ANSWERS

No books or notes. No electronic devices, please.
Each question has credit 100, with multiple parts given a percentage of the total 100 . If you must write a solution out of order or on the back side, then supply a road map.

Problem 1. (100 points) Matrix Algebra, Chapters 1,2.
Symbol I is used below for the $n \times n$ identity. Notation C^{T} means the transpose of matrix C. Accept as known theorems the following results:
Theorem 1. If C and D are $n \times n$ and $C D=I$, then $D C=I$.
Theorem 2. If A and B are invertible $n \times n$, then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
Theorem 3. If matrices F, G have dimensions allowing $F G$ to be defined, then $(F G)^{T}=G^{T} F^{T}$.
Theorem 4. If C is $n \times n$ invertible, then C^{T} is invertible and $\left(C^{T}\right)^{-1}=\left(C^{-1}\right)^{T}$.
In the statement below, either invent a counter example or else explain why it is true (citing relevant theorems above). Used in the theorems is the definition of inverse: G has an inverse H if and only if $G H=I$ and $H G=I$.

$$
\begin{aligned}
& \text { If matrices } A, B \text { are } n \times n \text { with } A^{T} A=I \text {, then } A^{-1} \text { exists } \\
& \text { and } A^{-1}\left(A+B^{T}\right)=I+(B A)^{T} \text {. }
\end{aligned}
$$

Answer:

TRUE. Why it is true:
First, $A^{T} A=I$ implies $A A^{T}=I$ by Theorem 1. Then A^{T} is the inverse of A by the definition of inverse: $A^{-1}=A^{T}$.
$A^{-1}\left(A+B^{T}\right)=A^{-1} A+A^{-1} B^{T}$ by matrix multiply
$=I+A^{-1} B^{T}$ by the definition of inverse matrix.
$=I+A^{T} B^{T}$ by $A^{T} A=I$, Theorem 1 and the definition of inverse.
$=\left(A^{-1} A\right)^{T}+(B A)^{T}$ because of Theorem 3 .

Problem 2. (100 points) Elementary Matrices and Toolkit Sequences, Chapters 1,2. Definition: An elementary matrix E is the matrix answer after applying exactly one combo, swap or multiply to the identity matrix I. An elimination matrix M is a product of elementary matrices.
Let A be a 3×4 matrix. Find the elimination matrix M which under left multiplication against matrix A performs (1), (2) and (3) below with one matrix multiply.
(1) Replace Row 3 of A with Row 3 minus twice Row 2 to obtain new matrix A_{1}.
(2) Swap Row 1 and Row 3 of A_{1} to obtain new matrix A_{2}.
(3) Multiply Row 3 of A_{2} by $1 / 5$ to obtain new matrix A_{3}.

Answer:

Do (1), (2), (3) in order with A replaced by the identity I. The result is M. This answer is identical to the product $M=E_{3} E_{2} E_{1}$ where
(1) E_{1} represents combo $(2,3,-2)$ applied to the identity I.
(2) E_{2} represents $\operatorname{swap}(1,3)$ applied to the identity I.
(3) E_{3} represents mult $(3,1 / 5)$ applied to the identity I.

Instead of performing matrix multiplies, we create E with a toolkit sequence as follows:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right) \quad \text { combo }(2,3,-2) \\
& \left(\begin{array}{ccc}
0 & -2 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad \operatorname{swap}(1,3) \\
& \left(\begin{array}{ccc}
0 & -2 & 0 \\
0 & 1 & 0 \\
\frac{1}{5} & 0 & 0
\end{array}\right) \quad \operatorname{mult}(3,1 / 5)
\end{aligned}
$$

Problem 3. (100 points) Linear algebraic equations.
System $A \vec{u}=\vec{b}$ with symbols. The Three Possibilities. Chapters $1,2,3$.
Let symbols a, b and c denote constants and consider the system of equations

Use techniques learned in this course to briefly explain the following facts. Only write what is needed to justify a statement.
(a) $[40 \%]$ The system has a unique solution for $(c-b)(2 a+c) \neq 0$.
(b) $[30 \%]$ The system has no solution if $2 a+c=0$ and $a \neq 0$ (don't explain the other possibilities).
(c) [30\%] The system has infinitely many solutions if $a=b=c=0$ (don't explain the other possibilities).

