
Chapter 1. Sample Problem 1

An answer check for the differential equation and initial condition

dy

dx
= −y(x) + 23, y(0) = 5 (1)

requires substitution of the candidate solution y(x) = 23 − 18 e−x into the left side (LHS) and
right side (RHS), then compare the expressions for equality for all symbols. The process of testing
LHS = RHS applies to both the differential equation and the initial condition, making the answer
check have two presentation panels. Complete the following:

1. Show the two panels in an answer check for initial value problem (1).

2. Relate (1) to a Newton cooling model for warming a 5 C apple to room temperature 23 C.

References. Edwards-Penney sections 1.1, 1.4, 1.5. Newton cooling in Serway and Vuille, College
Physics 9/E, Brooks-Cole (2011), ISBN-10: 0840062060.
Newton cooling differential equation du

dt = −h(u(t)− u1), slide:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/2250ThreeExamples.pdf

Slide on answer checks:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/FTC-Method-of-Quadrature.pdf

Chapter 1. Sample Problem 2

A 2-ft high institutional coffee maker serves coffee from an orifice 5 inches above the base of the
cylindrical tank. The tank drains according to the Torricelli model

dy

dx
= −0.02

√
|y(x)|, y(0) = y0. (2)

Symbol y(x) ≥ 0 is the tank coffee height in feet above the orifice at time x seconds, while y0 ≥ 0
is the coffee height at time x = 0.

Establish these facts about the physical problem.

1. If y0 = 0, then y(x) is not determined by the model. A physical explanation is expected,
based on possible past tank levels. Numerical solutions are therefore technological nonsense.

2. If y0 > 0, then the solution y(x) is uniquely determined and computable by numerical
software. Justify using Picard’s existence-uniqueness theorem.

3. Solve equation (2) using separation of variables when y0 is 19 inches, then numerically find
the drain time (about 125 seconds).

References. Edwards-Penney, Picard’s theorem 1 section 1.3 and Torricelli’s Law section 1.4.
Tank draining Mathematica demo at Wolfram Research:

Carl Schaschke, Fluid Mechanics: Worked Examples for Engineers, The Institution of Chemical
Engineers (2005), ISBN-10: 0852954980, Chapter 6.
Slide on Picard and Peano Theorems:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/Picard+DirectionFields.pdf
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Chapters 1,2. Sample Problem 3.

Suppose a cup of hot chocolate has an initial temperature of 185◦F when freshly poured and the
desired drinking temperature is 160◦F . After 50 seconds in a room at 68◦F , the temperature
has cooled to 181◦F . Newton’s Law of Cooling applies to model the temperature u(t) of the
chocolate by the initial value problem

du

dt
= −h (u(t) − 68) , u(0) = 185,

where h > 0 is the cooling constant, to be determined from supplied information.

1. Find an equation for the temperature u(t) at any time t.

2. Find the Newton cooling constant h.

3. Determine the time required for the chocolate to cool to 160◦F .

References. Edwards-Penney section 1.5. Serway and Vuille, College Physics 9/E, Brooks-Cole
(2011), ISBN-10: 0840062060. An answer check might use The Coffee Cooling Problem, a Wolfram
Demonstration Project contributed by S.M. Binder, which can be found at
http://demonstrations.wolfram.com/TheCoffeeCoolingProblem/.

Credits. Created by Rebecca Terry, January 2014.

Chapters 1,2. Sample Problem 4. Logistic growth F (x) = rx(1 − x/K) can be used to
describe the annual natural growth of a fish stock. Symbol x(t) is the stock biomass in number of
fish at the start of month t. The intrinsic growth rate is symbol r. The environmental carrying
capacity in stock biomass terms is symbol K.

1. Assume a fish pond has carrying capacity K = 780500 and that 80% of the the fish survive to
maturity. We’ll assume 6 months to maturity and r = 0.8. Write in detail the no-harvesting
model x′(t) = F (x(t)) and find the equilibrium values.

2. Assume constant harvesting H to give the model x′(t) = F (x(t)) − H. Use the quadratic
formula from algebra to find the equilibrium points as a function of symbol H ≥ 0. Then
verify the following results.

If H = 156100, then there are two states: extinction for x(0) < 390250 and limiting
population 390250 otherwise.

If H > 156100, then the extinction state is the only possibility.

