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10.1 Jordan Form and Eigenanalysis

Generalized Eigenanalysis

The main result is Jordan’s decomposition

A = PJP−1,

valid for any real or complex square matrix A. We describe here how
to compute the invertible matrix P of generalized eigenvectors and the
upper triangular matrix J , called a Jordan form of A.

Jordan block. An m×m upper triangular matrix B(λ,m) is called a
Jordan block provided all m diagonal elements are the same eigenvalue
λ and all super-diagonal elements are one:

B(λ,m) =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 (m×m matrix)

Jordan form. Given an n× n matrix A, a Jordan form J for A is
a block diagonal matrix

J = diag(B(λ1,m1), B(λ2,m2), . . . , B(λk,mk)),

where λ1, . . . , λk are eigenvalues of A (duplicates possible) and m1+· · ·+
mk = n. The eigenvalues of J are on the diagonal of J and J has exactly
k eigenpairs. If k < n, then J is non-diagonalizable. Relation AP = PJ
implies A has exactly k eigenpairs and A fails to be diagonalizable for
k < n.

The relation A = PJP−1 is called a Jordan decomposition of A.
Invertible matrix P is called the matrix of generalized eigenvectors
of A. It defines a coordinate system ~x = P~y in which the vector function
~x → A~x is transformed to the simpler vector function ~y → J~y .

If equal eigenvalues are adjacent in J , then Jordan blocks with equal
diagonal entries will be adjacent. Zeros can appear on the super-diagonal
of J , because adjacent Jordan blocks join on the super-diagonal with a
zero. A complete specification of how to build J from A appears below.

Decoding a Jordan Decomposition A = PJP−1. If J is a
single Jordan block, J = B(λ,m), then P = 〈~v 1| . . . |~vm〉 and AP = PJ
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means
A~v 1 = λ~v 1,
A~v 2 = λ~v 2 + ~v 1,

...
...

...
A~vm = λ~vm + ~vm−1.

The exploded view of the relation AP = PB(λ,m) is called a Jordan
chain. The formulas can be compacted via matrix N = A− λI into the
recursion

N~v 1 = ~0 , N~v 2 = ~v 1, . . . , N~vm = ~vm−1.

The first vector ~v 1 is an eigenvector. The remaining vectors ~v 2, . . . , ~vm
are not eigenvectors, they are called generalized eigenvectors. A
similar formula can be written for each distinct eigenvalue of a matrix A.
The collection of formulas are called Jordan chain relations. A given
eigenvalue may appear multiple times in the chain relations, due to the
appearance of two or more Jordan blocks with the same eigenvalue.

Theorem 1 (Jordan Decomposition)
Every n× n matrix A has a Jordan decomposition A = PJP−1.

Proof: The result holds by default for 1× 1 matrices. Assume the result holds
for all k × k matrices, k < n. The proof proceeds by induction on n.

The induction assumes that for any k × k matrix A, there is a Jordan decom-
position A = PJP−1. Then the columns of P satisfy Jordan chain relations

A~x ji = λi~x
j
i + ~x j−1i , j > 1, A~x1

i = λi~x
1
i .

Conversely, if the Jordan chain relations are satisfied for k independent vectors
{~x ji}, then the vectors form the columns of an invertible matrix P such that
A = PJP−1 with J in Jordan form. The induction step centers upon producing
the chain relations and proving that the n vectors are independent.

Let B be n×n and λ0 an eigenvalue of B. The Jordan chain relations hold for
A = B if and only if they hold for A = B − λ0I. Without loss of generality, we
can assume 0 is an eigenvalue of B.

Because B has 0 as an eigenvalue, then p = dim(kernel(B)) > 0 and k =
dim(Image(B)) < n, with p+ k = n. If k = 0, then B = 0, which is a Jordan
form, and there is nothing to prove. Assume henceforth p and k positive. Let
S = 〈 col(B, i1)| . . . | col(B, ik)〉 denote the matrix of pivot columns i1,. . . ,ik
of B. The pivot columns are known to span Image(B). Let A be the k × k
basis representation matrix defined by the equation BS = SA, or equivalently,
B col(S, j) =

∑k
i=1 aij col(S, i). The induction hypothesis applied to A implies

there is a basis of k-vectors satisfying Jordan chain relations

A~x ji = λi~x
j
i + ~x j−1i , j > 1, A~x1

i = λi~x
1
i .

