11.4 Matrix Exponential

The problem

$$\frac{d}{dt}\vec{\mathbf{x}}(t) = A\vec{\mathbf{x}}(t), \quad \vec{\mathbf{x}}(0) = \vec{\mathbf{x}}_{0}$$

has a unique solution, according to the Picard-Lindelöf theorem. Solve the problem n times, when $\vec{\mathbf{x}}_0$ equals a column of the identity matrix, and write $\vec{\mathbf{w}}_1(t), \ldots, \vec{\mathbf{w}}_n(t)$ for the n solutions so obtained. Define the **matrix exponential** e^{At} by packaging these n solutions into a matrix:

$$e^{At} \equiv \langle \vec{\mathbf{w}}_1(t) | \dots | \vec{\mathbf{w}}_n(t) \rangle.$$

By construction, any possible solution of $\frac{d}{dt}\vec{\mathbf{x}} = A\vec{\mathbf{x}}$ can be uniquely expressed in terms of the matrix exponential e^{At} by the formula

$$\vec{\mathbf{x}}(t) = e^{At} \vec{\mathbf{x}}(0).$$

Matrix Exponential Identities

Announced here and proved below are various formulas and identities for the matrix exponential e^{At} :

$$\begin{array}{ll} \displaystyle \frac{d}{dt} \left(e^{At} \right) = A e^{At} & \mbox{Columns satisfy } \vec{\mathbf{x}}' = A \vec{\mathbf{x}} \,. \\ \displaystyle e^{\vec{\mathbf{0}}} = I & \mbox{Where } \vec{\mathbf{0}} \mbox{ is the zero matrix.} \\ \displaystyle B e^{At} = e^{At} B & \mbox{If } AB = BA \,. \\ \displaystyle e^{At} e^{Bt} = e^{(A+B)t} & \mbox{If } AB = BA \,. \\ e^{At} e^{As} = e^{A(t+s)} & \mbox{Since } At \mbox{ and } As \mbox{ commute.} \\ \displaystyle \left(e^{At} \right)^{-1} = e^{-At} & \mbox{Equivalently, } e^{At} e^{-At} = I \,. \\ e^{At} = r_1(t)P_1 + \dots + r_n(t)P_n & \mbox{Putzer's spectral formula } - \\ e^{At} = e^{\lambda_1 t}I + \frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2}(A - \lambda_1 I) & \mbox{A is } 2 \times 2, \ \lambda_1 \neq \lambda_2 \ \mbox{real.} \\ e^{At} = e^{at} \mbox{cos bt } I + \frac{e^{at} \sin bt}{b}(A - aI) & \mbox{A is } 2 \times 2, \ \lambda_1 = \overline{\lambda_2} = a + ib, \\ b > 0 \,. \\ e^{At} = \sum_{n=0}^{\infty} A^n \frac{t^n}{n!} & \mbox{Picard series. See page 818.} \\ e^{At} = P^{-1} e^{Jt}P & \mbox{Jordan form } J = PAP^{-1} \,. \end{array}$$

Putzer's Spectral Formula

The spectral formula of Putzer applies to a system $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$ to find its general solution. The method uses matrices P_1, \ldots, P_n constructed from A and the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A, matrix multiplication, and the solution $\vec{\mathbf{r}}(t)$ of the first order $n \times n$ initial value problem

$$\vec{\mathbf{r}}'(t) = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 & 0\\ 1 & \lambda_2 & 0 & \cdots & 0 & 0\\ 0 & 1 & \lambda_3 & \cdots & 0 & 0\\ \vdots & & \vdots & & \\ 0 & 0 & 0 & \cdots & 1 & \lambda_n \end{pmatrix} \vec{\mathbf{r}}(t), \quad \vec{\mathbf{r}}(0) = \begin{pmatrix} 1\\ 0\\ \vdots\\ 0 \end{pmatrix}.$$

The system is solved by first order scalar methods and back-substitution. We will derive the formula separately for the 2×2 case (the one used most often) and the $n \times n$ case.

