Fundamental Theorem of Linear Algebra

- Orthogonal Vectors
- Orthogonal and Orthonormal Set
- Orthogonal Complement of a Subspace \boldsymbol{W}
- Column Space, Row Space and Null Space of a Matrix \boldsymbol{A}
- The Fundamental Theorem of Linear Algebra

Orthogonality

Definition 1 (Orthogonal Vectors)

Two vectors $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}$ are said to be orthogonal provided their dot product is zero:

$$
\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}=0
$$

If both vectors are nonzero (not required in the definition), then the angle $\boldsymbol{\theta}$ between the two vectors is determined by

$$
\cos \theta=\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{u}}\|\|\overrightarrow{\mathrm{v}}\|}=0
$$

which implies $\boldsymbol{\theta}=\mathbf{9 0}^{\circ}$. In short, orthogonal vectors form a right angle.

Orthogonal and Orthonormal Set

Definition 2 (Orthogonal Set of Vectors)

A given set of nonzero vectors $\overrightarrow{\mathbf{u}}_{\mathbf{1}}, \ldots, \overrightarrow{\mathbf{u}}_{\boldsymbol{k}}$ that satisfies the orthogonality condition

$$
\overrightarrow{\mathbf{u}}_{i} \cdot \overrightarrow{\mathbf{u}}_{j}=0, \quad i \neq j
$$

is called an orthogonal set.

Definition 3 (Orthonormal Set of Vectors)

A given set of unit vectors $\overrightarrow{\mathbf{u}}_{1}, \ldots, \overrightarrow{\mathbf{u}}_{k}$ that satisfies the orthogonality condition is called an orthonormal set.

Orthogonal Complement W^{\perp} of a Subspace W

Definition. Let \boldsymbol{W} be a subspace of an inner product space \boldsymbol{V}, inner product $\langle\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}\rangle$. The orthogonal complement of \boldsymbol{W}, denoted \boldsymbol{W}^{\perp}, is the set of all vectors $\overrightarrow{\mathbf{v}}$ in \boldsymbol{V} such that $\langle\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}\rangle=\mathbf{0}$ for all $\overrightarrow{\mathbf{u}}$ in \boldsymbol{W}. In set notation:

$$
W^{\perp}=\{\vec{v}:\langle\vec{u}, \vec{v}\rangle=0 \text { for all } \vec{u} \text { in } W\}
$$

Example. If $\boldsymbol{V}=\boldsymbol{R}^{3}$ and $\boldsymbol{W}=\operatorname{span}\left\{\overrightarrow{\mathbf{u}}_{1}, \overrightarrow{\mathbf{u}}_{2}\right\}$, then \boldsymbol{W}^{\perp} is the span of the calculus/physics cross product $\overrightarrow{\mathbf{u}}_{1} \times \overrightarrow{\mathbf{u}}_{2}$. The equation $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=3$ holds (in general $\operatorname{dim}(W)+\operatorname{dim}\left(\boldsymbol{W}^{\perp}\right)=\operatorname{dim}(V)$).

Theorem. If \boldsymbol{W} is the span of the columns $\overrightarrow{\mathbf{u}}_{1}, \ldots, \overrightarrow{\mathbf{u}}_{\boldsymbol{n}}$ of $\boldsymbol{m} \times \boldsymbol{n}$ matrix \boldsymbol{A} (the column space of \boldsymbol{A}), then

$$
W^{\perp}=\operatorname{nullspace}\left(A^{T}\right)=\operatorname{span}\left\{\text { Strang's Special Solutions for } A^{T} \overrightarrow{\mathbf{u}}=\overrightarrow{0}\right\}
$$

