Differential Equations 2280

Midterm Exam 2 with Solutions
Exam Date: 5 April 2019 at 7:30am
Instructions: This in-class exam is 80 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count $1 / 4$.

Laplace Theory: Chapter 7

Laplace Theory Background. Expected without notes or books is the 4-entry Forward Laplace Table and these rules: Linearity, Parts, Shift, s-differentiation, Lerch's Theorem, Final Value Theorem, Existence theory.

1. (Laplace Theory: Differential Equations)

Solve differential equations (1a), (1b) by Laplace's method.
(1a) [40\%] Third order $x^{\prime \prime \prime}+x^{\prime}=0, x(0)=1, x^{\prime}(0)=0, x^{\prime \prime}(0)=0$.
(1b) $[60 \%]$ Dynamical system $x^{\prime}=x+y, y^{\prime}=2 x+6, x(0)=0, y(0)=0$.

2. (Laplace Theory: Backward Table)

Solve for $f(t)$ in (2a), (2b), (2c), (2d).
Assumptions. Below, $f(t)$ is of piecewise continuous of exponential order. Expression $u(t)$ denotes the unit step function.
Credit. Document all steps, e.g., if you cancel \mathcal{L} then cite Lerch's Theorem. The answer is 25%. The documented steps are 75%. Partial fraction coefficients are expected to be evaluated last.
(2a) $[20 \%] \mathcal{L}(f(t))=\frac{100}{\left(s^{2}+25\right)\left(s^{2}+4\right)}$
(2b) $[20 \%] \mathcal{L}(f(t))=\frac{s+1}{s^{2}+4 s+29}$.
(2c) $[30 \%] \mathcal{L}(f(t))=\frac{1}{\left(s^{2}+2 s\right)\left(s^{2}-3 s\right)}$
(2d) [30\%] $\left.\frac{d}{d s} \mathcal{L}(f(t))\right|_{s \rightarrow(s-3)}=\frac{d}{d s} \mathcal{L}\left(u(t-\pi) e^{t} \cos 25 t\right)$.
3. (Laplace Theory: Forward Table)

Compute the Laplace transform $\mathcal{L}(f(t))$.
(3a) [20\%] $f(t)=(-t) e^{2 t} \sin (3 t)$.
(3b) $[30 \%] f(t))=e^{-\pi t} g(t)$ and $g(t)=\frac{e^{2 t}-e^{-2 t}}{t}$.
(3c) $[20 \%] \frac{d}{d s} \mathcal{L}(f(t))=\frac{1}{s^{2019}}+\frac{1}{s^{2}+1}$.
$(3 \mathbf{d})[30 \%]$ Define $\left.f(t)=e^{-2 t} g(t)\right)$ where $g(t)=\frac{e^{2 t}-e^{-2 t}}{t}$.

Systems of Differential Equations: Chapters 4 and 5

Background.

The Eigenanalysis Method for a real 3×3 matrix A assumes eigenpairs $\left(\lambda_{1}, \overrightarrow{\mathbf{v}}_{1}\right),\left(\lambda_{2}, \overrightarrow{\mathbf{v}}_{2}\right),\left(\lambda_{3}, \overrightarrow{\mathbf{v}}_{3}\right)$. It says that the 3×3 system $\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}$ has general solution $\overrightarrow{\mathbf{x}}(t)=c_{1} \overrightarrow{\mathbf{v}}_{1} e^{\lambda_{1} t}+c_{2} \overrightarrow{\mathbf{v}}_{2} e^{\lambda_{2} t}+c_{3} \overrightarrow{\mathrm{v}}_{3} e^{\lambda_{3} t}$.

The Cayley-Hamilton-Ziebur method is based upon this result:
Let A be an $n \times n$ real matrix. The components of solution $\overrightarrow{\mathbf{u}}$ of $\frac{d}{d t} \overrightarrow{\mathbf{u}}(t)=A \overrightarrow{\mathbf{u}}(t)$ are linear combinations of Euler solution atoms obtained from the roots of the characteristic equation $|A-\lambda I|=0$. Alternatively, $\overrightarrow{\mathbf{u}}(t)$ is a vector linear combination of the Euler solution atoms: $\overrightarrow{\mathbf{u}}(t)=\sum_{k=1}^{n}\left(\right.$ atom $\left._{k}\right) \overrightarrow{\mathbf{d}}_{k}$.