The values λi, i = 1, . . . , p, are the distinct eigenvalues of A. Apply S to these
equations to obtain for the n-vectors ~y ji = S~x ji the Jordan chain relations

B~y ji = λi~y
j
i + ~y j−1i , j > 1, B~y 1

i = λi~y
1
i .
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Because S has independent columns and the k-vectors ~x ji are independent, then

the n-vectors ~y ji are independent.

The plan is to isolate the chains for eigenvalue zero, then extend these chains
by one vector. Then 1-chains will be constructed from eigenpairs for eigenvalue
zero to make n generalized eigenvectors.

Suppose q values of i satisfy λi = 0. We allow q = 0. For simplicity, assume such
values i are i = 1, . . . , q. The key formula ~y ji = S~x ji implies ~y ji is in Image(B),
while B~y 1

i = λi~y
1
i implies ~y 1

1,. . . ,~y 1
q are in kernel(B). Each eigenvector ~y 1

i

starts a Jordan chain ending in ~y
m(i)
i . Then1 the equation B~u = ~y

m(i)
i has

an n-vector solution ~u . We label ~u = ~y
m(i)+1
i . Because λi = 0, then B~u =

λi~u + ~y
m(i)
i results in an extended Jordan chain

B~y 1
i = λi~y

1
i

B~y 2
i = λi~y

2
i + ~y 1

i
...

B~y
m(i)
i = λi~y

m(i)
i + ~y

m(i)−1
i

B~y
m(i)+1
i = λi~y

m(i)+1
i + ~y

m(i)
i

Let’s extend the independent set {~y 1
i }
q
i=1 to a basis of kernel(B) by adding

s = n − k − q additional independent vectors ~v 1, . . . , ~v s. This basis consists
of eigenvectors of B for eigenvalue 0. Then the set of n vectors ~v r, ~y

j
i for

1 ≤ r ≤ s, 1 ≤ i ≤ p, 1 ≤ j ≤ m(i) + 1 consists of eigenvectors of B and vectors
that satisfy Jordan chain relations. These vectors are columns of a matrix P
that satisfies BP = PJ where J is a Jordan form.

To prove P invertible, assume a linear combination of the columns of P is zero:

p∑
i=q+1

m(i)∑
j=1

bji~y
j
i +

q∑
i=1

m(i)+1∑
j=1

bji~y
j
i +

s∑
i=1

ci~v i = ~0 .

Apply B to this equation. Because B~w = ~0 for any ~w in kernel(B), then

p∑
i=q+1

m(i)∑
j=1

bjiB~y
j
i +

q∑
i=1

m(i)+1∑
j=2

bjiB~y
j
i = ~0 .

The Jordan chain relations imply that the k vectors B~y ji in the linear com-

bination consist of λi~y
j
i + ~y j−1i , λi~y

1
i , i = q + 1, . . . , p, j = 2, . . . ,m(i), plus

the vectors ~y ji , 1 ≤ i ≤ q, 1 ≤ j ≤ m(i). Independence of the original k vec-

tors {~y ji} plus λi 6= 0 for i > q implies this new set is independent. Then all
coefficients in the linear combination are zero.

The first linear combination then reduces to
∑q
i=1 b

1
i ~y

1
i +

∑s
i=1 ci~v i = ~0 . In-

dependence of the constructed basis for kernel(B) implies b1i = 0 for 1 ≤ i ≤ q
and ci = 0 for 1 ≤ i ≤ s. Therefore, the columns of P are independent. The
induction is complete.

1The n-vector ~u is constructed by setting ~u = ~0 , then copy components of k-vector
~x

m(i)
i into pivot locations: row(~u , ij) = row(~x

m(i)
i , j), j = 1, . . . , k.
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Geometric and algebraic multiplicity. The geometric multi-
plicity is defined by GeoMult(λ) = dim(kernel(A− λI)), which is the
number of basis vectors in a solution to (A−λI)~x = ~0 , or, equivalently,
the number of free variables. The algebraic multiplicity is the integer
k = AlgMult(λ) such that (r−λ)k divides the characteristic polynomial
det(A− λI), but larger powers do not.