Spectral Formula 2×2

The general solution of the 2×2 system $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$ is given by the formula

$$\vec{\mathbf{x}}(t) = (r_1(t)P_1 + r_2(t)P_2)\vec{\mathbf{x}}(0),$$

where r_1, r_2, P_1, P_2 are defined as follows.

The eigenvalues $r = \lambda_1, \lambda_2$ are the two roots of the quadratic equation

$$\det(A - rI) = 0.$$

Define 2×2 matrices P_1 , P_2 by the formulas

$$P_1 = I, \quad P_2 = A - \lambda_1 I.$$

The functions $r_1(t)$, $r_2(t)$ are defined by the differential system

$$\begin{cases} r'_1 = \lambda_1 r_1, & r_1(0) = 1, \\ r'_2 = \lambda_2 r_2 + r_1, & r_2(0) = 0. \end{cases}$$

Proof: The Cayley-Hamilton formula $(A - \lambda_1 I)(A - \lambda_2 I) = \vec{\mathbf{0}}$ is valid for any 2×2 matrix A and the two roots $r = \lambda_1, \lambda_2$ of the determinant equality $\det(A - rI) = 0$. The Cayley-Hamilton formula is the same as $(A - \lambda_2)P_2 = \vec{\mathbf{0}}$, which implies the identity $AP_2 = \lambda_2 P_2$. Compute as follows.

$$\vec{\mathbf{x}}'(t) = (r_1'(t)P_1 + r_2'(t)P_2)\vec{\mathbf{x}}(0) = (\lambda_1 r_1(t)P_1 + r_1(t)P_2 + \lambda_2 r_2(t)P_2)\vec{\mathbf{x}}(0) = (r_1(t)A + \lambda_2 r_2(t)P_2)\vec{\mathbf{x}}(0) = (r_1(t)A + r_2(t)AP_2)\vec{\mathbf{x}}(0) = A (r_1(t)I + r_2(t)P_2)\vec{\mathbf{x}}(0) = A\vec{\mathbf{x}}(t).$$

This proves that $\vec{\mathbf{x}}(t)$ is a solution. Because $\Phi(t) \equiv r_1(t)P_1 + r_2(t)P_2$ satisfies $\Phi(0) = I$, then any possible solution of $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$ can be represented by the given formula. The proof is complete.

Real Distinct Eigenvalues. Suppose A is 2×2 having real distinct eigenvalues λ_1 , λ_2 and $\vec{\mathbf{x}}(0)$ is real. Then

$$r_1 = e^{\lambda_1 t}, \quad r_2 = \frac{e^{\lambda_1 t} - e^{\lambda_2 T}}{\lambda_1 - \lambda_2}$$

and

$$\vec{\mathbf{x}}(t) = \left(e^{\lambda_1 t}I + \frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2}(A - \lambda_1 I)\right) \vec{\mathbf{x}}(0).$$

The matrix exponential formula for real distinct eigenvalues:

$$e^{At} = e^{\lambda_1 t}I + \frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} (A - \lambda_1 I).$$

Real Equal Eigenvalues. Suppose A is 2×2 having real equal eigenvalues $\lambda_1 = \lambda_2$ and $\vec{\mathbf{x}}(0)$ is real. Then $r_1 = e^{\lambda_1 t}$, $r_2 = te^{\lambda_1 t}$ and

$$\vec{\mathbf{x}}(t) = \left(e^{\lambda_1 t}I + te^{\lambda_1 t}(A - \lambda_1 I)\right)\vec{\mathbf{x}}(0).$$

The matrix exponential formula for real equal eigenvalues:

$$e^{At} = e^{\lambda_1 t}I + te^{\lambda_1 t}(A - \lambda_1 I).$$

Complex Eigenvalues. Suppose A is 2×2 having complex eigenvalues $\lambda_1 = a + bi$ with b > 0 and $\lambda_2 = a - bi$. If $\vec{\mathbf{x}}(0)$ is real, then a real solution is obtained by taking the real part of the spectral formula. This formula is formally identical to the case of real distinct eigenvalues. Then

$$\begin{aligned} \mathcal{R}\mathbf{e}(\vec{\mathbf{x}}(t)) &= \left(\mathcal{R}\mathbf{e}(r_1(t))I + \mathcal{R}\mathbf{e}(r_2(t)(A - \lambda_1 I)))\vec{\mathbf{x}}(0) \right. \\ &= \left(\mathcal{R}\mathbf{e}(e^{(a+ib)t})I + \mathcal{R}\mathbf{e}(e^{at}\frac{\sin bt}{b}(A - (a+ib)I))\right)\vec{\mathbf{x}}(0) \\ &= \left(e^{at}\cos bt\,I + e^{at}\frac{\sin bt}{b}(A - aI))\right)\vec{\mathbf{x}}(0) \end{aligned}$$