Proof. Given $W=\operatorname{span}\left\{\overrightarrow{\mathbf{u}}_{1}, \ldots, \overrightarrow{\mathbf{u}}_{n}\right\}$, then

$$
\begin{aligned}
W^{\perp} & =\{\overrightarrow{\mathrm{v}}: \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}}=0, \quad \text { all } \quad \overrightarrow{\mathrm{w}} \in W\} \\
& =\left\{\overrightarrow{\mathrm{v}}: \overrightarrow{\mathbf{u}}_{j} \cdot \overrightarrow{\mathrm{v}}=0, \quad j=1, \ldots, n\right\} \\
& =\left\{\overrightarrow{\mathrm{v}}: A^{T} \overrightarrow{\mathrm{v}}=\overrightarrow{0}\right\}
\end{aligned}
$$

Strang's Special solutions are a basis for the homogeneous problem $A^{T} \overrightarrow{\mathbf{u}}=\overrightarrow{0}$. Therefore, $W^{\perp}=\operatorname{nullspace}\left(A^{T}\right)=\operatorname{span}\left\{\right.$ Strang's Special Solutions for $\left.A^{T} \overrightarrow{\mathbf{u}}=\overrightarrow{0}\right\}$.

Column Space, Row Space and Null Space of a Matrix \boldsymbol{A}

The column space, row space and null space of an $\boldsymbol{m} \times \boldsymbol{n}$ matrix \boldsymbol{A} are sets in \boldsymbol{R}^{n} or $\boldsymbol{R}^{\boldsymbol{m}}$, defined to be the span of a certain set of vectors. The span theorem implies that each of these three sets are subspaces.
Definition. The Column Space of a matrix \boldsymbol{A} is the span of the columns of \boldsymbol{A}, a subspace of \boldsymbol{R}^{m}. The Pivot Theorem implies that

$$
\operatorname{colspace}(A)=\operatorname{span}\{\text { pivot columns of } A\}
$$

Definition. The Row Space of a matrix \boldsymbol{A} is the span of the rows of \boldsymbol{A}, a subspace of \boldsymbol{R}^{n}. The definition implies two possible bases for this subspace, just one selected in an application:

$$
\operatorname{rowspace}(A)=\operatorname{span}\{\text { Nonzero rows of } \operatorname{rref}(A)\}=\operatorname{span}\left\{\text { pivot columns of } A^{T}\right\}
$$

Definition. The Null Space of a matrix \boldsymbol{A} is the set of all solutions $\overrightarrow{\mathrm{x}}$ to the homogeneous problem $\boldsymbol{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathbf{0}}$, a subspace of \boldsymbol{R}^{n}. Because solution $\overrightarrow{\mathrm{x}}$ of $\boldsymbol{A} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$ is a linear combination of Strang's special solutions, then

$$
\text { nullspace }(A)=\operatorname{span}\{\text { Strang's Special Solutions for } A \overrightarrow{\mathrm{x}}=\overrightarrow{0}\}
$$

The Row space is orthogonal to the Null Space
Theorem. Each row vector $\overrightarrow{\mathbf{r}}$ in matrix \boldsymbol{A} satisfies $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathrm{x}}=\mathbf{0}$, where $\overrightarrow{\mathrm{x}}$ is a solution of the homogeneous equation $\boldsymbol{A} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$. Therefore
$\operatorname{rowspace}(A) \perp \operatorname{null} \operatorname{space}(A)$.

The theorem is remembered from this diagram:

$$
\left(\begin{array}{c}
\cdot \cdot \\
\cdot \cdot \\
\cdot \cdot
\end{array}\right) \vec{x}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \text { is equivalent to } \quad\left(\begin{array}{c}
\operatorname{row} 1 \cdot \vec{x} \\
\operatorname{row} 2 \cdot \vec{x} \\
\operatorname{row} 3 \cdot \vec{x}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

which says that the rows of \boldsymbol{A} are orthogonal to solutions $\overrightarrow{\mathrm{x}}$ of $\boldsymbol{A} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$.

