)u(t)|t:=t−a

)
,

L(g(t)u(t− a)) = e−as L
(
g(t)|t:=t+a

)
.
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Sample Problem 2. Solve the following by Laplace methods.

(a) Forward table. Compute the Laplace integral for the unit step, ramp and pulse, in these
special cases:

(1) L(10u(t− π)) (2) L(ramp(t− 2π)), (3) L(10pulse(t, 3, 5)).

(b) Backward table. Find f(t) in the following special cases.

(1) L(f) =
5e−3s

s
(2) L(f) =

e−4s

s2
(3) L(f) =

5

s

(
e−2s − e−3s

)
.

Sample Problem 3. Solve the following Dirac Impulse and Second Shifting theorem
problems.

(c) Forward table problems.

(1) L(10δ(t− π)), (2) L(5δ(t− 1) + 10δ(t− 2) + 15δ(t− 3)), (2) L((t− π)δ(t− π)).

The sum of Dirac impulses in (2) is called an impulse train.
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Solutions to sample problems 2 and 3

Solution (a). The forward second shifting theorem applies.

(1) L(10u(t − π)) = L (g(t)u(t− a)) where g(t) = 10 and a = π. Then L(10u(t − π)) =

L (g(t)u(t− a)) = e−as L
(
g(t)|t=t+a

)
= e−πs L

(
10|t=t+π

)
= 10

s e
−πs.

(2) L(ramp(t− 2π)) = L((t− 2π)u(t− 2π)) = L
(
tu(t)|t=t−2π)

)
= e−2πs L(t) = 1

s2
e−2πs.

(3) L(10pulse(t, 3, 5)) = 10L(u(t− 3)− u(t− 5)) = 10
s (e3s − e−5s).

Solution (b). Presence of an exponential e−as signals step u(t− a) in the answer, the main tool
bing the backward second shifting theorem.

(1) L(f) = 5e−3s

s = e−3s 5s = e−3s L(5) = L(5u(t)|t=t+3) = L(5u(t − 3)). Lerch implies f =
5u(t− 3).

(2) L(f) = e−4s

s2
= e−as

L (t) where a = 4. Then L(f) = e−as
L (t) = L( tu(t)|t=t−a) = L((t− 4)u(t−

4)) = L(ramp(t− 4)). Lerch implies f = ramp(t− 4).

(3) L(f) = e−2s 5s − e−3s 5s = L(5u(t − 2)) − L(5u(t − 3)) = L(5pulse(t, 2, 3)). Lerch implies
f = 5pulse(t, 2, 3).

Solution (c). The main result for Dirac unit impulse δ is the equation

∫ ∞

)
g(t)δ(t− a)dt = g(a),

valid for g(t) continuous on 0 ≤ t <∞. When g(t) = e−st, then the equation implies the Laplace
formula L(δ(t− a)) = e−as.

(1) L(10δ(t − π)) = 10e−πs, by the displayed equation with g(t) = 10e−st, or by using linearity
and the formula L(δ(t− a)) = e−as.

(2) L(5δ(t − 1) + 10δ(t − 2) + 15δ(t − 3)) = 5L(δ(t − 1)) + 10L(δ(t − 2)) + 15L(δ(t − 3)) =
5e−s + 10e−2s + 15e−3s.

(3) L((t − π)δ(t − 2π)) =
∫∞
0 (t − π)estδ(t − 2π)dt = (t− π)e−st

∣∣
t=2π = πe−2πs, using g(t) =

(t− π)e−st and a = 2π in the equation.
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Sample Problem 4. Experiment to Find the Transfer Function h(t)

Consider a second order problem

ax′′(t) + bx′(t) + cx(t) = f(t)

which by Laplace theory has a particular solution solution defined as the convolution of the
transfer function h(t) with the input f(t),

xp(t) =

∫ t

0
f(w)h(t− w)dw.

Examined in this problem is another way to find h(t), which is the system response to a Dirac
unit impulse with zero data. Then h(t) is the solution of

ah′′(t) + bh′(t) + ch(t) = δ(t), h(0) = h′(0) = 0.

The Problem. Assume a, b, c are constants and define g(t) =
∫ t
0 h(w)dw.

(a) Show that g(0) = g′(0) = 0, which means g has zero data.

(b) Let u(t) be the unit step. Argue that g is the solution of

ag′′(t) + bg′(t) + cg(t) = u(t), g(0) = g′(0) = 0.

