Differential Equations 2280 Midterm Exam 2 with Solutions Exam Date: 5 April 2019 at 7:30am

Instructions: This in-class exam is 80 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

Laplace Theory: Chapter 7

Laplace Theory Background. Expected without notes or books is the 4-entry Forward Laplace Table and these rules: Linearity, Parts, Shift, s-differentiation, Lerch's Theorem, Final Value Theorem, Existence theory.

- (Laplace Theory: Differential Equations) Solve differential equations (1a), (1b) by Laplace's method.
 (1a) [40%] Third order x''' + x' = 0, x(0) = 1, x'(0) = 0, x''(0) = 0.
 (1b) [60%] Dynamical system x' = x + y, y' = 2x + 6, x(0) = 0, y(0) = 0.
- 2. (Laplace Theory: Backward Table) Solve for f(t) in (2a), (2b), (2c), (2d).

Assumptions. Below, f(t) is of piecewise continuous of exponential order. Expression u(t) denotes the unit step function.

Credit. Document all steps, e.g., if you cancel \mathcal{L} then cite Lerch's Theorem. The answer is 25%. The documented steps are 75%. Partial fraction coefficients are expected to be evaluated last.

(2a)
$$[20\%] \mathcal{L}(f(t)) = \frac{100}{(s^2 + 25)(s^2 + 4)}$$

(2b) $[20\%] \mathcal{L}(f(t)) = \frac{s+1}{s^2 + 4s + 29}$.
(2c) $[30\%] \mathcal{L}(f(t)) = \frac{1}{(s^2 + 2s)(s^2 - 3s)}$
(2d) $[30\%] \frac{d}{ds} \mathcal{L}(f(t)) \Big|_{s \to (s-3)} = \frac{d}{ds} \mathcal{L}(u(t - \pi)e^t \cos 25t)$.

- 3. (Laplace Theory: Forward Table) Compute the Laplace transform $\mathcal{L}(f(t))$.
 - (3a) [20%] $f(t) = (-t)e^{2t}\sin(3t)$. (3b) [30%] f(t)) = $e^{-\pi t}g(t)$ and $g(t) = \frac{e^{2t} - e^{-2t}}{t}$. (3c) [20%] $\frac{d}{ds}\mathcal{L}(f(t)) = \frac{1}{s^{2019}} + \frac{1}{s^2 + 1}$. (3d) [30%] Define $f(t) = e^{-2t}g(t)$) where $g(t) = \frac{e^{2t} - e^{-2t}}{t}$.

Systems of Differential Equations: Chapters 4 and 5

Background.

The **Eigenanalysis Method** for a real 3×3 matrix A assumes eigenpairs $(\lambda_1, \vec{\mathbf{v}}_1), (\lambda_2, \vec{\mathbf{v}}_2), (\lambda_3, \vec{\mathbf{v}}_3)$. It says that the 3×3 system $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$ has general solution $\vec{\mathbf{x}}(t) = c_1\vec{\mathbf{v}}_1e^{\lambda_1t} + c_2\vec{\mathbf{v}}_2e^{\lambda_2t} + c_3\vec{\mathbf{v}}_3e^{\lambda_3t}$.

The Cayley-Hamilton-Ziebur method is based upon this result:

Let A be an $n \times n$ real matrix. The components of solution $\vec{\mathbf{u}}$ of $\frac{d}{dt} \vec{\mathbf{u}}(t) = A\vec{\mathbf{u}}(t)$ are linear combinations of Euler solution atoms obtained from the roots of the characteristic equation $|A - \lambda I| = 0$. Alternatively, $\vec{\mathbf{u}}(t)$ is a vector linear combination of the Euler solution atoms: $\vec{\mathbf{u}}(t) = \sum_{k=1}^{n} (atom_k) \vec{\mathbf{d}}_k$.

A **Fundamental Matrix** is an $n \times n$ matrix $\Phi(t)$ with columns consisting of independent solutions of $\mathbf{\vec{x}}'(t) = A\mathbf{\vec{x}}(t)$, where A is an $n \times n$ real matrix. The general solution of $\mathbf{\vec{x}}'(t) = A\mathbf{\vec{x}}(t)$ is $\mathbf{\vec{x}}(t) = \Phi(t)\mathbf{\vec{c}}$, where $\mathbf{\vec{c}}$ is a column vector of arbitrary constants c_1, \ldots, c_n . An alternate and widely used definition of fundamental matrix is $\Phi'(t) = A\Phi(t)$, with $|\Phi(0)| \neq 0$ required to establish independence of the columns of Φ .

The **Exponential Matrix**, denoted e^{At} , is the unique fundamental matrix $\Psi(t)$ such that $\Psi(0) = I$. Matrix A is an $n \times n$ real matrix. It is known that $e^{At} = \Phi(t)\Phi(0)^{-1}$ for any fundamental matrix $\Phi(t)$. Consequently, $\frac{d}{dt}\left(e^{At}\right) = A e^{At}$ and $e^{At}\Big|_{t=0} = I$.

4. (Systems: Eigenanalysis Method)

Complete parts ((4a), (4b), (4c).

(4a) [40%] Let $A = \begin{pmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 0 & 0 & 7 \end{pmatrix}$. Display the linear algebra details for computing the three eigenpairs of A.

