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11.4 Matrix Exponential

The problem
d

dt
~x (t) = A~x (t), ~x (0) = ~x 0

has a unique solution, according to the Picard-Lindelöf theorem. Solve
the problem n times, when ~x 0 equals a column of the identity matrix,
and write ~w 1(t), . . . , ~wn(t) for the n solutions so obtained. Define the
matrix exponential eAt by packaging these n solutions into a matrix:

eAt ≡ 〈~w 1(t)| . . . |~wn(t)〉.

By construction, any possible solution of d
dt~x = A~x can be uniquely

expressed in terms of the matrix exponential eAt by the formula

~x(t) = eAt~x (0).

Matrix Exponential Identities

Announced here and proved below are various formulas and identities
for the matrix exponential eAt:

d

dt

(
eAt

)
= AeAt Columns satisfy ~x ′ = A~x .

e
~0 = I Where ~0 is the zero matrix.

BeAt = eAtB If AB = BA.

eAteBt = e(A+B)t If AB = BA.

eAteAs = eA(t+ s) Since At and As commute.(
eAt

)−1
= e−At Equivalently, eAte−At = I.

eAt = r1(t)P1 + · · ·+ rn(t)Pn Putzer’s spectral formula —
see page 816.

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A− λ1I) A is 2× 2, λ1 6= λ2 real.

eAt = eλ1tI + teλ1t(A− λ1I) A is 2× 2, λ1 = λ2 real.

eAt = eat cos bt I +
eat sin bt

b
(A− aI) A is 2× 2, λ1 = λ2 = a+ ib,

b > 0.

eAt =
∞∑
n=0

An
tn

n!
Picard series. See page 818.

eAt = P−1eJtP Jordan form J = PAP−1.
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Putzer’s Spectral Formula

The spectral formula of Putzer applies to a system ~x ′ = A~x to find its
general solution. The method uses matrices P1, . . . , Pn constructed from
A and the eigenvalues λ1, . . . , λn of A, matrix multiplication, and the
solution ~r(t) of the first order n× n initial value problem

~r ′(t) =


λ1 0 0 · · · 0 0
1 λ2 0 · · · 0 0
0 1 λ3 · · · 0 0

...
0 0 0 · · · 1 λn

~r (t), ~r(0) =


1
0
...
0

 .

The system is solved by first order scalar methods and back-substitution.
We will derive the formula separately for the 2 × 2 case (the one used
most often) and the n× n case.

Spectral Formula 2× 2

The general solution of the 2×2 system ~x ′ = A~x is given by the formula

~x (t) = (r1(t)P1 + r2(t)P2)~x (0),

where r1, r2, P1, P2 are defined as follows.

The eigenvalues r = λ1, λ2 are the two roots of the quadratic equation

det(A− rI) = 0.

Define 2× 2 matrices P1, P2 by the formulas

P1 = I, P2 = A− λ1I.

The functions r1(t), r2(t) are defined by the differential system{
r′1 = λ1r1, r1(0) = 1,
r′2 = λ2r2 + r1, r2(0) = 0.

Proof: The Cayley-Hamilton formula (A − λ1I)(A − λ2I) = ~0 is valid for
any 2 × 2 matrix A and the two roots r = λ1, λ2 of the determinant equality
det(A− rI) = 0. The Cayley-Hamilton formula is the same as (A−λ2)P2 = ~0 ,
which implies the identity AP2 = λ2P2. Compute as follows.

~x ′(t) = (r′1(t)P1 + r′2(t)P2)~x (0)

= (λ1r1(t)P1 + r1(t)P2 + λ2r2(t)P2)~x (0)

= (r1(t)A+ λ2r2(t)P2)~x (0)

= (r1(t)A+ r2(t)AP2)~x (0)

= A (r1(t)I + r2(t)P2)~x (0)

= A~x (t).
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This proves that ~x (t) is a solution. Because Φ(t) ≡ r1(t)P1 + r2(t)P2 satisfies
Φ(0) = I, then any possible solution of ~x ′ = A~x can be represented by the
given formula. The proof is complete.

Real Distinct Eigenvalues. Suppose A is 2×2 having real distinct
eigenvalues λ1, λ2 and ~x (0) is real. Then

r1 = eλ1t, r2 =
eλ1t − eλ2T

λ1 − λ2

and

~x (t) =

(
eλ1tI +

eλ1t − eλ2t

λ1 − λ2
(A− λ1I)

)
~x (0).

The matrix exponential formula for real distinct eigenvalues:

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A− λ1I).

Real Equal Eigenvalues. Suppose A is 2 × 2 having real equal
eigenvalues λ1 = λ2 and ~x (0) is real. Then r1 = eλ1t, r2 = teλ1t and

~x (t) =
(
eλ1tI + teλ1t(A− λ1I)

)
~x (0).

The matrix exponential formula for real equal eigenvalues:

eAt = eλ1tI + teλ1t(A− λ1I).