The fundamental theorem of calculus says that h(t) = g′(t). Therefore, to compute the
transfer function h(t), find the response g(t) to the unit step with zero data, followed by
computing the derivative g′(t), which equals h(t).

The experimental impact is important. Turning on a switch creates a unit step, generally
easier than designing a hammer hit.

(c) Illustrate the method for finding the transfer function h(t) in the special case

x′′(t) + 2x′(t) + 5x(t) = f(t).

Solutions to sample problem 4

(a) g(0) =
∫ 0
0 h(w)dw = 0, g′(0) = h(0) = 0.

(b) Let u(t) be the unit step. Initial data was decided in part (a). The Laplace applied to
ag′′(t) + bg′(t) + cg(t) = u(t) gives (as2 + bs+ c)L(g) = L(u(t)). Then L(g) = L(h(t))L(u(t)) =

L(h(t))1s L
(∫ t

0 h(r)du
)

by the integral theorem. Lerch’s theorem then says g(t) =
∫ t
0 h(r)dr.

(c) For equation x′′(t) + 2x′(t) + 5x(t) = f(t) we replace x(t) by g(t) and f(t) by the unit step
u(t), then solve g′′(t)+2g′(t)+5g(t) = u(t), obtaining L(g) = 1

s
1

s2+2s+5
= L(15− 1

10e
−t(2 cos(2t)+

sin(2t))). Then g(t) = 1
5 − 1

10e
−t(2 cos(2t) + sin(2t)) and h(t) = g′(t) = 1

2e
−t sin(2t).
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Chapters 4, 5: Linear Systems of Differential Equations

Sample Problem 5. Brine Tanks

Flow through each pipe is f gallons per unit time.

Each tank has constant volume V .

Symbols x1(t) to x7(t) are the salt amounts in tanks
T1 to T7, respectively.

The differential equations are obtained by the classical balance law, which says that the rate of
change in salt amount is the rate in minus the rate out. Individual rates in/out are of the form
(flow rate)(salt concentration), where flow rate f has units volume per unit time and xi(t)/V is
the concentration = amount/volume.

x′1(t) = f
V (x2(t) + x3(t) + x4(t) + x5(t) + x6(t) + x7(t)− 6x1(t))

x′2(t) = f
V (x1(t)− x2(t)) ,

x′3(t) = f
V (x1(t)− x3(t)) ,

x′4(t) = f
V (x1(t)− x4(t)) ,

x′5(t) = f
V (x1(t)− x5(t)) ,

x′6(t) = f
V (x1(t)− x6(t)) ,

x′7(t) = f
V (x1(t)− x7(t)) .

Part (a). Change variables t = V r/f to obtain the new system

dx1

dr
= x2 + x3 + x4 + x5 + x6 + x7 − 6x1

dx2

dr
= x1 − x2,

dx3

dr
= x1 − x3,

dx4

dr
= x1 − x4,

dx5

dr
= x1 − x5,

dx6

dr
= x1 − x6,

dx7

dr
= x1 − x7.

Solution (a):

Because
dx(t)

dt
=
dx

dr

dr

dt
=
dx

dr

f

V
, then the fraction f/V cancels in the equations, resulting in the

new system.
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Part (b). Formulate the equations in 1(a) in the system form
d

dr
~u = A~u.

Answer:

A =




−6 1 1 1 1 1 1
1 −1 0 0 0 0 0
1 0 −1 0 0 0 0
1 0 0 −1 0 0 0
1 0 0 0 −1 0 0
1 0 0 0 0 −1 0
1 0 0 0 0 0 −1




, ~u =




x1

x2

x3

x4

x5

x6

x7




Part (c). Find the eigenvalues of A.

Answer: λ = 0,−1,−1,−1,−1,−1,−7

Solution (c).

Let D = |A− λI|. Replace −1− λ by symbol u. Then

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−5 + u 1 1 1 1 1 1
1 u 0 0 0 0 0
1 0 u 0 0 0 0
1 0 0 u 0 0 0
1 0 0 0 u 0 0
1 0 0 0 0 u 0
1 0 0 0 0 0 u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Add each of rows 2, 3, 4, 5, 6 to row 1. Then 1+u is a common factor of row 1 and the determinant
multiply rule implies

D = (1 + u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 1
1 u 0 0 0 0 0
1 0 u 0 0 0 0
1 0 0 u 0 0 0
1 0 0 0 u 0 0
1 0 0 0 0 u 0
1 0 0 0 0 0 u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Cofactor expansion along the last row, plus induction, gives the answer D = (u + 1)(u− 6)u5 =
(−λ)(−λ− 7)(−λ− 1)5 with roots λ = 0,−7,−1,−1,−1,−1,−1.