The matrix exponential formula for complex conjugate eigenvalues:

$$e^{At} = e^{at} \left(\cos bt I + \frac{\sin bt}{b} (A - aI) \right) \right).$$

(1)
$$e^{At} = r_1(t)I + r_2(t)(A - \lambda_1 I),$$
$$r_1(t) = e^{\lambda_1 t}, \quad r_2(t) = \frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2}$$

are enough to generate all three formulas. Fraction r_2 is the $d/d\lambda$ -Newton quotient for r_1 . It has limit $te^{\lambda_1 t}$ as $\lambda_2 \to \lambda_1$, therefore the formula includes the case $\lambda_1 = \lambda_2$ by limiting. If $\lambda_1 = \overline{\lambda_2} = a + ib$ with b > 0, then the fraction r_2 is already real, because it has for $z = e^{\lambda_1 t}$ and $w = \lambda_1$ the form

$$r_2(t) = \frac{z - \overline{z}}{w - \overline{w}} = \frac{\sin bt}{b}$$

Taking real parts of expression (1) gives the complex case formula.

Spectral Formula $n \times n$

The general solution of $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$ is given by the formula

$$\vec{\mathbf{x}}(t) = (r_1(t)P_1 + r_2(t)P_2 + \dots + r_n(t)P_n)\vec{\mathbf{x}}(0),$$

where $r_1, r_2, \ldots, r_n, P_1, P_2, \ldots, P_n$ are defined as follows.

The eigenvalues $r = \lambda_1, \ldots, \lambda_n$ are the roots of the polynomial equation

$$\det(A - rI) = 0.$$

Define $n \times n$ matrices P_1, \ldots, P_n by the formulas

$$P_1 = I, \quad P_k = P_{k-1}(A - \lambda_{k-1}I) = \prod_{j=1}^{k-1}(A - \lambda_j I), \quad k = 2, \dots, n.$$

The functions $r_1(t), \ldots, r_n(t)$ are defined by the differential system

$$\begin{array}{rcl} r'_1 &=& \lambda_1 r_1, & r_1(0) = 1, \\ r'_2 &=& \lambda_2 r_2 + r_1, & r_2(0) = 0, \\ &\vdots & \\ r'_n &=& \lambda_n r_n + r_{n-1}, & r_n(0) = 0. \end{array}$$

Proof: The Cayley-Hamilton formula $(A - \lambda_1 I) \cdots (A - \lambda_n I) = \vec{\mathbf{0}}$ is valid for any $n \times n$ matrix A and the n roots $r = \lambda_1, \ldots, \lambda_n$ of the determinant equality $\det(A - rI) = 0$. Two facts will be used: (1) The Cayley-Hamilton formula implies $AP_n = \lambda_n P_n$; (2) The definition of P_k implies $\lambda_k P_k + P_{k+1} = AP_k$ for $1 \le k \le n - 1$. Compute as follows.

$$\begin{array}{c} \boxed{1} \quad \vec{\mathbf{x}}'(t) = \left(r_1'(t)P_1 + \dots + r_n'(t)P_n\right)\vec{\mathbf{x}}(0) \\ \\ \boxed{2} \quad = \left(\sum_{k=1}^n \lambda_k r_k(t)P_k + \sum_{k=2}^n r_{k-1}P_k\right)\vec{\mathbf{x}}(0) \\ \end{array}$$