Answer:

The system can be written as

$$
\left(\begin{array}{ccc}
1 & b & c \\
2 & b+c & -a \\
1 & c & a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
a \\
-a \\
-a
\end{array}\right)
$$

which will be referenced in the solution below as $A \vec{u}=\vec{b}$.
(a) Uniqueness: This requires zero free variables. Then the determinant of the coefficient matrix A must be nonzero. After cofactor expansion the determinant is factored as $(2 a+$ $c)(c-b)$. The inverse of the coefficient matrix then exists for $(2 a+c)(c-b) \neq 0$, which implies equation $A \vec{u}=\vec{b}$ has unique solution $\vec{u}=A^{-1} \vec{b}$.
(b) No solution: The toolkit of combo, swap and mult are used in part (b). We seek a signal equation when $b+2 a=0$ and $a \neq 0$. After 3 combo steps the matrix is transformed into

$$
A_{3}=\left(\begin{array}{ccc|c}
1 & b & c & a \\
0 & c-b & -2 c-a & -3 a \\
0 & 0 & 2 a+c & a
\end{array}\right)
$$

The last row of A_{3} is a signal equation if $2 a+c=0$ and $a \neq 0$. The combo details are in the Maple code below.
(c) Infinitely many solutions: If $a=b=c=0$, then from part (b)

$$
A_{3}=\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

A homogeneous problem always has solution zero, therefore it never has a signal equation. Matrix A_{3} has one lead variable and two free variables, because the last two rows of A_{3} are zero. The system has infinitely many solutions.
A full analysis of the three possibilities is too involved to discuss here; it was not required in the problem.
The sequence of steps used in (a), (b), (c) are documented below for maple.

```
combo:=(A,s,t,m)->linalg[addrow] (A,s,t,m);
mult:=(A,t,m)->linalg[mulrow] (A,t,m);
swap:=(A,s,t)->linalg[swaprow] (A,s,t);
A:=(a,b,c)->Matrix([[1,b,c,a],[2,b+c,-a,-a],[1, c,a,-a]]);
A(a,b,c);
delta:=linalg[det](A(a,b,c)[1..3,1..3]);factor(delta);
A1:=combo(A (a, b, c) , 1, 2, -2);
A2:=combo(A1, 1, 3, -1);
A3:=simplify(combo(A2,2,3,-1));
```

Definition. Vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are called independent provided solving vector equation $c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}=\overrightarrow{0}$ for constants c_{1}, \ldots, c_{k} results in the unique solution $c_{1}=\cdots=c_{k}=0$.
Otherwise the vectors are called dependent.
Problem 4. (100 points) Linear Independence, Chapters 1,2,3.
Solve parts (a), (b) and (c) using the vectors displayed below. Application of theorems is expected: the Pivot Theorem, the Rank Test, the Determinant Test. Or, directly use the definition of independence (above). Details are 75%, answer 25%.

$$
\vec{v}_{1}=\left(\begin{array}{l}
0 \\
2 \\
2 \\
0
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right), \quad \vec{v}_{4}=\left(\begin{array}{l}
1 \\
4 \\
3 \\
2
\end{array}\right)
$$

(a) [50\%] Show details for the dependence of the 4 vectors.
(b) $[20 \%]$ List a maximum number of independent vectors extracted from the 4 vectors.
(c) $[30 \%]$ Write each vector not listed in (b) as a linear combination of the reported independent vectors.
Answer:
(a) It is possible to verify dependence by applying a Theorem: Any se of vectors containing $\overrightarrow{0}$ is dependent. However, this theorem does not apply to identify the independent vectors. The vectors are dependent by the Pivot Theorem because the augmented matrix of the vectors has pivot columns 1,3 . Therefore, vectors \vec{v}_{1}, \vec{v}_{3} are independent. By the Pivot Theorem, the second and fourth vectors are a linear combination of the pivot column vectors \vec{v}_{1}, \vec{v}_{3}. Details:

$$
\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
2 & 0 & 2 & 4 \\
2 & 0 & 1 & 3 \\
0 & 0 & 2 & 2
\end{array}\right) \quad \text { has } \operatorname{RREF}=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(b) A maximum number of independent vectors: \vec{v}_{1}, \vec{v}_{3}.
(c) The second and fourth vectors are dependent upon vectors \vec{v}_{1}, \vec{v}_{3}, because
$\vec{v}_{2}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)=0\left(\begin{array}{l}0 \\ 2 \\ 2 \\ 0\end{array}\right)+0\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 2\end{array}\right)$, which equals zero times \vec{v}_{1} plus zero times \vec{v}_{3}, and
$\vec{v}_{4}=\left(\begin{array}{l}1 \\ 4 \\ 3 \\ 2\end{array}\right)=\left(\begin{array}{l}0 \\ 2 \\ 2 \\ 0\end{array}\right)+\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 2\end{array}\right)$, which equals $\vec{v}_{1}+\vec{v}_{3}$.
Problem 5. (100 points) Vector general solution of a matrix equation $A \vec{x}=\vec{b}$, Chapters 1,2.
Find the vector general solution \vec{x} to the equation $A \vec{x}=\vec{b}$ for