Complex Eigenvalues. Suppose A is 2 × 2 having complex eigen-
values λ1 = a + bi with b > 0 and λ2 = a − bi. If ~x (0) is real, then a
real solution is obtained by taking the real part of the spectral formula.
This formula is formally identical to the case of real distinct eigenvalues.
Then

Re(~x(t)) = (Re(r1(t))I +Re(r2(t)(A− λ1I)))~x (0)

=

(
Re(e(a+ib)t)I +Re(eat

sin bt

b
(A− (a+ ib)I))

)
~x (0)

=

(
eat cos bt I + eat

sin bt

b
(A− aI))

)
~x (0)

The matrix exponential formula for complex conjugate eigenvalues:

eAt = eat
(

cos bt I +
sin bt

b
(A− aI))

)
.
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How to Remember Putzer’s 2× 2 Formula. The expressions

eAt = r1(t)I + r2(t)(A− λ1I),

r1(t) = eλ1t, r2(t) =
eλ1t − eλ2t

λ1 − λ2
(1)

are enough to generate all three formulas. Fraction r2 is the d/dλ-Newton
quotient for r1. It has limit teλ1t as λ2 → λ1, therefore the formula
includes the case λ1 = λ2 by limiting. If λ1 = λ2 = a + ib with b > 0,
then the fraction r2 is already real, because it has for z = eλ1t and w = λ1
the form

r2(t) =
z − z
w − w

=
sin bt

b
.

Taking real parts of expression (1) gives the complex case formula.

Spectral Formula n× n

The general solution of ~x ′ = A~x is given by the formula

~x (t) = (r1(t)P1 + r2(t)P2 + · · ·+ rn(t)Pn)~x (0),

where r1, r2, . . . , rn, P1, P2, . . . , Pn are defined as follows.

The eigenvalues r = λ1, . . . , λn are the roots of the polynomial equation

det(A− rI) = 0.

Define n× n matrices P1, . . . , Pn by the formulas

P1 = I, Pk = Pk−1(A− λk−1I) = Πk−1
j=1(A− λjI), k = 2, . . . , n.

The functions r1(t), . . . , rn(t) are defined by the differential system

r′1 = λ1r1, r1(0) = 1,
r′2 = λ2r2 + r1, r2(0) = 0,

...
r′n = λnrn + rn−1, rn(0) = 0.

Proof: The Cayley-Hamilton formula (A− λ1I) · · · (A− λnI) = ~0 is valid for
any n× n matrix A and the n roots r = λ1, . . . , λn of the determinant equality
det(A − rI) = 0. Two facts will be used: (1) The Cayley-Hamilton formula
implies APn = λnPn; (2) The definition of Pk implies λkPk + Pk+1 = APk for
1 ≤ k ≤ n− 1. Compute as follows.

1 ~x ′(t) = (r′1(t)P1 + · · ·+ r′n(t)Pn)~x (0)

2 =

(
n∑

k=1

λkrk(t)Pk +

n∑
k=2

rk−1Pk

)
~x (0)
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3 =

(
n−1∑
k=1

λkrk(t)Pk + rn(t)λnPn +

n−1∑
k=1

rkPk+1

)
~x (0)

4 =

(
n−1∑
k=1

rk(t)(λkPk + Pk+1) + rn(t)λnPn

)
~x (0)

5 =

(
n−1∑
k=1

rk(t)APk + rn(t)APn

)
~x (0)

6 = A

(
n∑

k=1

rk(t)Pk

)
~x (0)

7 = A~x (t).

Details: 1 Differentiate the formula for ~x (t). 2 Use the differential equa-

tions for r1,. . . ,rn. 3 Split off the last term from the first sum, then re-index

the last sum. 4 Combine the two sums. 5 Use the recursion for Pk and

the Cayley-Hamilton formula (A− λnI)Pn = ~0 . 6 Factor out A on the left.

7 Apply the definition of ~x (t).

This proves that ~x (t) is a solution. Because Φ(t) ≡
∑n

k=1 rk(t)Pk satisfies
Φ(0) = I, then any possible solution of ~x ′ = A~x can be so represented. The
proof is complete.

Proofs of Matrix Exponential Properties

Verify
(
eAt
)′

= AeAt. Let ~x0 denote a column of the identity matrix. Define

~x (t) = eAt~x0. Then (
eAt
)′
~x0 = ~x ′(t)

= A~x (t)
= AeAt~x0.

Because this identity holds for all columns of the identity matrix, then (eAt)′ and

AeAt have identical columns, hence we have proved the identity
(
eAt
)′

= AeAt.

Verify AB = BA implies BeAt = eAtB. Define ~w 1(t) = eAtB~w 0 and
~w 2(t) = BeAt~w 0. Calculate ~w ′1(t) = A~w 1(t) and ~w ′2(t) = BAeAt~w 0 =
ABeAt~w 0 = A~w 2(t), due to BA = AB. Because ~w 1(0) = ~w 2(0) = ~w 0, then
the uniqueness assertion of the Picard-Lindelöf theorem implies that ~w 1(t) =
~w 2(t). Because ~w 0 is any vector, then eAtB = BeAt. The proof is complete.