Part (d). Find the eigenvectors of A.

Solution (d).

The root λ = −1 causes us to solve (A+ I)~v = ~0, which has coefficient matrix

B =




−5 1 1 1 1 1 1
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0




, with rref(B) =




1 0 0 0 0 0 0
0 1 1 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




.
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There are 2 lead variables and 5 free variables, hence 5 basis vectors



0
−1

1
0
0
0
0




,




0
−1

0
1
0
0
0




,




0
−1

0
0
1
0
0




,




0
−1

0
0
0
1
0




,




0
−1

0
0
0
0
1




.

The eigenvector for λ = 0 has all components equal to 1. This fact is found from the equation
(A− (0)I)~v = ~0, which has coefficient matrix A.

The eigenvector for λ = −7 has first component −6 and the remaining equal to 1. The task begins
with the equation (A− (−7)I)~v = ~0, which has coefficient matrix




7− 6 1 1 1 1 1 1
1 7− 1 0 0 0 0 0
1 0 7− 1 0 0 0 0
1 0 0 7− 1 0 0 0
1 0 0 0 7− 1 0 0
1 0 0 0 0 7− 1 0
1 0 0 0 0 0 7− 1




=




1 1 1 1 1 1 1
1 6 0 0 0 0 0
1 0 6 0 0 0 0
1 0 0 6 0 0 0
1 0 0 0 6 0 0
1 0 0 0 0 6 0
1 0 0 0 0 0 6




The eigenvectors for λ = 0 and λ = −7 are respectively



1
1
1
1
1
1
1




,




−6
1
1
1
1
1
1




.

Part (e). Solve the differential equation
d~u

dr
= A~u by the eigenanalysis method.

Three Methods for Solving d
dt~u(t) = A~u(t)

• Eigenanalysis Method. The eigenpairs of matrix A are required. The matrix A must
be diagonalizable, meaning there are n eigenpairs (λ1, ~v1), (λ2, ~v2), . . . , (λn, ~vn). The main
theorem says that the general solution of ~u′ = A~u is

~u(t) = c1e
λ1t~v1 + c2e

λ2t~v2 + · · ·+ cne
λnt~vn.

• Laplace’s Method. Solve the scalar equations by the Laplace transform method. The
resolvent method automates this process: ~u(t) = L−1

(
(sI −A)−1

)
~u(0).

• Cayley-Hamilton-Ziebur Method. The solution ~u(t) is a vector linear combination
of the Euler solution atoms f1, . . . , fn found from the roots of the characteristic equation
|A− λI| = 0. The vectors ~d1, . . . , ~dn in the linear combination

~u(t) = f1(t)~d1 + f2(t)~u2 + · · ·+ fn(t)~dn

are determined by the explicit formula

< ~d1 | ~d2 | · · · | ~dn >=< ~u0 |A~u0 | · · · |An−1~u0 >
(
W (0)T

)−1
,

where W (t) is the Wronskian matrix of atoms f1, . . . , fn and ~u0 is the initial data.
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Solution (e).

The eigenvectors corresponding to λ = 0,−7,−1,−1,−1,−1,−1 are respectively




1
1
1
1
1
1
1




,




−6
1
1
1
1
1
1




,




0
−1

1
0
0
0
0




,




0
−1

0
1
0
0
0




,




0
−1

0
0
1
0
0




,




0
−1

0
0
0
1
0




,




0
−1

0
0
0
0
1




.

The Eigenanalysis method then implies the solution ~x(r) of
d~x

dr
= A~x is given for arbitrary

constants c1, . . . , c7 by the expression

c1e
0r




1
1
1
1
1
1
1




+c2e
−7r




−6
1
1
1
1
1
1




+c3e
−r




0
−1

1
0
0
0
0




+c4e
−r




0
−1

0
1
0
0
0




+c5e
−r




0
−1

0
0
1
0
0




+c6e
−r




0
−1

0
0
0
1
0




+c7e
−r




0
−1

0
0
0
0
1




.
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Sample Problem 6. Home Heating

Consider a typical home with attic, basement and insulated main floor.