A Fundamental Matrix is an $n \times n$ matrix $\Phi(t)$ with columns consisting of independent solutions of $\overrightarrow{\mathbf{x}}^{\prime}(t)=A \overrightarrow{\mathbf{x}}(t)$, where A is an $n \times n$ real matrix. The general solution of $\overrightarrow{\mathbf{x}}^{\prime}(t)=A \overrightarrow{\mathbf{x}}(t)$ is $\overrightarrow{\mathbf{x}}(t)=\Phi(t) \overrightarrow{\mathbf{c}}$, where $\overrightarrow{\mathbf{c}}$ is a column vector of arbitrary constants c_{1}, \ldots, c_{n}. An alternate and widely used definition of fundamental matrix is $\Phi^{\prime}(t)=A \Phi(t)$, with $|\Phi(0)| \neq 0$ required to establish independence of the columns of Φ.

The Exponential Matrix, denoted $e^{A t}$, is the unique fundamental matrix $\Psi(t)$ such that $\Psi(0)=I$. Matrix A is an $n \times n$ real matrix. It is known that $e^{A t}=$ $\Phi(t) \Phi(0)^{-1}$ for any fundamental matrix $\Phi(t)$. Consequently, $\frac{d}{d t}\left(e^{A t}\right)=A e^{A t}$ and $\left.e^{A t}\right|_{t=0}=I$.
4. (Systems: Eigenanalysis Method)

Complete parts ((4a), (4b), (4c).
(4a) [40\%] Let $A=\left(\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 0 & 0 & 7\end{array}\right)$. Display the linear algebra details for computing the three eigenpairs of A.
(4b) [30\%] Matrix $A=\left(\begin{array}{rrrr}4 & 1 & -1 & 0 \\ 1 & 4 & -2 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 4\end{array}\right)$ has eigenpairs $\left(2,\left(\begin{array}{r}1 \\ -5 \\ -3 \\ 3\end{array}\right)\right),\left(3,\left(\begin{array}{r}-1 \\ 1 \\ 0 \\ 0\end{array}\right)\right)$, $\left(4,\left(\begin{array}{r}-1 \\ 0 \\ 0 \\ 1\end{array}\right)\right),\left(5,\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)\right)$. Display the general solution of $\frac{d}{d t} \overrightarrow{\mathbf{u}}(t)=A \overrightarrow{\mathbf{u}}(t)$.
(4c) [40\%] Let $\overrightarrow{\mathbf{u}}(t)=\overrightarrow{\mathbf{c}} e^{r t}$, the vector Euler substitution. Assume real $n \times n$ matrix A has a real eigenpair $(\lambda, \overrightarrow{\mathbf{v}})$. Prove that the Euler substitution with $r=\lambda$ and $\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{v}}$ applied to $\frac{d}{d t} \overrightarrow{\mathbf{u}}(t)=A \overrightarrow{\mathbf{u}}(t)$ finds a nonzero solution of $\frac{d}{d t} \overrightarrow{\mathbf{u}}(t)=A \overrightarrow{\mathbf{u}}(t)$.

5. (Systems: First Order Cayley-Hamilton-Ziebur)

(5a) $[30 \%]$ The eigenvalues are 2, 6 for the matrix $A=\left(\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right)$.
Display the general solution of $\frac{d}{d t} \overrightarrow{\mathbf{u}}(t)=A \overrightarrow{\mathbf{u}}(t)$ according to the Cayley-HamiltonZiebur shortcut (textbook chapters 4,5).
(5b) $[40 \%]$ The 3×3 triangular matrix $A=\left(\begin{array}{rrr}2 & 1 & 1 \\ 0 & 5 & 1 \\ 0 & 0 & -2\end{array}\right)$ represents a linear cascade, such as found in brine tank models. Apply the linear integrating factor method and related shortcuts (Ch 1 in the textbook) to find the components x_{1}, x_{2}, x_{3} of the vector general solution $\overrightarrow{\mathbf{x}}(t)$ of $\frac{d}{d t} \overrightarrow{\mathbf{x}}(t)=A \overrightarrow{\mathbf{x}}(t)$.
(5c) $[30 \%]$ The Cayley-Hamilton-Ziebur shortcut applies to the system