$$\begin{aligned} \mathbf{3} &= \left(\sum_{k=1}^{n-1} \lambda_k r_k(t) P_k + r_n(t) \lambda_n P_n + \sum_{k=1}^{n-1} r_k P_{k+1}\right) \vec{\mathbf{x}}(0) \\ \mathbf{4} &= \left(\sum_{k=1}^{n-1} r_k(t) (\lambda_k P_k + P_{k+1}) + r_n(t) \lambda_n P_n\right) \vec{\mathbf{x}}(0) \\ \mathbf{5} &= \left(\sum_{k=1}^{n-1} r_k(t) A P_k + r_n(t) A P_n\right) \vec{\mathbf{x}}(0) \\ \mathbf{6} &= A \left(\sum_{k=1}^n r_k(t) P_k\right) \vec{\mathbf{x}}(0) \\ \mathbf{7} &= A \vec{\mathbf{x}}(t). \end{aligned}$$

Details: 1 Differentiate the formula for $\vec{\mathbf{x}}(t)$. 2 Use the differential equations for r_1, \ldots, r_n . 3 Split off the last term from the first sum, then re-index the last sum. 4 Combine the two sums. 5 Use the recursion for P_k and the Cayley-Hamilton formula $(A - \lambda_n I)P_n = \vec{\mathbf{0}}$. 6 Factor out A on the left. 7 Apply the definition of $\vec{\mathbf{x}}(t)$.

This proves that $\vec{\mathbf{x}}(t)$ is a solution. Because $\Phi(t) \equiv \sum_{k=1}^{n} r_k(t) P_k$ satisfies $\Phi(0) = I$, then any possible solution of $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$ can be so represented. The proof is complete.

Proofs of Matrix Exponential Properties

(

Verify $(e^{At})' = Ae^{At}$. Let $\vec{\mathbf{x}}_0$ denote a column of the identity matrix. Define $\vec{\mathbf{x}}(t) = e^{At}\vec{\mathbf{x}}_0$. Then

$$\left(e^{At} \right)' \vec{\mathbf{x}}_0 = \vec{\mathbf{x}}'(t)$$

$$= A\vec{\mathbf{x}}(t)$$

$$= Ae^{At}\vec{\mathbf{x}}_0.$$

Because this identity holds for all columns of the identity matrix, then $(e^{At})'$ and Ae^{At} have identical columns, hence we have proved the identity $(e^{At})' = Ae^{At}$.

Verify AB = BA implies $Be^{At} = e^{At}B$. Define $\vec{\mathbf{w}}_1(t) = e^{At}B\vec{\mathbf{w}}_0$ and $\vec{\mathbf{w}}_2(t) = Be^{At}\vec{\mathbf{w}}_0$. Calculate $\vec{\mathbf{w}}_1'(t) = A\vec{\mathbf{w}}_1(t)$ and $\vec{\mathbf{w}}_2'(t) = BAe^{At}\vec{\mathbf{w}}_0 = ABe^{At}\vec{\mathbf{w}}_0 = ABe^{At}\vec{\mathbf{w}}_0 = A\vec{\mathbf{w}}_2(t)$, due to BA = AB. Because $\vec{\mathbf{w}}_1(0) = \vec{\mathbf{w}}_2(0) = \vec{\mathbf{w}}_0$, then the uniqueness assertion of the Picard-Lindelöf theorem implies that $\vec{\mathbf{w}}_1(t) = \vec{\mathbf{w}}_2(t)$. Because $\vec{\mathbf{w}}_0$ is any vector, then $e^{At}B = Be^{At}$. The proof is complete.

Verify $e^{At}e^{Bt} = e^{(A+B)t}$. Let $\vec{\mathbf{x}}_0$ be a column of the identity matrix. Define $\vec{\mathbf{x}}(t) = e^{At}e^{Bt}\vec{\mathbf{x}}_0$ and $\vec{\mathbf{y}}(t) = e^{(A+B)t}\vec{\mathbf{x}}_0$. We must show that $\vec{\mathbf{x}}(t) = \vec{\mathbf{y}}(t)$ for all t. Define $\vec{\mathbf{u}}(t) = e^{Bt}\vec{\mathbf{x}}_0$. We will apply the result $e^{At}B = Be^{At}$, valid for BA = AB. The details:

$$\vec{\mathbf{x}}'(t) = (e^{At}\vec{\mathbf{u}}(t))' \\
= Ae^{At}\vec{\mathbf{u}}(t) + e^{At}\vec{\mathbf{u}}'(t) \\
= A\vec{\mathbf{x}}(t) + e^{At}B\vec{\mathbf{u}}(t) \\
= A\vec{\mathbf{x}}(t) + Be^{At}\vec{\mathbf{u}}(t) \\
= (A+B)\vec{\mathbf{x}}(t).$$