Heating Assumptions and Variables

• It is usual to surround the main living area with insulation, but the attic area has walls and
ceiling without insulation.

• The walls and floor in the basement are insulated by earth.

• The basement ceiling is insulated by air space in the joists, a layer of flooring on the main
floor and a layer of drywall in the basement.

The changing temperatures in the three levels is modeled by Newton’s cooling law and the variables

z(t) = Temperature in the attic,
y(t) = Temperature in the main living area,
x(t) = Temperature in the basement,
t = Time in hours.

A typical mathematical model is the set of equations

x′ =
1

2
(45− x) +

1

2
(y − x),

y′ =
1

2
(x− y) +

1

4
(35− y) +

1

4
(z − y) + 20,

z′ =
1

4
(y − z) +

3

4
(35− z).

Part (a). Formulate the system of differential equations as a matrix system d
dt~u(t) = A~u(t) +~b.

Show details.

Answer. ~u =



x(t)
y(t)
z(t)


 , ~b =




45
2

20 + 35
4

105
4


 , A =




−1 1
2 0

1
2 −1 1

4

0 1
4 −1




Solution Details.

Expand the right side of the system as follows.

x′ =
45

2
− x

2
+
y

2
− x

2
,

y′ =
x

2
− y

2
+

35

4
− y

4
+
z

4
− y

4
+ 20

z′ =
y

4
− z

4
+

105

4
− 3z

4
.
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Then collect on the variables:

x′ = −x+
y

2
+

45

2
,

y′ =
x

2
− y +

z

4
+ 20 +

35

4

z′ =
y

4
− z +

105

4
.

The right side of this system can be written as A~u +~b. Vector ~b is obtained by formally setting
x = y = z = 0 on the right. This justifies the answer given.

The matrix A has columns equal to the partial derivatives ∂x, ∂y, ∂z of the right side of the scalar
system. This idea is important, because it allows the computation of matrix A without any of
the preceding details.

Part (b). The heating problem has an equilibrium solution ~up(t) which is a constant vector of

temperatures for the three floors. It is formally found by setting d
dt~u(t) = 0, and then ~up = −A−1~b.

Justify the algebra and explicitly find ~up(t).

Answer (b). ~up(t) = −A−1~b =




620
11

745
11

475
11


 =




56.36
67.73
43.18


.

Solution Details.

The equation upon setting the derivative equal to zero becomes ~0 = A~u+~b which implies A~u = −~b
and finally ~u = −A−1~b.

The calculation is done by technology. The maple code:

A:=<-1,1/2,0|1/2,-1,1/4|0,1/4,-1>^+; b:=<45/2,20+35/4,105/4>;

-A^(-1).b; evalf(%);

The solution can also be obtained by hand from the augmented matrix of A and −~b, using the
linear algebra toolkit of swap, combination and multiply.

Part (c). The homogeneous problem is d
dt~u(t) = A~u(t). It can be solved by a variety of methods,

three major methods enumerated below. Choose a method and solve for ~x(t).

Answer (c): The homogenous scalar general solution is

x1(t) = −1

2
c1e
−t + 2c2e

−at + 2c3e
−bt,

x2(t) = −
√

5c2e
−at +

√
5c3e

−bt,

x3(t) = c1e
−t + c2e

−at + c3e
−bt.

Three Methods for Solving ~u′ = A~u

• Eigenanalysis Method. Three eigenpairs of matrix A are required. The matrix A must be
diagonalizable, meaning there are 3 eigenpairs (λ1, ~v1), (λ2, ~v2), (λ3, ~v3). The main theorem
says that the general solution of ~u′ = A~u is

~u(t) = c1e
λ1t~v1 + c2e

λ2t~v2 + c3e
λ3t~v3.

• Laplace’s Method. Solve the scalar equations by the Laplace transform method. The
resolvent method automates this process: ~u(t) = L−1

(
(sI −A)−1

)
~u(0).

• Cayley-Hamilton-Ziebur Method. The solution ~u(t) is a vector linear combination of
the Euler solution atoms found from the roots of the characteristic equation |A − λI| = 0.
The vectors in the linear combination are determined by an explicit formula.
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Solution Details for Part (c)

.

The roots of the characteristic polynomial are used in all three methods. This is the polynomial
equation |A− λI| = 0, having n roots real and complex, for an n× n matrix A.

