
Problem 7. Picard–Lindelöf Theorem and Spring-Mass Models

Picard-Lindelöf Theorem. Let ~f(x, ~y) be defined for

|x−x0| ≤ h, ‖~y− ~y0‖ ≤ k, with ~f and ∂ ~f
∂~y continuous. Then

for some constant H, 0 < H < h, the problem{
~y ′(x) = ~f(x, ~y(x)), |x− x0| < H,
~y(x0) = ~y0

has a unique solution ~y(x) defined on the smaller interval
|x− x0| < H. Emile Picard

The Problem. The second order problem
u′′ + 2u′ + 17u = 100,
u(0) = 1,
u′(0) = −1

(1)

is a spring-mass model with damping and constant external force. The variables are time
x in seconds and elongation u(x) in meters, measured from equilibrium. Coefficients in the
equation represent mass m = 1 kg, a viscous damping constant c = 2, Hooke’s constant
k = 17 and external force F (x) = 100.

Convert the scalar initial value problem into a vector problem, to which Picard’s vector
theorem applies, by supplying details for the parts below.

(a) The conversion uses the position-velocity substitution y1 = u(x), y2 = u′(x), where
y1, y2 are the invented components of vector ~y. Then the initial data u(0) = 1, u′(0) = −1
converts to the vector initial data

~y(0) =

(
1
−1

)
.

(b) Differentiate the equations y1 = u(x), y2 = u′(x) in order to find the scalar system of two
differential equations, known as a dynamical system:

y′1 = y2, y′2 = −17y1 − 2y2 + 100.

(c) The derivative of vector function ~y(x) is written ~y ′(x) or d~y
dx(x). It is obtained by compo-

nentwise differentiation: ~y ′(x) =

(
y′1
y′2

)
. The vector differential equation model of scalar

system (1) is 
~y ′(x) =

(
0 1

−17 −2

)
~y(x) +

(
0

100

)
,

~y(0) =

(
1
−1

)
.

(2)

(d) System (2) fits the hypothesis of Picard’s theorem, using symbols

~f(x, ~y) =

(
0 1

−17 −2

)
~y(x) +

(
0

100

)
, ~y0 =

(
1
−1

)
.

The components of vector function ~f are continuously differentiable in variables x, y1, y2,

therefore ~f and ∂ ~f
∂~y are continuous.
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References. Chapter 2, Edwards-Penney.
Course slides on the Picard and Direction Fields:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/Picard+DirectionFields.pdf

Course slides on the Picard Theorem:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/picardHigherOrderSuperposition.pdf

Course slides on the Vector Picard Theorem:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/picardVectorTheorem.pdf

Problem 8. The velocity of a crossbow bolt launched upward from the ground was determined
from a video and a speed gun to complete the following table.

Time t in seconds Velocity v(t) in ft/sec Location

0.000 60 Ground
1.7 0 Maximum
3.5 -52 Near Ground Impact

(a) The bolt velocity can be approximated by a quadratic polynomial

z(t) = at2 + bt+ c

which reproduces the table data. Find three equations for the coefficients a, b, c. Then solve
for the coefficients.

(b) Assume a linear drag model v′ = −32 − ρv. Substitute the polynomial answer v = z(t) of
(a) into this differential equation, then substitute t = 0 and solve for ρ ≈ 0.11.

(c) Solve the model w′ = −32− ρw, w(0) = 60 with ρ = 0.11.

(d) The error between z(t) and w(t) can be measured. Is the drag coefficient value ρ = 0.11
reasonable?

References. Edwards-Penney sections 2.3, 3.1, 3.2.
Course documents on Linear algebraic equations:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/linearequDRAFT.pdf

Course documents on Newton kinematics:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/newtonModelsDE2008.pdf
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Problem 9. Consider the system of differential equations

x′1 = −1
5x1 + 1

7x3,

x′2 = 1
5x1 − 1

3x2,

x′3 = 1
3x2 − 1

7x3,

for the amounts x1, x2, x3 of salt in recirculating brine tanks, as in the figure:

Recirculating Brine Tanks A, B, C
The volumes are 50, 30, 70 for A,B,C, respectively.

The steady-state salt amounts in the three tanks are found by formally setting x′1 = x′2 = x′3 = 0
and then solving for the symbols x1, x2, x3.

(a) Solve the corresponding linear system of algebraic equations for answers x1, x2, x3.

(b) The total amount of salt is uniformly distributed in the tanks in ratio 5 : 3 : 7. Explain this
mathematically from the answer in (a).

References. Edwards-Penney sections 3.1, 3.2, 7.3 Figure 5.
Course documents on Linear algebraic equations:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/linearequDRAFT.pdf

Course documents on Systems and Brine Tanks:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/systemsBrineTank.pdf
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