$$
x^{\prime}=3 x+2 y, \quad y^{\prime}=-2 x+3 y
$$

which has complex eigenvalues $\lambda=3 \pm 2 i$. Find a fundamental matrix $\Phi(t)$ for this system, documenting all details of the computation.

6. (Systems: Second Order Cayley-Hamilton-Ziebur)

Assume below that real 2×2 matrix $A=\left(\begin{array}{rr}-13 & -6 \\ 6 & -28\end{array}\right)$ has eigenpairs $\left(-25,\binom{1}{2}\right)$, $\left(-16,\binom{2}{1}\right)$. Textbook theorems applied to $\frac{d^{2}}{d t^{2}} \overrightarrow{\mathbf{u}}(t)=A \overrightarrow{\mathbf{u}}(t)$ report general solution

$$
\overrightarrow{\mathbf{u}}(t)=\left(c_{1} \cos (5 t)+c_{2} \sin (5 t)\binom{1}{2}+\left(c_{3} \cos (4 t)+c_{4} \sin (4 t)\right)\binom{2}{1} .\right.
$$

(6a) [30\%] Derive the characteristic equation $\left|A-r^{2} I\right|=0$ for the second order equation $\frac{d^{2}}{d t^{2}} \overrightarrow{\mathbf{u}}(t)=A \overrightarrow{\mathbf{u}}(t)$ from Euler's vector substitution $\overrightarrow{\mathbf{u}}(t)=\overrightarrow{\mathbf{c}} e^{r t}$. A proof is expected with details. ${ }^{1}$
(6b) [40\%] Substitute $\overrightarrow{\mathbf{u}}(t)=\overrightarrow{\mathbf{d}} \cos (5 t)$ into $\frac{d^{2}}{d t^{2}} \overrightarrow{\mathbf{u}}(t)=A \overrightarrow{\mathbf{u}}(t)$ to determine vector $\overrightarrow{\mathbf{d}}$ in terms of eigenpairs of A. Repeat for $\overrightarrow{\mathbf{u}}(t)=\overrightarrow{\mathbf{d}} \sin (5 t)$ and report the answer.
(6c) $[30 \%]$ The Euler solution atoms $\cos (5 t), \sin (5 t), \cos (4 t), \sin (4 t)$ are linearly independent on $(-\infty, \infty)$. Substitute $\overrightarrow{\mathbf{u}}(t)=\overrightarrow{\mathbf{d}}_{1} \cos (5 t)+\overrightarrow{\mathbf{d}}_{2} \sin (5 t)+\overrightarrow{\mathbf{d}}_{3} \cos (4 t)+\overrightarrow{\mathbf{d}}_{4} \sin (4 t)$ into $\frac{d^{2}}{d t^{2}} \overrightarrow{\mathbf{u}}(t)=A \overrightarrow{\mathbf{u}}(t)$ and use independence (vector coefficients of atoms match) to determine the vectors $\overrightarrow{\mathbf{d}}_{1}, \overrightarrow{\mathbf{d}}_{2}, \overrightarrow{\mathbf{d}}_{3}, \overrightarrow{\mathbf{d}}_{4}$ in terms of eigenpairs of A.

[^0]
[^0]: ${ }^{1}$ Reminder: Linear algebra writes eigenpair equation $A \overrightarrow{\mathrm{x}}=\lambda \overrightarrow{\mathrm{x}}$ equivalently as $A \overrightarrow{\mathrm{x}}=\lambda I \overrightarrow{\mathrm{x}}$ and then converts it to the homogeneous system of linear algebraic equations $(A-\lambda I) \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$. The proof you write should apply without edits to $n \times n$ real matrices A.