Theorem 2 (Algebraic and Geometric Multiplicity)
Let A be a square real or complex matrix. Then

1 ≤ GeoMult(λ) ≤ AlgMult(λ).(1)

In addition, there are the following relationships between the Jordan form J
and algebraic and geometric multiplicities.

GeoMult(λ) Equals the number of Jordan blocks in J with eigen-
value λ,

AlgMult(λ) Equals the number of times λ is repeated along the
diagonal of J .

Proof: Let d = GeoMult(λ0). Construct a basis v1, . . . , vn of Rn such that
v1, . . . , vd is a basis for kernel(A − λ0I). Define S = 〈v1| . . . |vn〉 and B =

S−1AS. The first d columns of AS are λ0v1, . . . , λ0vd. Then B =

(
λ0I C
0 D

)
for some matrices C and D. Cofactor expansion implies some polynomial g
satisfies

det(A− λI) = det(S(B − λI)S−1) = det(B − λI) = (λ− λ0)dg(λ)

and therefore d ≤ AlgMult(λ0). Other details of proof are left to the reader.

Chains of generalized eigenvectors. Given an eigenvalue λ of
the matrix A, the topic of generalized eigenanalysis determines a Jordan
block B(λ,m) in J by finding an m-chain of generalized eigenvectors
~v 1, . . . , ~vm, which appear as columns of P in the relation A = PJP−1.
The very first vector ~v 1 of the chain is an eigenvector, (A− λI)~v 1 = ~0 .
The others ~v 2, . . . , ~v k are not eigenvectors but satisfy

(A− λI)~v 2 = ~v 1, . . . , (A− λI)~vm = ~vm−1.

Implied by the term m-chain is insolvability of (A − λI)~x = ~vm. The
chain size m is subject to the inequality 1 ≤ m ≤ AlgMult(λ).

The Jordan form J may contain several Jordan blocks for one eigenvalue
λ. To illustrate, if J has only one eigenvalue λ and AlgMult(λ) = 3,



10.1 Jordan Form and Eigenanalysis 5

then J might be constructed as follows:

J = diag(B(λ, 1), B(λ, 1), B(λ, 1)) =

 λ 0 0
0 λ 0
0 0 λ

 ,
J = diag(B(λ, 1), B(λ, 2)) =

 λ 0 0
0 λ 1
0 0 λ

 ,
J = B(λ, 3) =

 λ 1 0
0 λ 1
0 0 λ

 .
The three generalized eigenvectors for this example correspond to

J =

 λ 0 0
0 λ 0
0 0 λ

 ↔ Three 1-chains,

J =

 λ 0 0
0 λ 1
0 0 λ

 ↔ One 1-chain and one 2-chain,

J =

 λ 1 0
0 λ 1
0 0 λ

 ↔ One 3-chain.

Computing m-chains. Let us fix the discussion to an eigenvalue λ
of A. Define N = A− λI and p = AlgMult(λ).

To compute an m-chain, start with an eigenvector ~v 1 and solve recur-
sively by rref methods N~v j+1 = ~v j until there fails to be a solution.
This must seemingly be done for all possible choices of ~v 1! The search for
m-chains terminates when p independent generalized eigenvectors have
been calculated.

If A has an essentially unique eigenpair (λ, ~v 1), then this process termi-
nates immediately with an m-chain where m = p. The chain produces
one Jordan block B(λ,m) and the generalized eigenvectors ~v 1, . . . , ~vm
are recorded into the matrix P .

If ~u 1, ~u 2 form a basis for the eigenvectors of A corresponding to λ, then
the problem N~x = ~0 has 2 free variables. Therefore, we seek to find an
m1-chain and an m2-chain such that m1 +m2 = p, corresponding to two
Jordan blocks B(λ,m1) and B(λ,m2).