Subtract λ from the diagonal of A and form the determinant. Then cofactor expansion on row 3
gives

|A− λI| =

∣∣∣∣∣∣∣∣∣

−1− λ 1
2 0

1
2 −1− λ 1

4

0 1
4 −1− λ

∣∣∣∣∣∣∣∣∣
= (−1− λ)

(
− 1

16
+ (−1− λ)2 − 1

4

)
.

The roots are −1,−a,−b where a = 1 +
√

5/4 = 1.56, b = 1 −
√

5/4 = 0.44. The three roots are
distinct, real and negative.

Eigenanalysis Method

The eigenpairs must be found, in order to assemble the solution vector ~u(t). Technology can be
used to find the answers, which are


−1,



−1

2
0
1





 ,


−a,




2

−
√

5
1





 ,


−b,




2√
5
1





 .

Without technology, there are three homogeneous problems to solve of the form B~v = ~0, for
eigenvector ~v. Enumerated, they are:

Case λ = −1. Then B = A+ I =




0 1
2 0

1
2 0 1

4

0 1
4 0




Case λ = −a. Then B = A+ aI =




√
5

4
1
2 0

1
2

√
5

4
1
4

0 1
4

√
5

4




Case λ = −b. Then B = A+ bI =




−
√

5
4

1
2 0

1
2 −

√
5

4
1
4

0 1
4 −

√
5

4




In each case, the system B~v = ~0 is solved using the last frame algorithm (there is in each case
one free variable). The eigenvector reported is the partial derivative of the general solution on
the invented symbol t1, which was assigned to the free variable.

Application of the Theorem

System ~u′ = A~u is solved in the diagonalizable case in terms of the eigenpairs of A, denoted as
(λ1, ~v1), (λ2, ~v2), (λ3, ~v3). The solution of ~u′ = A~u is given by the formula

~u(t) = c1e
λ1t~v1 + c2e

λ2t~v2 + c3e
λ3t~v3.

In the present case, the solution is

~u(t) = c1e
−t



−1

2
0
1


+ c2e

−at




2

−
√

5
1


+ c3e

−bt




2√
5
1


 .
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Symbols c1, c2, c3 in the solution are arbitrary constants, uniquely determined by initial conditions.
In scalar form, the solution is

x1(t) = −1

2
c1e
−t + 2c2e

−at + 2c3e
−bt,

x2(t) = −
√

5c2e
−at +

√
5c3e

−bt,

x3(t) = c1e
−t + c2e

−at + c3e
−bt.

Laplace Transform Method

The Laplace Method for solving ~u′(t) = A~u(t) is based upon transforming all differential
equations into the frequency domain. Then time variable t no longer appears, being replaced
by the frequency variable s.

The homogeneous system of differential equations is

x′ = −x+
y

2
,

y′ =
x

2
− y +

z

4
+ 20

z′ =
y

4
− z.

Transforming to the s-domain uses the parts rule L(f ′(t)) = sL(f(t)− f(0). Then

sL(x)− x(0) = −L(x) +
1

2
L(y),

sL(y)− y(0) =
1

2
L(x)− L(y) +

1

4
L(z) + 20

sL(z)− z(0) =
1

4
L(y)− L(z).

View these equations as linear algebraic equations for the symbols L(x),L(y),L(z). Move terms
left and right to re-write the scalar equations as a matrix system



s+ 1 −1

2 0
1
2 s+ 1 −1

4
0 −1

4 s+ 1






L(x)

L(y)

L(z)


 =



x(0)
y(0)
z(0)


 .

The system is solved by inverting the coefficient matrix C on the left, using the adjugate formula
C−1 = adj(C)/|C|. Write the answer as

C−1(s) =



s+ 1 −1

2 0
1
2 s+ 1 −1

4
0 −1

4 s+ 1




−1

=
1

∆(s)




s2 + 2s+ 15
16

s+1
2

1
8

s+1
2 (s+ 1)2 s+1

4

1
8

s+1
4 s2 + 2s+ 3

4


 .

Symbol ∆(s) = (s+ 1)(s+ a)(s+ b) is the determinant of C(s). Then


L(x)

L(y)

L(z)


 = C−1(s)



x(0)
y(0)
z(0)


 .