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 4 \\
0 & 3 & 1 & 0 \\
0 & 4 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}
5 \\
3 \\
8 \\
0
\end{array}\right)
$$

Expected: (a) [10\%] Augmented matrix, (b) [40\%] Toolkit steps for the RREF, (c) [10\%] Conversion of RREF to scalar equations, (d) [20\%] Last frame Algorithm details to write out the scalar general solution, (e) [20\%] Conversion of the scalar general solution to the vector general solution. This answer is in the form of a single vector equation for \vec{x}, the solution of system $A \vec{x}=\vec{b}$. The expected components of \vec{x} are $x_{1}, x_{2}, x_{3}, x_{4}$.

Answer:

The augmented matrix for this system of equations is

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 4 & 5 \\
0 & 3 & 1 & 0 & 3 \\
0 & 4 & 1 & 4 & 8 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The reduced row echelon form is found to be

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & 4 & 5 \\
0 & 0 & 1 & -12 & -12 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The last frame, or RREF, is equivalent to the scalar system

$$
\left\{\begin{aligned}
x_{2}+4 x_{4} & =5 \\
x_{3}-12 x_{4} & =-12 \\
& 0
\end{aligned}\right)=0
$$

The lead variables are x_{2}, x_{3} and the free variables are x_{1}, x_{4}. The last frame algorithm assigns invented symbols t_{1}, t_{2} to free variables x_{1}, x_{4}. Then back-substitute into the lead variable equations of the last frame to obtain the scalar general solution

$$
\begin{aligned}
x_{1} & =t_{1}, \\
x_{2} & =5-4 t_{2}, \\
x_{3} & =-12+12 t_{2}, \\
x_{4} & =t_{2} .
\end{aligned}
$$

Strang's special solutions are \vec{v}_{1}, \vec{v}_{2}, obtained as the partial derivatives of \vec{x} on the invented symbols t_{1}, t_{2}, respectively. A particular solution \vec{x}_{p} is obtained by setting all invented symbols to zero. Then

$$
\vec{x}=\vec{x}_{p}+t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}=\left(\begin{array}{r}
0 \\
5 \\
-12 \\
0
\end{array}\right)+t_{1}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+t_{2}\left(\begin{array}{r}
0 \\
-4 \\
12 \\
1
\end{array}\right)
$$

Problem 6. (100 points) Determinants, Chapter 3.
Details 75%, answers 25%.
(a) [20\%] Invent a 3×3 non-triangular matrix whose determinant equals $\pi+e^{2}$. Common approximations are $\pi=3.14$ and $e=2.718$, but kindly do not approximate. Expected are determinant evaluation details.
(b) [20\%] There are 50 distinct 5×5 matrices A whose entries are restricted to be either 0 or 1. Give one example where $|A|=0$ and each row and column of A contains at least two zeros and at least two ones. Expected is an explanation for $|A|=0$.
(c) $[60 \%]$ Determine all values of x for which A^{-1} exists, where $A=2 I+C, I$ is the 3×3 identity and $C=\left(\begin{array}{ccc}1 & x & -1 \\ x & 0 & 1 \\ 1 & 0 & -2\end{array}\right)$.

Answer:

(a) $[20 \%]$ Because $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & a & b \\ 0 & c & d\end{array}\right)$ has determinant $|A|=a d-b c$ by the cofactor rule, the choice $a=1, d=\pi, b=-e, c=e$ results in $|A|=\pi+e^{2}$.
(b) $[20 \%]$ Let A be the matrix constructed from two row vectors $\langle 1,1,0,0,0\rangle$ then three row vectors $\langle 0,0,1,1,1\rangle$. Due to duplicate rows, the determinant is zero. There are many other possible solutions.
(c) $[60 \%]$ Find $C+2 I=\left(\begin{array}{ccc}3 & x & -1 \\ x & 2 & 1 \\ 1 & 0 & 0\end{array}\right)$, then evaluate its determinant. Set the answer to zero, then solve for $x=-2$. Used here is F^{-1} exists if and only if $|F| \neq 0$. The answer: matrix $2 I+C$ has an inverse for all $x \neq-2$.

End Exam 1.