Computing the Orthogonal Complement of a subspace \boldsymbol{W}

Theorem. In case \boldsymbol{W} is the subspace of \boldsymbol{R}^{3} spanned by two independent vectors $\overrightarrow{\mathbf{u}}_{1}, \overrightarrow{\mathbf{u}}_{\mathbf{2}}$, then the orthogonal complement of \boldsymbol{W} is the line through the origin generated by the cross product vector $\overrightarrow{\mathbf{u}}_{1} \times \overrightarrow{\mathbf{u}}_{\mathbf{2}}$:

$$
W^{\perp}=\operatorname{span}\left\{\overrightarrow{\mathbf{u}}_{1}, \overrightarrow{\mathbf{u}}_{2}\right\}^{\perp}=\operatorname{span}\left\{\overrightarrow{\mathbf{u}}_{1} \times \overrightarrow{\mathbf{u}}_{2}\right\}
$$

Theorem. In case \boldsymbol{W} is a subspace of \boldsymbol{R}^{m} spanned by all column vectors $\overrightarrow{\mathbf{u}}_{1}, \ldots, \overrightarrow{\mathbf{u}}_{n}$ of an $\boldsymbol{m} \times \boldsymbol{n}$ matrix \boldsymbol{A}, then the orthogonal complement of \boldsymbol{W} is the subspace

$$
\begin{aligned}
W^{\perp} & =\operatorname{span}\left\{\overrightarrow{\mathbf{u}}_{1}, \ldots, \overrightarrow{\mathbf{u}}_{n}\right\}^{\perp} \\
& =\left\{\overrightarrow{\mathbf{y}}: \overrightarrow{\mathbf{y}} \cdot \overrightarrow{\mathbf{u}}_{i}=0 \text { for all } i=1, \ldots, n\right\} \\
& =\operatorname{null} \operatorname{space}\left(A^{T}\right) \\
& =\operatorname{span}\left\{\text { Strang's Special Solutions for } A^{T} \overrightarrow{\mathbf{u}}=\overrightarrow{0}\right\}
\end{aligned}
$$

Method. To compute a basis for \boldsymbol{W}^{\perp}, find Strang's special Solutions for the homogeneous problem $\boldsymbol{A}^{T} \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{0}}$. The basis size is $\boldsymbol{k}=$ number of free variables in $\boldsymbol{A}^{T} \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{0}}$.
Applications may add an additional step to replace this basis by the Gram-Schmidt orthogonal basis $\overrightarrow{\mathbf{y}}_{1}, \ldots, \overrightarrow{\mathbf{y}}_{k}$. Then $\boldsymbol{W}^{\perp}=\operatorname{span}\left\{\overrightarrow{\mathbf{y}}_{1}, \ldots, \overrightarrow{\mathbf{y}}_{k}\right\}$.

Fundamental Theorem of Linear Algebra

\qquad
Definition. The four fundamental subspaces are $\operatorname{rowspace}(A), \operatorname{colspace}(A)$, nullspace (\boldsymbol{A}) and nullspace $\left(\boldsymbol{A}^{T}\right)$.

The Fundamental Theorem of Linear Algebra has two parts:
(1) Dimension of the Four Fundamental Subspaces.

Assume matrix \boldsymbol{A} is $\boldsymbol{m} \times \boldsymbol{n}$ with \boldsymbol{r} pivots. Then

$$
\begin{array}{ll}
\operatorname{dim}(\operatorname{rowspace}(A))=r, & \operatorname{dim}(\operatorname{colspace}(A))=r, \\
\operatorname{dim}(\operatorname{nullspace}(A))=n-r, & \operatorname{dim}\left(\operatorname{nullspace}\left(A^{T}\right)\right)=m-r
\end{array}
$$

(2) Orthogonality of the Four Fundamental Subspaces.

```
rowspace( }A)\perp\mathrm{ nullspace (A)
colspace(A) \perp nullspace( }\mp@subsup{A}{}{T
```

Gilbert Strang's textbook Linear Algebra has a cover illustration for the fundamental theorem of linear algebra. The original article is The Fundamental Theorem of Linear Algebra, http://www.jstor.org/stable/2324660. The free 1993 jstor PDF is available via the Marriott library. Requires UofU 2-factor login.