To understand the logic applied here, the reader should verify that for
N = diag(B(0,m1), B(0,m2), . . . , B(0,mk)) the problem N~x = ~0 has
k free variables, because N is already in rref form. These remarks
imply that a k-dimensional basis of eigenvectors of A for eigenvalue λ
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causes a search for mi-chains, 1 ≤ i ≤ k, such that m1 + · · · + mk = p,
corresponding to k Jordan blocks B(λ,m1), . . . , B(λ,mk).

A common naive approach for computing generalized eigenvectors can
be illustrated by letting

A =

 1 1 1
0 1 0
0 0 1

 , ~u 1 =

 1
−1

1

 , ~u 2 =

 0
1
−1

 .
Matrix A has one eigenvalue λ = 1 and two eigenpairs (1, ~u 1), (1, ~u 2).
Starting a chain calculation with ~v 1 equal to either ~u 1 or ~u 2 gives a
1-chain. This naive approach leads to only two independent generalized
eigenvectors. However, the calculation must proceed until three inde-
pendent generalized eigenvectors have been computed. To resolve the
trouble, keep a 1-chain, say the one generated by ~u 1, and start a new
chain calculation using ~v 1 = a1~u 1 + a2~u 2. Adjust the values of a1, a2
until a 2-chain has been computed:

〈A− λI|~v 1〉 =

 0 1 1 a1
0 0 0 −a1 + a2
0 0 0 a1 − a2

 ≈
 0 1 1 a1

0 0 0 0
0 0 0 0

 ,
provided a1 − a2 = 0. Choose a1 = a2 = 1 to make ~v 1 = ~u 1 + ~u 2 6= ~0

and solve for ~v 2 =
(

0, 1, 0
)
. Then ~u 1 is a 1-chain and ~v 1, ~v 2 is a

2-chain. The generalized eigenvectors ~u 1, ~v 1, ~v 2 are independent and
form the columns of P while J = diag(B(λ, 1), B(λ, 2)) (recall λ = 1).
We justify A = PJP−1 by testing AP = PJ , using the formulas

J =

 λ 0 0
0 λ 1
0 0 λ

 , P =

 1 1 0
−1 0 1

1 0 0

 .

Jordan Decomposition using maple

Displayed here is maple code which applied to the matrix

A =

 4 −2 5
−2 4 −3

0 0 2


produces the Jordan decomposition

A = PJP−1 =
1

4

 1 4 −7
−1 4 1

0 0 4


 6 0 0

0 2 1
0 0 2

 1

4

 8 −8 16
2 2 3
0 0 4

 .
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A := Matrix([[4, -2, 5], [-2, 4, -3], [0, 0, 2]]);

factor(LinearAlgebra[CharacteristicPolynomial](A,lambda));

# Answer == (lambda-6)*(lambda-2)^2

J,P:=LinearAlgebra[JordanForm](A,output=[’J’,’Q’]);

zero:=A.P-P.J; # zero matrix expected

Number of Jordan Blocks

In calculating generalized eigenvectors of A for eigenvalue λ, it is pos-
sible to decide in advance how many Jordan chains of size k should be
computed. A practical consequence is to organize the computation for
certain chain sizes.

Theorem 3 (Number of Jordan Blocks)
Given eigenvalue λ of A, define N = A − λI, k(j) = dim(kernel(N j)).
Let p be the least integer such that Np = Np+1. Then the Jordan form of
A has 2k(j − 1)− k(j − 2)− k(j) Jordan blocks B(λ, j − 1), j = 3, . . . , p.

The proof of the theorem is in the exercises, where more detail appears
for p = 1 and p = 2. Complete results are in the maple code below.

An Illustration. This example is a 5×5 matrix A with one eigenvalue
λ = 2 of multiplicity 5. Let s(j) = number of j × j Jordan blocks.

A =


3 −1 1 0 0
2 0 1 1 0
1 −1 2 1 0
−1 1 0 2 1
−3 3 0 −2 3

 , N = A−2I =


1 −1 1 0 0
2 −2 1 1 0
1 −1 0 1 0
−1 1 0 0 1
−3 3 0 −2 1

 .