Backward table steps require solving nine equations of the form L(f(t)) = p(s)
∆(s) . A computer

algebra system reduces the effort, able to write C−1(s) = L(Φ(t)), using symbols f1 = e−t, f2 =
e−at, f3 = e−bt, where

Φ(t) =




1
5f1 + 2

5f2 + 2
5f3

1√
5
(f3 − f2) 1

5f2 + 1
5f3 − 2

5f1

1√
5

(f3 − f2) 1
2f2 + 1

2f3
1

2
√

5
(f3 − f2)

1
5f2 + 1

5f3 − 2
5f1

1
2
√

5
(f3 − f2) 4

5f1 + 1
10f2 + 1

10f3
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Then L(~u(t)) = L(Φ(t)~u(0)) implies by Lerch’s cancelation law the formula



x(t)

y(t)

z(t)


 =




1
5f1 + 2

5f2 + 2
5f3

1√
5
(f3 − f2) 1

5f2 + 1
5f3 − 2

5f1

1√
5

(f3 − f2) 1
2f2 + 1

2f3
1

2
√

5
(f3 − f2)

1
5f2 + 1

5f3 − 2
5f1

1
2
√

5
(f3 − f2) 4

5f1 + 1
10f2 + 1

10f3







x(0)

y(0)

z(0)


 .

The Resolvent Method

The scalar system solved above is exactly

(sI −A)L(~u(t)) = ~u(0), I =




1 0 0
0 1 0
0 0 1


 , A =



−1 1

2 0
1
2 −1 1

4
0 1

4 −1


 , ~u(t) =



x(t)
y(t)
z(t)


 .

The system (sI − A)L(~u(t)) = ~u(0) is called the resolvent equation. The inverse of the
coefficient matrix, (sI−A)−1, is called the resolvent matrix, because L(~u(t)) = (sI−A)−1~u(0).
If these statements make sense to you, then please use them to solve problems. Otherwise, ignore
the information, and solve problems in the same manner as outlined earlier.

Engineering and Laplace Transforms

Both mechanical engineering and electrical engineering have rich support for Laplace theory.
Using Laplace theory has the advantage that many persons can help you through difficult times.
Independent persons prefer to choose the method from their own private toolbox.

Cayley-Hamilton-Ziebur Method

The Ziebur Lemma implies that the solution of the system ~u′(t) = A~u(t) is given by the formula

~u(t) = ~d1e
−t + ~d2e

−at + ~d3e
−bt.

THEOREM. Vectors ~d1, ~d2, ~d3 are uniquely determined by initial condition ~u(0), which is a
column vector of prescribed constants, by the matrix equation.

〈~d1|~d2|~d3〉 = 〈~u(0)|A~u(0)|A2~u(0)〉
(
W (0)T

)−1

Symbol W (t) is the Wronskian matrix of the three Euler solution atoms. Notation 〈 ~A| ~B|~C〉 is
the augmented matrix of the three columns vectors ~A, ~B, ~C.

Illustration. For the heating example, with a = 1 +
√

5/4 = 1.56, b = 1−
√

5/4 = 0.44, the
Euler solution atoms are e−t, e−at, e−bt. The Wronskian matrix is

W (t) =




e−t e−at e−bt

−e−t −ae−at −be−bt
e−t a2e−at b2e−bt


 , W (0) =




1 1 1
−1 −a −b

1 a2 b2


 .

Then (W (0)T )−1 =




−11
5

8
5 − 2

5

√
5 8

5 + 2
5

√
5

−32
5

16
5 − 2

5

√
5 16

5 + 2
5

√
5

−16
5

8
5

8
5


 .

For initial state ~u(0) =




1
0
0


, 〈~u(0)|A~u(0)|A2~u(0)〉 =




1 −1 5/4

0 1/2 −1

0 0 1/8


. Then

~u(t) = 〈~d1|~d2|~d3〉




e−t

e−at

e−bt


 =




1 −1 5/4

0 1/2 −1

0 0 1/8







−11
5

8
5 − 2

5

√
5 8

5 + 2
5

√
5

−32
5

16
5 − 2

5

√
5 16

5 + 2
5

√
5

−16
5

8
5

8
5







e−t

e−at

e−bt
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For general initial state ~u(0) =



c1

c2

c3


,

〈~u(0)|A~u(0)|A2~u(0)〉 =




c1 −c1 + 1
2c2

5
4 c1 − c2 + 1

8c3

c2
1
2c1 − c2 + 1

4c3 −c1 + 21
16c2 − 1

2c3

c3
1
4c2 − c3

1
8c1 − 1

2c2 + 17
16c3


 .