If H < 156100, then there are two equilibria. The larger equilibrium population size is
stable and the smaller is unstable. These numbers imply sustainable harvest for certain
population sizes, but not all.

3. Assume a constant harvest rate H. Create two graphics of the population x(t) over 36
months. The first uses a harvesting size H to show sustainable harvest. The second uses
a different size H to show non-sustainable harvest. Handwritten plots are expected, or a
computer plot, if you know how.

References. Edwards-Penney sections 2.1, 2.2. Course documents:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/2250logistic.pdf Logistic Equation,
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/2250phaseline.pdf Stability,
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/fishFarming2014.pdf Fish Farming
and a logistic investigation in Malaysia by M.F. Laham 2012:
http://www.ukm.my/jsm/pdf_files/SM-PDF-41-2-2012/04%20Mohamed%20Faris.pdf
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Chapters 1,2. Sample solutions plus maple code

Sample Problem 4



>  >  

>  >  

>  >  

>  >  

>  >  

(1)(1)

F : = x - > r * x * ( 1 - x / K ) : G : = x - > r * x * ( 1 - x / K ) - H :
so lve (G(x )=0 ,x ) ;

de :=d i f f ( x ( t ) , t )=G(x ( t ) ) : r :=0 .8 :K :=780500 :H0 :=K* r /4 :H :=H0-5000 :
a :=K /2+ (1 /2 ) *sqr t (K^2 -4 *H*K / r ) ;b :=K /2 - (1 /2 ) *sqr t (K^2 -4 *H*K / r ) ;
i c : = [ [ 0 , 0 . 9 * b ] , [ 0 , 0 . 9 4 * b ] , [ 0 , 0 . 9 8 * b ] , [ 0 , b ] , [ 0 , ( a + b ) / 2 ] , [ 0 , ( 3 * a + b )
/ 4 ] ,
[ 0 , a ] , [ 0 , 1 . 2 * a ] , [ 0 , 1 . 4 * a ] , [ 0 , 1 . 6 * a ] ] :
opts :=d i r f ie ld=[10 ,10 ] ,a r rows=l ine ,co lor=gray , l ineco lor=b lack ,
thickness=2:
D E t o o l s [ D E p l o t ] ( d e , x ( t ) , t = 0 . . 3 6 , x = 0 . . K , i c , o p t s ) ;

d e : = d i f f ( x ( t ) , t ) = G ( x ( t ) ) :
r :=0.8:K:=780500:H0:=K*r /4:
H:=H0+6000;a:=K/2 ;b:=K/2;
i c : = [ [ 0 , 0 . 9 * b ] , [ 0 , 0 . 9 4 * b ] , [ 0 , 0 . 9 8 * b ] , [ 0 , b ] , [ 0 , a ] , [ 0 , 1 . 2 * a ] , [ 0 ,
1 . 4 * a ] ,
[ 0 , 1 . 6 * a ] , [ 0 , 1 . 8 * a ] , [ 0 , 2 * a ] ] :



>  >  

opts :=d i r f ie ld=[10 ,10 ] ,a r rows=l ine ,co lor=gray , l ineco lor=b lack ,
thickness=2:
D E t o o l s [ D E p l o t ] ( d e , x ( t ) , t = 0 . . 3 6 , x = 0 . . K , i c , o p t s ) ;

All solutions decrease.



Chapter 2. Sample Problem 5. A graphic called a phase diagram displays the behavior of
all solutions of u′ = F (u). A phase line diagram is an abbreviation for a direction field on the
vertical axis (u-axis). It consists of equilibrium points and signs of F (u) between equilibria. A
phase diagram can be created solely from a phase line diagram, using just three drawing rules:

1. Solutions don’t cross.

2. Equilibrium solutions are horizontal lines u = c. All other solutions are increasing or
decreasing.

3. A solution curve can be moved rigidly left or right to create another solution curve.

Use these tools on the equation u′ = u(u2 − 4) to make a phase line diagram, and then make a
phase diagram with at least 8 threaded solutions. Label the equilibria as stable, unstable, funnel,
spout, node.

References. Edwards-Penney section 2.2. Course document on Stability:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/2250phaseline.pdf

Chapter 2. Sample Problem 6. An autonomous differential equation dy
dx = F (x) with initial

condition y(0) = y0 has a formal solution

y(x) = y0 +

∫ x

0
F (u)du.

The integral may not be solvable by calculus methods. In this case, the integral is evaluated
numerically to compute y(x) or to plot a graphic. There are three basic numerical methods that
apply, the rectangular rule (RECT), the trapezoidal rule (TRAP)and Simpson’s rule (SIMP).

