Problem 7. Picard-Lindelöf Theorem and Spring-Mass Models

Picard-Lindelöf Theorem. Let $\vec{f}(x, \vec{y})$ be defined for $\left|x-x_{0}\right| \leq h,\left\|\vec{y}-\vec{y}_{0}\right\| \leq k$, with \vec{f} and $\frac{\partial \vec{f}}{\partial \vec{y}}$ continuous. Then for some constant $H, 0<H<h$, the problem

$$
\left\{\begin{array}{l}
\vec{y}^{\prime}(x)=\vec{f}(x, \vec{y}(x)), \quad\left|x-x_{0}\right|<H, \\
\vec{y}\left(x_{0}\right)=\vec{y}_{0}
\end{array}\right.
$$

has a unique solution $\vec{y}(x)$ defined on the smaller interval $\left|x-x_{0}\right|<H$.

Emile Picard

The Problem. The second order problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+2 u^{\prime}+17 u=100, \tag{1}\\
u(0)=1 \\
u^{\prime}(0)=-1
\end{array}\right.
$$

is a spring-mass model with damping and constant external force. The variables are time x in seconds and elongation $u(x)$ in meters, measured from equilibrium. Coefficients in the equation represent mass $m=1 \mathrm{~kg}$, a viscous damping constant $c=2$, Hooke's constant $k=17$ and external force $F(x)=100$.
Convert the scalar initial value problem into a vector problem, to which Picard's vector theorem applies, by supplying details for the parts below.
(a) The conversion uses the position-velocity substitution $y_{1}=u(x), y_{2}=u^{\prime}(x)$, where y_{1}, y_{2} are the invented components of vector \vec{y}. Then the initial data $u(0)=1, u^{\prime}(0)=-1$ converts to the vector initial data

$$
\vec{y}(0)=\binom{1}{-1} \text {. }
$$

(b) Differentiate the equations $y_{1}=u(x), y_{2}=u^{\prime}(x)$ in order to find the scalar system of two differential equations, known as a dynamical system:

$$
y_{1}^{\prime}=y_{2}, \quad y_{2}^{\prime}=-17 y_{1}-2 y_{2}+100 .
$$

(c) The derivative of vector function $\vec{y}(x)$ is written $\vec{y}^{\prime}(x)$ or $\frac{d \vec{y}}{d x}(x)$. It is obtained by componentwise differentiation: $\vec{y}^{\prime}(x)=\binom{y_{1}^{\prime}}{y_{2}^{\prime}}$. The vector differential equation model of scalar system (1) is

$$
\left\{\begin{align*}
\vec{y}^{\prime}(x) & =\left(\begin{array}{rr}
0 & 1 \\
-17 & -2
\end{array}\right) \vec{y}(x)+\binom{0}{100}, \tag{2}\\
\vec{y}(0) & =\binom{1}{-1}
\end{align*}\right.
$$

(d) System (2) fits the hypothesis of Picard's theorem, using symbols

$$
\vec{f}(x, \vec{y})=\left(\begin{array}{rr}
0 & 1 \\
-17 & -2
\end{array}\right) \vec{y}(x)+\binom{0}{100}, \quad \vec{y}_{0}=\binom{1}{-1} .
$$

The components of vector function \vec{f} are continuously differentiable in variables x, y_{1}, y_{2}, therefore \vec{f} and $\frac{\partial \vec{f}}{\partial \vec{y}}$ are continuous.

References. Chapter 2, Edwards-Penney.
Course slides on the Picard and Direction Fields:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/Picard+DirectionFields.pdf
Course slides on the Picard Theorem:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/picardHigherOrderSuperposition.pdf
Course slides on the Vector Picard Theorem:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/picardVectorTheorem.pdf

Problem 8. The velocity of a crossbow bolt launched upward from the ground was determined from a video and a speed gun to complete the following table.

Time t in seconds	Velocity $v(t)$ in $\mathrm{ft} / \mathrm{sec}$	Location
0.000	60	Ground
1.7	0	Maximum
3.5	-52	Near Ground Impact

(a) The bolt velocity can be approximated by a quadratic polynomial

$$
z(t)=a t^{2}+b t+c
$$

which reproduces the table data. Find three equations for the coefficients a, b, c. Then solve for the coefficients.
(b) Assume a linear drag model $v^{\prime}=-32-\rho v$. Substitute the polynomial answer $v=z(t)$ of (a) into this differential equation, then substitute $t=0$ and solve for $\rho \approx 0.11$.
(c) Solve the model $w^{\prime}=-32-\rho w, w(0)=60$ with $\rho=0.11$.
(d) The error between $z(t)$ and $w(t)$ can be measured. Is the drag coefficient value $\rho=0.11$ reasonable?

References. Edwards-Penney sections 2.3, 3.1, 3.2.
Course documents on Linear algebraic equations:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/linearequDRAFT.pdf
Course documents on Newton kinematics:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/newtonModelsDE2008.pdf

Problem 9. Consider the system of differential equations

$$
\begin{array}{rlr}
x_{1}^{\prime} & =-\frac{1}{5} x_{1} \quad+\frac{1}{7} x_{3}, \\
x_{2}^{\prime} & =\frac{1}{5} x_{1}-\frac{1}{3} x_{2}, \\
x_{3}^{\prime} & = & \frac{1}{3} x_{2}-\frac{1}{7} x_{3},
\end{array}
$$

for the amounts x_{1}, x_{2}, x_{3} of salt in recirculating brine tanks, as in the figure:

Recirculating Brine Tanks A, B, C

The volumes are $50,30,70$ for A, B, C, respectively.
The steady-state salt amounts in the three tanks are found by formally setting $x_{1}^{\prime}=x_{2}^{\prime}=x_{3}^{\prime}=0$ and then solving for the symbols x_{1}, x_{2}, x_{3}.
(a) Solve the corresponding linear system of algebraic equations for answers x_{1}, x_{2}, x_{3}.
(b) The total amount of salt is uniformly distributed in the tanks in ratio $5: 3: 7$. Explain this mathematically from the answer in (a).

References. Edwards-Penney sections 3.1, 3.2, 7.3 Figure 5.
Course documents on Linear algebraic equations:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/linearequDRAFT.pdf
Course documents on Systems and Brine Tanks:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/systemsBrineTank.pdf