We also know that $\mathbf{\vec{y}}'(t) = (A + B)\mathbf{\vec{y}}(t)$ and since $\mathbf{\vec{x}}(0) = \mathbf{\vec{y}}(0) = \mathbf{\vec{x}}_0$, then the Picard-Lindelöf theorem implies that $\mathbf{\vec{x}}(t) = \mathbf{\vec{y}}(t)$ for all t. This completes the proof.

Verify $e^{At}e^{As} = e^{A(t+s)}$. Let t be a variable and consider s fixed. Define $\vec{\mathbf{x}}(t) = e^{At}e^{As}\vec{\mathbf{x}}_0$ and $\vec{\mathbf{y}}(t) = e^{A(t+s)}\vec{\mathbf{x}}_0$. Then $\vec{\mathbf{x}}(0) = \vec{\mathbf{y}}(0)$ and both satisfy the differential equation $\vec{\mathbf{u}}'(t) = A\vec{\mathbf{u}}(t)$. By the uniqueness in the Picard-Lindelöf theorem, $\vec{\mathbf{x}}(t) = \vec{\mathbf{y}}(t)$, which implies $e^{At}e^{As} = e^{A(t+s)}$. The proof is complete.

Verify $e^{At} = \sum_{n=0}^{\infty} A^n \frac{t^n}{n!}$. The idea of the proof is to apply Picard iteration.

By definition, the columns of e^{At} are vector solutions $\vec{\mathbf{w}}_1(t), \ldots, \vec{\mathbf{w}}_n(t)$ whose values at t = 0 are the corresponding columns of the $n \times n$ identity matrix. According to the theory of Picard iterates, a particular iterate is defined by

$$\vec{\mathbf{y}}_{n+1}(t) = \vec{\mathbf{y}}_0 + \int_0^t A \vec{\mathbf{y}}_n(r) dr, \quad n \ge 0$$

The vector $\vec{\mathbf{y}}_0$ equals some column of the identity matrix. The Picard iterates can be found explicitly, as follows.

$$\begin{aligned} \vec{\mathbf{y}}_{1}(t) &= \vec{\mathbf{y}}_{0} + \int_{0}^{t} A \vec{\mathbf{y}}_{0} dr \\ &= (I + At) \vec{\mathbf{y}}_{0}, \\ \vec{\mathbf{y}}_{2}(t) &= \vec{\mathbf{y}}_{0} + \int_{0}^{t} A \vec{\mathbf{y}}_{1}(r) dr \\ &= \vec{\mathbf{y}}_{0} + \int_{0}^{t} A (I + At) \vec{\mathbf{y}}_{0} dr \\ &= (I + At + A^{2}t^{2}/2) \vec{\mathbf{y}}_{0}, \\ &\vdots \\ \vec{\mathbf{y}}_{n}(t) &= \left(I + At + A^{2} \frac{t^{2}}{2} + \dots + A^{n} \frac{t^{n}}{n!}\right) \vec{\mathbf{y}} \end{aligned}$$

The Picard-Lindelöf theorem implies that for $\mathbf{y}_0 = \text{column } k$ of the identity matrix,

0.

$$\lim_{n \to \infty} \vec{\mathbf{y}}_n(t) = \vec{\mathbf{w}}_k(t)$$

This being valid for each index k, then the columns of the matrix sum

$$\sum_{m=0}^{N} A^m \frac{t^m}{m!}$$

converge as $N \to \infty$ to $\vec{\mathbf{w}}_1(t), \ldots, \vec{\mathbf{w}}_n(t)$. This implies the matrix identity

$$e^{At} = \sum_{n=0}^{\infty} A^n \frac{t^n}{n!}.$$

The proof is complete.