Apply the three methods for F (x) = sin(x2) and y0 = 0 using step size h = 0.2 from x = 0 to
x = 1. Then fill in the blanks in the following table. Use technology if it saves time. Lastly,
compare the four data sets in a plot, using technology.

x− values 0.0 0.2 0.4 0.6 0.8 1.0
y − to 10 digits 0.0 0.0026663619 0.02129435557 0.07133622797 0.1657380596 0.3102683017

y − RECT values 0.0 0.0 0.007997866838 0.2297554431

y − TRAP values 0.0 0.02392968750 0.07508893150 0.3139025416

y − SIMP values 0.0 0.002666288917 0.02129368017 0.1657330636

References. Edwards-Penney Sections 2.4, 2.5, 2.6, because methods Euler, Modified Euler and
RK4 reduce to RECT, TRAP, SIMP methods when f(x, y) is independent of y, i.e., an equation
y′ = F (x). Course document on numerical solution of y′ = F (x), RECT, TRAP, SIMP methods:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/solve-quadrature-numerically.pdf

Wolfram Alpha at http://www.wolframalpha.com/ can do the RECT rule and graphics with input string

integrate sin(x^2) using left endpoint method with interval width 0.2 from

x=0 to x=1
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Chapter 2. Sample Problem 6.



 

10-digit integral of sin(x^2)                                              RECT rule plot of y'=sin(x^2), h=0.2

TRAP rule plot of y'=sin(x^2), h=0.2                                  SIMP rule plot of y'=sin(x^2), h=0.2



Chapters 1,2: Sample Problem 7

The velocity of a crossbow arrow fired upward from the ground is given at different times in the
following table.

Time t in seconds Velocity v(t) in ft/sec Location

0.000 50 Ground
1.413 0 Maximum
2.980 -45 Near Ground Impact

(a) The velocity v(t) can be approximated by a quadratic polynomial

z(t) = at2 + bt+ c

which reproduces the table data. Find three equations for the coefficients a, b, c. Then solve
for them to obtain a ≈ 2.238, b ≈ −38.55, c = 50.

(b) Assume a linear drag model v′ = −32 − ρv. Substitute the polynomial answer v = z(t) of
(a) into this differential equation, then substitute t = 0 and solve for ρ ≈ 0.131.

(c) Solve the model w′ = −32 − ρw, w(0) = 50 to get w(t) = −32
ρ +

(
50 + 32

ρ

)
e−ρt. Substitute

ρ = 0.131. Then w(t) = −244.2748092 + 294.2748092 e−0.131 t is an exponential model for
linear drag which might reproduce the crossbow data.

(d) Compare w(t) and z(t) in a plot. Comment on the plot and what it means. Bear in mind
that w(t) is an exponential model while z(t) is a quadratic model. Neither of them are the
true velocty v(t) which produced the crossbow data.

References. Edwards-Penney sections 2.3, 3.1, 3.2. Course document on Linear algebraic
equations:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/linearequDRAFT.pdf

Course document on Newton kinematics:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/newtonModelsDE2008.pdf
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Chapters 1,2. Sample Problem 8

Consider the system of differential equations

x′1 = −1
6x1 + 1

6x3,

x′2 = 1
6x1 − 1

3x2,

x′3 = 1
3x2 − 1

6x3,

for the amounts x1, x2, x3 of salt in recirculating brine tanks, as in the figure:

Recirculating Brine Tanks A, B, C
The volumes are 60, 30, 60 for A,B,C, respectively.

The steady-state salt amounts in the three tanks are found by formally setting x′1 = x′2 = x′3 = 0
and then solving for the symbols x1, x2, x3. Solve the corresponding linear system of algebraic
equations to obtain the answer x1 = x3 = 2c, x2 = c, which means the total amount of salt is
uniformly distributed in the tanks in ratio 2 : 1 : 2.

References. Edwards-Penney sections 3.1, 3.2, 7.3 Figure 5. Course document on Linear
algebraic equations:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/linearequDRAFT.pdf

Course document on Systems and Brine Tanks:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/systemsBrineTank.pdf
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typo: v(t) above should be z(t)

Chapters 1,2. Sample Problem 7.



Chapters 1,2. Sample Problem 8.