Then N3 = N4 = N5 = 0 implies k(3) = k(4) = k(5) = 5. Further,
k(2) = 4, k(1) = 2. Then s(5) = s(4) = 0, s(3) = s(2) = 1, s(1) = 0,
which implies one block of each size 2 and 3.

Some maple code automates the investigation:

with(LinearAlgebra):

A := Matrix([

[ 3, -1, 1, 0, 0],[ 2, 0, 1, 1, 0],

[ 1, -1, 2, 1, 0],[-1, 1, 0, 2, 1],

[-3, 3, 0, -2, 3] ]);

lambda:=2;

n:=RowDimension(A);N:=A-lambda*IdentityMatrix(n);

for j from 1 to n do

k[j]:=n-Rank(N^j); od:

for p from n to 2 by -1 do
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if(k[p]<>k[p-1])then break; fi: od;

txt:=(j,x)->printf(‘if‘(x=1,

cat("B(lambda,",j,") occurs 1 time\n"),

cat("B(lambda,",j,") occurs ",x," times\n"))):

printf("lambda=%d, nilpotency=%d\n",lambda,p);

if(p=1) then txt(1,k[1]); else

txt(p,k[p]-k[p-1]);

for j from p to 3 by -1 do

txt(j-1,2*k[j-1]-k[j-2]-k[j]): od:

txt(1,2*k[1]-k[2]);

fi:

#lambda=2, nilpotency=3

#B(lambda,3) occurs 1 time

#B(lambda,2) occurs 1 time

#B(lambda,1) occurs 0 times

J,P:=JordanForm(A,output=[’J’,’Q’])}:

# Answer check for the maple code

J =


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2

 , P =
1

2


0 1 2 −1 0
−4 2 2 −2 2
−4 1 1 −1 1
−4 −3 1 −1 1

4 −5 −3 1 −3



Numerical Instability

The matrix A =

(
1 1
ε 1

)
has two possible Jordan forms

J(ε) =



(
1 1
0 1

)
ε = 0,

(
1 +
√
ε 0
0 1−

√
ε

)
ε > 0.

When ε ≈ 0, then numerical algorithms become unstable, unable to lock
onto the correct Jordan form. Briefly, limε→0 J(ε) 6= J(0).

The Real Jordan Form of A

Given a real matrix A, generalized eigenanalysis seeks to find a real
invertible matrix P and a real upper triangular block matrix R such
that A = PRP−1.
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If λ is a real eigenvalue of A, then a real Jordan block is a matrix

B = diag(λ, . . . , λ) +N, N =


0 1 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1
0 0 0 · · · 0

 .
If λ = a + ib is a complex eigenvalue of A, then symbols λ, 1 and 0 are

replaced respectively by 2×2 real matrices Λ =

(
a b
−b a

)
, I = diag(1, 1)

andO = diag(0, 0). The corresponding 2m×2m real Jordan block matrix
is given by the formula

B = diag(Λ, . . . ,Λ) +N , N =


O I O · · · O O
...

...
...

...
...

...
O O O · · · O I
O O O · · · O O

 .

Direct Sum Decomposition

The generalized eigenspace of eigenvalue λ of an n×n matrix A is the
subspace kernel((A − λI)p) where p = AlgMult(λ). We state without
proof the main result for generalized eigenspace bases, because details
appear in the exercises. A proof is included for the direct sum decompo-
sition, even though Putzer’s spectral theory independently produces the
same decomposition.

Theorem 4 (Generalized Eigenspace Basis)
The subspace kernel((A − λI)k), k = AlgMult(λ) has a k-dimensional
basis whose vectors are the columns of P corresponding to blocks B(λ, j)
of J , in Jordan decomposition A = PJP−1.

Theorem 5 (Direct Sum Decomposition)
Given n×nmatrixA and distinct eigenvalues λ1, . . . , λk, n1 = AlgMult(λi),
. . . , nk = AlgMult(λi), then A induces a direct sum decomposition

Cn = kernel((A− λ1I)n1 ⊕ · · · ⊕ kernel((A− λkI)nk .

This equation means that each complex vector ~x in Cn can be uniquely
written as

~x = ~x 1 + · · ·+ ~xk

where each ~x i belongs to kernel ((A− λi)ni), i = 1, . . . , k.