Verify eAteBt = e(A+B)t. Let ~x0 be a column of the identity matrix. Define
~x (t) = eAteBt~x0 and ~y (t) = e(A+B)t~x0. We must show that ~x (t) = ~y (t) for
all t. Define ~u(t) = eBt~x0. We will apply the result eAtB = BeAt, valid for
BA = AB. The details:

~x ′(t) =
(
eAt~u(t)

)′
= AeAt~u(t) + eAt~u ′(t)
= A~x (t) + eAtB~u (t)
= A~x (t) +BeAt~u (t)
= (A+B)~x (t).
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We also know that ~y ′(t) = (A+B)~y (t) and since ~x (0) = ~y (0) = ~x0, then the
Picard-Lindelöf theorem implies that ~x (t) = ~y (t) for all t. This completes the
proof.

Verify eAteAs = eA(t+s). Let t be a variable and consider s fixed. Define
~x (t) = eAteAs~x0 and ~y (t) = eA(t+s)~x0. Then ~x (0) = ~y (0) and both satisfy the
differential equation ~u ′(t) = A~u (t). By the uniqueness in the Picard-Lindelöf
theorem, ~x (t) = ~y (t), which implies eAteAs = eA(t+s). The proof is complete.

Verify eAt =
∞∑
n=0

An
tn

n!
. The idea of the proof is to apply Picard iteration.

By definition, the columns of eAt are vector solutions ~w 1(t), . . . , ~wn(t) whose
values at t = 0 are the corresponding columns of the n × n identity matrix.
According to the theory of Picard iterates, a particular iterate is defined by

~yn+1(t) = ~y 0 +

∫ t

0

A~yn(r)dr, n ≥ 0.

The vector ~y 0 equals some column of the identity matrix. The Picard iterates
can be found explicitly, as follows.

~y 1(t) = ~y 0 +
∫ t

0
A~y 0dr

= (I +At) ~y 0,

~y 2(t) = ~y 0 +
∫ t

0
A~y 1(r)dr

= ~y 0 +
∫ t

0
A (I +At) ~y 0dr

=
(
I +At+A2t2/2

)
~y 0,

...

~yn(t) =
(
I +At+A2 t2

2 + · · ·+An tn

n!

)
~y 0.

The Picard-Lindelöf theorem implies that for ~y 0 = column k of the identity
matrix,

lim
n→∞

~yn(t) = ~w k(t).

This being valid for each index k, then the columns of the matrix sum

N∑
m=0

Am t
m

m!

converge as N →∞ to ~w 1(t), . . . , ~wn(t). This implies the matrix identity

eAt =

∞∑
n=0

An t
n

n!
.

The proof is complete.

Computing eAt

Theorem 13 (Computing eJt for J Triangular)
If J is an upper triangular matrix, then a column ~u(t) of eJt can be com-
puted by solving the system ~u ′(t) = J~u(t), ~u(0) = ~v , where ~v is the
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corresponding column of the identity matrix. This problem can always be
solved by first-order scalar methods of growth-decay theory and the inte-
grating factor method.

Theorem 14 (Exponential of a Diagonal Matrix)
For real or complex constants λ1, . . . , λn,

ediag(λ1,...,λn)t = diag
(
eλ1t, . . . , eλnt

)
.

Theorem 15 (Block Diagonal Matrix)
If A = diag(B1, . . . , Bk) and each of B1, . . . , Bk is a square matrix, then

eAt = diag
(
eB1t, . . . , eBkt

)
.

Theorem 16 (Complex Exponential)
Given real a, b, then

e

(
a b
−b a

)
t

= eat
(

cos bt sin bt
− sin bt cos bt

)
.

Exercises 11.4

Matrix Exponential.

1. (Picard) Let A be real 2×2. Write
out the two initial value problems
which define the columns ~w 1(t),
~w 2(t) of eAt.

2. (Picard) Let A be real 3×3. Write
out the three initial value problems
which define the columns ~w 1(t),
~w 2(t), ~w 3(t) of eAt.

3. (Definition) Let A be real 2 × 2.
Show that the solution ~x (t) =
eAt~u0 satisfies ~x ′ = A~x and
~x (0) = ~u0.

4. Definition Let A be real n × n.
Show that the solution ~x (t) =
eAt~x (0) satisfies ~x ′ = A~x .

Matrix Exponential 2 × 2. Find
eAt using the formula eAt = 〈~w 1|~w 2〉
and the corresponding systems ~w ′1 =

A~w 1, ~w 1(0) =

(
1
0

)
, ~w ′2 = A~w 2,

~w 2(0) =

(
0
1

)
. In these exercises A

is triangular so that first-order meth-
ods can solve the systems.

5. A =

(
1 0
0 2

)
.

6. A =

(
−1 0

0 0

)
.

7. A =

(
1 1
0 0

)
.

8. A =

(
−1 1

0 2

)
.

Matrix Exponential Identities.

9.

10.

11.

12.

13.

14.
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