Computing e^{At}

Theorem 13 (Computing e^{Jt} for J Triangular)

If J is an upper triangular matrix, then a column $\vec{\mathbf{u}}(t)$ of e^{Jt} can be computed by solving the system $\vec{\mathbf{u}}'(t) = J\vec{\mathbf{u}}(t)$, $\vec{\mathbf{u}}(0) = \vec{\mathbf{v}}$, where $\vec{\mathbf{v}}$ is the

corresponding column of the identity matrix. This problem can always be solved by first-order scalar methods of growth-decay theory and the integrating factor method.

Theorem 14 (Exponential of a Diagonal Matrix)

For real or complex constants $\lambda_1, \ldots, \lambda_n$,

$$e^{\operatorname{diag}(\lambda_1,\ldots,\lambda_n)t} = \operatorname{diag}\left(e^{\lambda_1 t},\ldots,e^{\lambda_n t}\right).$$

Theorem 15 (Block Diagonal Matrix)

If $A = \operatorname{diag}(B_1, \ldots, B_k)$ and each of B_1, \ldots, B_k is a square matrix, then

$$e^{At} = \operatorname{diag}\left(e^{B_1t}, \dots, e^{B_kt}\right).$$

Theorem 16 (Complex Exponential)

Given real a, b, then

$$e^{\begin{pmatrix} a & b \\ -b & a \end{pmatrix}^{t}} = e^{at} \begin{pmatrix} \cos bt & \sin bt \\ -\sin bt & \cos bt \end{pmatrix}.$$

Exercises 11.4

Matrix Exponential.

- 1. (Picard) Let A be real 2×2 . Write out the two initial value problems which define the columns $\vec{\mathbf{w}}_1(t)$, $\vec{\mathbf{w}}_2(t)$ of e^{At} .
- **2.** (Picard) Let A be real 3×3 . Write out the three initial value problems which define the columns $\vec{\mathbf{w}}_1(t)$, $\vec{\mathbf{w}}_2(t), \, \vec{\mathbf{w}}_3(t) \text{ of } e^{At}.$
- **3.** (Definition) Let A be real 2×2 . Show that the solution $\vec{\mathbf{x}}(t) =$ $e^{At}\vec{\mathbf{u}}_0$ satisfies $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$ and $\vec{\mathbf{x}}(0) = \vec{\mathbf{u}}_0.$
- **4. Definition** Let A be real $n \times n$. 9. Show that the solution $\vec{\mathbf{x}}(t) =$ 10. $e^{At}\vec{\mathbf{x}}(0)$ satisfies $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$.

11. Matrix Exponential 2×2 . Find 12. e^{At} using the formula $e^{At} = \langle \vec{\mathbf{w}}_1 | \vec{\mathbf{w}}_2 \rangle$ and the corresponding systems $\vec{\mathbf{w}}_1' =$ 13.

 $A\vec{\mathbf{w}}_1, \ \vec{\mathbf{w}}_1(0) = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \ \vec{\mathbf{w}}_2' = A\vec{\mathbf{w}}_2,$ 14.

 $\vec{\mathbf{w}}_2(0) = \begin{pmatrix} 0\\1 \end{pmatrix}$. In these exercises Ais triangular so that first-order methods can solve the systems.

5.
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
.
6. $A = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$.
7. $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$.
8. $A = \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix}$.

Matrix Exponential Identities.

	How to Remember Putzer's 2×2
Putzer's Spectral Formula.	Formula.
15.	35.
16.	36.
17.	37.
18.	38.
Spectral Formula 2×2 .	Spectral Formula $n imes n$.
19.	39.
20.	40.
21.	41.
22.	42.
Real Distinct Eigenvalues.	43.
23.	44.
24.	45.
25.	46.
26.	Proofs of Matrix Exponential
Real Equal Eigenvalues.	Properties.
27.	47.
28.	48.
29.	49.
30.	50.
Complex Eigenvalues.	Computing e^{At} .
31.	51.
32.	52.
33.	53.
34.	54.