Proof: The previous theorem implies there is a basis of dimension ni for Ei ≡
kernel((A− λiI)ni), i = 1, . . . , k. Because n1 + · · ·+ nk = n, then there are n
vectors in the union of these bases. The independence test for these n vectors
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amounts to showing that ~x1 + · · ·+ ~xk = ~0 with ~x i in Ei, i = 1, . . . , k, implies
all ~x i = ~0 . This will be true provided Ei ∩ Ej = {~0} for i 6= j.

Let’s assume a Jordan decomposition A = PJP−1. If ~x is common to both Ei
and Ej , then basis expansion of ~x in both subspaces implies a linear combina-
tion of the columns of P is zero, which by independence of the columns of P
implies ~x = ~0 .

The proof is complete.

Computing Exponential Matrices

Discussed here are methods for finding a real exponential matrix eAt

when A is real. Two formulas are given, one for a real eigenvalue and
one for a complex eigenvalue. These formulas supplement the spectral
formulas given earlier in the text.

Nilpotent matrices. A matrix N which satisfies Np = 0 for some
integer p is called nilpotent. The least integer p for which Np = 0 is
called the nilpotency of N . A nilpotent matrix N has a finite exponen-
tial series:

eNt = I +Nt+N2 t
2

2!
+ · · ·+Np−1 tp−1

(p− 1)!
.

If N = B(λ, p)− λI, then the finite sum has a splendidly simple expres-
sion. Due to eλt+Nt = eλteNt, this proves the following result.

Theorem 6 (Exponential of a Jordan Block Matrix)
If λ is real and

B =


λ 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 (p× p matrix)

then

eBt = eλt


1 t t2

2 · · · tp−2

(p−2)!
tp−1

(p−1)!
...

...
...

...
...

...
0 0 0 · · · 1 t
0 0 0 · · · 0 1

 .

The equality also holds if λ is a complex number, in which case both sides
of the equation are complex.
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Real Exponentials for Complex λ. A Jordan decomposition
A = PJP−1, in which A has only real eigenvalues, has real general-
ized eigenvectors appearing as columns in the matrix P, in the natural
order given in J . When λ = a + ib is complex, b > 0, then the real
and imaginary parts of each generalized eigenvector are entered pairwise
into P; the conjugate eigenvalue λ = a − ib is skipped. The complex
entry along the diagonal of J is changed into a 2 × 2 matrix under the
correspondence

a+ ib↔
(

a b
−b a

)
.

The result is a real matrix P and a real block upper triangular matrix J
which satisfy A = PJP−1.

Theorem 7 (Real Block Diagonal Matrix, Eigenvalue a+ ib)

Let Λ =

(
a b
−b a

)
, I = diag(1, 1) and O = diag(0, 0). Consider a real

Jordan block matrix of dimension 2m× 2m given by the formula

B =


Λ I O · · · O O
...

...
...

...
...

...
O O O · · · Λ I
O O O · · · O Λ

 .

If R =

(
cos bt sin bt
− sin bt cos bt

)
, then

eBt = eat


R tR t2

2R · · · tm−2

(m−2)!R
tm−1

(m−1)!R
...

...
...

...
...

...
O O O · · · R tR
O O O · · · O R

 .

Solving ~x ′ = A~x. The solution ~x (t) = eAt~x (0) must be real if A is
real. The real solution can be expressed as ~x (t) = P~y (t) where ~y ′(t) =
R~y (t) and R is a real Jordan form of A, containing real Jordan blocks
B1, . . . , Bk down its diagonal. Theorems above provide explicit formulas
for the block matrices eBit in the relation

eRt = diag
(
eB1t, . . . , eBkt

)
.

The resulting formula

~x (t) = PeRtP−1~x (0)

contains only real numbers, real exponentials, plus sine and cosine terms,
which are possibly multiplied by polynomials in t.
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Exercises 10.1

Jordan block. Write out explicitly.

1.

2.

3.

4.

Jordan form. Which are Jordan
forms and which are not? Explain.

5.

6.

7.

8.