(4b) [30%] Matrix
$$A = \begin{pmatrix} 4 & 1 & -1 & 0 \\ 1 & 4 & -2 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 4 \end{pmatrix}$$
 has eigenpairs $\begin{pmatrix} 1 \\ -5 \\ -3 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 3, \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 4, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 5, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$. Display the general solution of $\frac{d}{dt} \vec{\mathbf{u}}(t) = A\vec{\mathbf{u}}(t)$.

(4c) [40%] Let $\vec{\mathbf{u}}(t) = \vec{\mathbf{c}} e^{rt}$, the vector Euler substitution. Assume real $n \times n$ matrix A has a real eigenpair $(\lambda, \vec{\mathbf{v}})$. Prove that the Euler substitution with $r = \lambda$ and $\vec{\mathbf{c}} = \vec{\mathbf{v}}$ applied to $\frac{d}{dt} \vec{\mathbf{u}}(t) = A\vec{\mathbf{u}}(t)$ finds a nonzero solution of $\frac{d}{dt} \vec{\mathbf{u}}(t) = A\vec{\mathbf{u}}(t)$.

5. (Systems: First Order Cayley-Hamilton-Ziebur)

(5a) [30%] The eigenvalues are 2, 6 for the matrix $A = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}$.

Display the general solution of $\frac{d}{dt}\vec{\mathbf{u}}(t) = A\vec{\mathbf{u}}(t)$ according to the Cayley-Hamilton-Ziebur shortcut (textbook chapters 4,5).

(5b) [40%] The 3 × 3 triangular matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 5 & 1 \\ 0 & 0 & -2 \end{pmatrix}$ represents a linear

cascade, such as found in brine tank models. Apply the **linear integrating fac**tor method and related shortcuts (Ch 1 in the textbook) to find the components x_1, x_2, x_3 of the vector general solution $\vec{\mathbf{x}}(t)$ of $\frac{d}{dt}\vec{\mathbf{x}}(t) = A\vec{\mathbf{x}}(t)$.

(5c) [30%] The Cayley-Hamilton-Ziebur shortcut applies to the system

$$x' = 3x + 2y, \quad y' = -2x + 3y,$$

which has complex eigenvalues $\lambda = 3 \pm 2i$. Find a fundamental matrix $\Phi(t)$ for this system, documenting all details of the computation.

6. (Systems: Second Order Cayley-Hamilton-Ziebur)

Assume below that real 2×2 matrix $A = \begin{pmatrix} -13 & -6 \\ 6 & -28 \end{pmatrix}$ has eigenpairs $\begin{pmatrix} -25, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \end{pmatrix}$, $\begin{pmatrix} -16, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \end{pmatrix}$. Textbook theorems applied to $\frac{d^2}{dt^2} \vec{\mathbf{u}}(t) = A\vec{\mathbf{u}}(t)$ report general solution (1)

$$\vec{\mathbf{u}}(t) = (c_1 \cos(5t) + c_2 \sin(5t) \begin{pmatrix} 1\\ 2 \end{pmatrix} + (c_3 \cos(4t) + c_4 \sin(4t)) \begin{pmatrix} 2\\ 1 \end{pmatrix}.$$

(6a) [30%] Derive the characteristic equation $|A - r^2 I| = 0$ for the second order equation $\frac{d^2}{dt^2} \vec{\mathbf{u}}(t) = A\vec{\mathbf{u}}(t)$ from Euler's vector substitution $\vec{\mathbf{u}}(t) = \vec{\mathbf{c}} e^{rt}$. A proof is expected with details.¹

(6b) [40%] Substitute $\vec{\mathbf{u}}(t) = \vec{\mathbf{d}} \cos(5t)$ into $\frac{d^2}{dt^2}\vec{\mathbf{u}}(t) = A\vec{\mathbf{u}}(t)$ to determine vector $\vec{\mathbf{d}}$ in terms of eigenpairs of A. Repeat for $\vec{\mathbf{u}}(t) = \vec{\mathbf{d}} \sin(5t)$ and report the answer.

(6c) [30%] The Euler solution atoms $\cos(5t)$, $\sin(5t)$, $\cos(4t)$, $\sin(4t)$ are linearly independent on $(-\infty, \infty)$. Substitute $\vec{\mathbf{u}}(t) = \vec{\mathbf{d}}_1 \cos(5t) + \vec{\mathbf{d}}_2 \sin(5t) + \vec{\mathbf{d}}_3 \cos(4t) + \vec{\mathbf{d}}_4 \sin(4t)$ into $\frac{d^2}{dt^2} \vec{\mathbf{u}}(t) = A\vec{\mathbf{u}}(t)$ and use independence (vector coefficients of atoms match) to determine the vectors $\vec{\mathbf{d}}_1$, $\vec{\mathbf{d}}_2$, $\vec{\mathbf{d}}_3$, $\vec{\mathbf{d}}_4$ in terms of eigenpairs of A.

¹**Reminder**: Linear algebra writes eigenpair equation $A\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$ equivalently as $A\vec{\mathbf{x}} = \lambda I\vec{\mathbf{x}}$ and then converts it to the homogeneous system of linear algebraic equations $(A - \lambda I)\vec{\mathbf{x}} = \vec{\mathbf{0}}$. The proof you write should apply without edits to $n \times n$ real matrices A.