Then ~u(t) is this matrix times
(
W (0)T

)−1
times the column vector of atoms e−t, e−at, e−bt.

Details for the Theorem

The idea for finding the three vectors is differentiation of Ziebur’s equation, two times, to get
three equations

~u(t) = ~d1e
−t + ~d2e

−at + ~d3e
−bt,

~u′(t) = −~d1e
−t − a~d2e

−at − b~d3e
−bt,

~u′′(t) = ~d1e
−t + a2~d2e

−at + b2~d3e
−bt.

Identities ~u′(t) = A~u(t) and ~u′′(t) = A~u′(t) = AA~u(t) imply that the left sides are simplified to

~u(t) = ~d1e
−t + ~d2e

−at + ~d3e
−bt,

A~u(t) = −~d1e
−t − a~d2e

−at − b~d3e
−bt,

A2~u(t) = ~d1e
−t + a2~d2e

−at + b2~d3e
−bt.

The critical idea is to substitute t = 0, which because of e0 = 1 gives the following three equations
for unknowns ~d1, ~d2, ~d3:

~u(0) = ~d1 + ~d2 + ~d3,

A~u(0) = −~d1 − a~d2 − b~d3,

A2~u(0) = ~d1 + a2~d2 + b2~d3.

How to solve these vector equations for unknowns ~d1, ~d2, ~d3? To begin, solve the scalar system




1 1 1
−1 −a −b

1 a2 b2






x
y
z


 =



b1
b2
b3




where variables x, y, z are the first components of ~d1, ~d2, ~d3, and similarly, b1, b2, b3 are the first
components of vector ~u(0), A~u(0), A2~u(0):

x = ~d1 · ~v,

y = ~d2 · ~v,

z = ~d3 · ~v,

b1 = ~u(0) · ~v,
b2 = A~u(0) · ~v,
b3 = A2~u(0) · ~v,

~v =




1
0
0


.

The equations also apply to find the second components, using ~v =




0
1
0


, then the third com-

ponents using ~v =




0
0
1


. The three systems of equations can be written as one huge matrix

equation: 


1 1 1
−1 −a −b

1 a2 b2


 〈~d1|~d2|~d3〉T = 〈~u(0)|A~u(0)|A2~u(0)〉T
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Taking the transpose across the equation gives

〈~d1|~d2|~d3〉




1 1 1
−1 −a −b

1 a2 b2




T

= 〈~u(0)|A~u(0)|A2~u(0)〉

Finally, invert the matrix W (0)T and multiply across the equation on the right to obtain

〈~d1|~d2|~d3〉 = 〈~u(0)|A~u(0)|A2~u(0)〉







1 1 1
−1 −a −b

1 a2 b2




T


−1

This is exactly the equation reported in the theorem,

〈~d1|~d2|~d3〉 = 〈~u(0)|A~u(0)|A2~u(0)〉
(
W (0)T

)−1

It has been observed that if f1 = e−t, f2 = e−at, f3 = e−bt are replaced by a new basis of solutions
such that W (0) = I, then ~d1 = ~u(0), ~d2 = A~u(0), ~d3 = A2~u(0). The resulting solution in this case
is

~u(t) = f1(t)~u(0) + f2(t)A~u(0) + f3(t)A2~u(0).

Which Method is the Best?

The eigenanalysis method seems to be the best, because it is a method for simplifying coordinates,
hence a shorter answer. Except in the case of complex roots. Or in the case that the matrix A fails
to be diagonalizable. In practice, the method used to solve the equation ~u′(t) = A~u(t) has to be
tuned to the expected application. Dynamical systems are an important example. For dynamical
systems, the actual solution is less important than its formula, which is a linear combination of
Euler solution atoms, according to Cayley-Hamilton-Ziebur.

Laplace theory provides a simple formula for the solution of ~u′(t) = A~u(t). It has the form

~u(t) = Φ(t)~u(0).

The matrix Φ(t) in the Laplace formula is computed from L(Φ(t)) = (sI − A)−1. Although this
computation is nontrivial by hand, computer algebra system automation is possible.

Matrix Φ(t) is called the Exponential Matrix, denoted by eAt. Computer algebra system Maple

computes Φ(t) by the command LinearAlgebra[MatrixExponential](A,t) . Both Matlab and

Mathematica support symbolic computation of the matrix exponential Φ(t).
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