Decoding A = PJP−1. Decode
A = PJP−1 in each case, displaying
explicitly the Jordan chain relations.

9.

10.

11.

12.

Geometric multiplicity. Deter-
mine the geometric multiplicity
GeoMult(λ).

13.

14.

15.

16.

Algebraic multiplicity. Determine
the algebraic multiplicity AlgMult(λ).

17.

18.

19.

20.

Generalized eigenvectors. Find all
generalized eigenvectors and represent
A = PJP−1.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Computing m-chains. Find the Jor-
dan chains for the given eigenvalue.

33.

34.

35.

36.

37.

38.

39.

40.

Jordan Decomposition. Use maple

to find the Jordan decomposition.

41.

42.

43.
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44.

45.

46.

47.

48.

Number of Jordan Blocks. Outlined
here is the derivation of

s(j) = 2k(j − 1)− k(j − 2)− k(j).

Definitions:

• s(j)= number of blocks B(λ, j)

• N = A− λI

• k(j) = dim(kernel(N j))

• Lj = kernel(N j−1)⊥ relative to
kernel(N j)

• `(j) = dim(Lj)

• p minimizes
kernel(Np) = kernel(Np+1)

49. Verify k(j) ≤ k(j + 1) from

kernel(N j) ⊂ kernel(N j+1).

50. Verify the direct sum formula

kernel(N j) = kernel(N j−1)⊕Lj .

Then k(j) = k(j − 1) + `(j).

51. Given N j~v = ~0 , N j−1~v 6= ~0 ,
define ~v i = N j−i~v , i = 1, . . . , j.
Show that these are independent
vectors satisfying Jordan chain re-
lations N~v 1 = ~0 , N~v i+i = ~v i.

52. A block B(λ, p) corresponds to
a Jordan chain ~v 1, . . . , ~v p con-
structed from the Jordan decom-
position. Use N j−1~v j = ~v 1

and kernel(Np) = kernel(Np+1)
to show that the number of such
blocks B(λ, p) is `(p). Then for
p > 1, s(p) = k(p)− k(p− 1).

53. Show that `(j − 1) − `(j) is the
number of blocks B(λ, j) for 2 <
j < p. Then

s(j) = 2k(j − 1)− k(j)− k(j − 2).

54. Test the formulas above on the
special matrices

A = diag(B(λ, 1), B(λ, 1), B(λ, 1)),

A = diag(B(λ, 1), B(λ, 2), B(λ, 3)),

A = diag(B(λ, 1), B(λ, 3), B(λ, 3)),

A = diag(B(λ, 1), B(λ, 1), B(λ, 3)),

Generalized Eigenspace Basis.

Let A be n× n with distinct eigenval-
ues λi, ni = AlgMult(λi) and Ei =
kernel((A− λiI)ni), i = 1, . . . , k. As-
sume a Jordan decomposition A =
PJP−1.

55. Let Jordan blockB(λ, j) appear in
J . Prove that a Jordan chain cor-
responding to this block is a set of
j independent columns of P .

56. Let Bλ be the union of all
columns of P originating from Jor-
dan chains associated with Jordan
blocks B(λ, j). Prove that Bλ is an
independent set.

57. Verify that Bλ has AlgMult(λ) ba-
sis elements.

58. Prove that Ei = span (Bλi
) and

dim(Ei) = ni, i = 1, . . . , k.

Numerical Instability. Show directly
that limε→0 J(ε) 6= J(0).

59.

60.

61.

62.

Direct Sum Decomposition. Dis-
play the direct sum decomposition.

63.

64.
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65.

66.

67.

68.

69.

70.

Exponential Matrices. Compute the
exponential matrix on paper and then
check the answer using maple.

71.

72.

73.

74.

75.

76.

77.

78.

Nilpotent matrices. Find the nilpo-
tency of N .

79.

80.

81.

82.

Real Exponentials. Compute the
real exponential eAt on paper. Check
the answer in maple.

83.

84.

85.

86.

Real Jordan Form. Find the real Jor-
dan form.

87.

88.

89.

90.

Solving ~x ′ = A~x . Solve the differ-
ential equation.

91.

92.

93.

94.


