Week 1 Examples

Three Examples. Solve differential equations without a book. Three basic examples used throughout a course in differential equations, which require only a calculus background.

Growth-Decay: $\frac{d A(t)}{d t}=k A(t), A(0)=A_{0}$.
The unique solution is $A(t)=A_{0} e^{k t}$. Radioactive decay. Jeweler's bench light experiment. Malthusian population dynamics. RC and LR circuits. Drug elimination. First-order chemical reactions, law of mass-action. Compound continuous bank interest.
Newton Cooling: $\frac{d u(t)}{d t}=-h\left(u(t)-u_{1}\right), u(0)=u_{0}$.
The solution is $u(t)=u_{1}+\left(u_{0}-u_{1}\right) e^{-h t}$. Hot chocolate at initial temperature u_{0} with room thermometer reading u_{1}. Symbol $u(t)=$ time-varying hot chocolate dial thermometer temperature.
Verhulst Dynamics: $\frac{d P(t)}{d t}=(a-b P(t)) P(t), P(0)=P_{0}$.
The solution is $P(t)=\frac{a P_{0}}{b P_{0}+\left(a-b P_{0}\right) e^{-a t}}$. Fish population $P(t)$ in Cecret Lake at Alta. Carrying capacity. Stocking and re-stocking. Harvesting.

Example 1: Exercise 1.2-2: Solve $d y / d x=(x-2)^{2}, y(2)=1$.
Method of quadrature. Answer Check details. Non-reversible steps, false proof for $0=1$.
http://www.math.utah.edu/ gustafso/s2019/2280/lectureslides/FTC-Method-of-Quadrature.pdf
Example 2: Exercise 1.2-4: $d y / d x=1 / x^{2}, y(1)=5$.
Power rule in Newton calculus. Answer check shortcuts.
Example 3: Exercise 1.2-10: $d y / d x=x e^{-x}, y(0)=1$.
Integral tables and integration by parts. Jennifer Lahti's solution:
http://www.math.utah.edu/ ${ }^{\sim}$ gustafso/s2018/2280/lectureslides/2250Weeklexercises-JenniferLahti-1.2-5+8+10.pdf
Example 4: Exercise 1.3-8: $d y / d x=x^{2}-y$
Thread edge-to-edge solutions through the direction field at each blue dot. JPEG image source:
http://www.math.utah.edu/~gustafso/s2019/2280/images/exercise1.3-8-EdwardsPenney.jpg
Example 5: Exercise 1.3-14: $d y / d x=y^{1 / 3}, y(0)=0$
Explain application of the Peano and Picard theorems.
Computer numerical methods fail on this example. Why?
Example 6: Exercise 1.4-6: Solve $y^{\prime}=3 \sqrt{x y}$
Three answers. Book reports only one answer.
Example 7: Exercise 1.4-10: Solve $\left(1+x^{2}\right) y^{\prime}=(1+y)^{2}$
Two answers. Book reports only one answer.
Example 8: Exercise 1.4-18: Solve $x^{2} y^{\prime}=1-x^{2}+y^{2}-x^{2} y^{2}$ [See Example 11 infra]
Example 9: Exercise 1.4-22: Solve $y^{\prime}=4 x^{3} y-y, y(1)=-3$
Example 10: Show that $y^{\prime}=x+y$ is not separable.
TEST I. f_{x} / f depends on y implies $y^{\prime}=f(x, y)$ not separable.
Example 11: Find a factorization $f(x, y)=F(x) G(y)$ given
(1) $f(x, y)=2 x y+4 y+3 x+6$
(2) $f(x, y)=\left(1-x^{2}+y^{2}-x^{2} y^{2}\right) / x^{2}$

Answers: (1) $F=x+2, G=2 y+3$; (2) $F=\left(1-x^{2}\right) / x^{2}, G=1+y^{2}$. Main idea: Choose $y=0$ in $F(x)=f(x, y) / G(y)$ to find $F(x)=(3 x+6) / G(0)$ in equation (1). How to find G ? Warning: Divide by zero is not allowed. Choose $y=0, y=1$, etc, until no divide by zero error.
Example 12: Midterm 1 examples: $y^{\prime}=x+y, y^{\prime}=x+y^{2}, y^{\prime}=x^{2}+y^{2}$

