Fundamental Theorem of Linear Algebra

- Orthogonal Vectors
- Orthogonal and Orthonormal Set
- ullet Orthogonal Complement of a Subspace W
- ullet Column Space, Row Space and Null Space of a Matrix $oldsymbol{A}$
- The Fundamental Theorem of Linear Algebra

Orthogonality _

Definition 1 (Orthogonal Vectors)

Two vectors \vec{u} , \vec{v} are said to be **orthogonal** provided their dot product is zero:

$$\vec{\mathrm{u}}\cdot\vec{\mathrm{v}}=0.$$

If both vectors are nonzero (not required in the definition), then the angle θ between the two vectors is determined by

$$\cos heta=rac{ec{\mathbf{u}}\cdotec{\mathbf{v}}}{\|ec{\mathbf{u}}\|\|ec{\mathbf{v}}\|}=0,$$

which implies $\theta = 90^{\circ}$. In short, orthogonal vectors form a right angle.

Orthogonal and Orthonormal Set

Definition 2 (Orthogonal Set of Vectors)

A given set of nonzero vectors $\vec{u}_1, \ldots, \vec{u}_k$ that satisfies the **orthogonality condition**

$$ec{\mathrm{u}}_i\cdotec{\mathrm{u}}_j=0, \hspace{1em} i
eq j,$$

is called an **orthogonal set**.

Definition 3 (Orthonormal Set of Vectors)

A given set of unit vectors $\vec{u}_1, \ldots, \vec{u}_k$ that satisfies the orthogonality condition is called an orthonormal set.

Orthogonal Complement W^{\perp} of a Subspace W

Definition. Let W be a subspace of an inner product space V, inner product $\langle \vec{u}, \vec{v} \rangle$. The **orthogonal complement** of W, denoted W^{\perp} , is the set of all vectors \vec{v} in V such that $\langle \vec{u}, \vec{v} \rangle = 0$ for all \vec{u} in W. In set notation:

$$W^{\perp} = \{ ec{\mathrm{v}} \ : \ \langle ec{\mathrm{u}}, ec{\mathrm{v}}
angle = 0 ext{ for all } ec{\mathrm{u}} ext{ in } W \}$$

Example. If $V = R^3$ and $W = \text{span}\{\vec{u}_1, \vec{u}_2\}$, then W^{\perp} is the span of the calculus/physics cross product $\vec{u}_1 \times \vec{u}_2$. The equation $\dim(W) + \dim(W^{\perp}) = 3$ holds (in general $\dim(W) + \dim(W^{\perp}) = \dim(V)$).

Theorem. If W is the span of the columns $\vec{u}_1, \ldots, \vec{u}_n$ of $m \times n$ matrix A (the column space of A), then

 $W^{\perp} = \operatorname{nullspace}(A^T) = \operatorname{span}\{\operatorname{Strang's Special Solutions for } A^T \vec{\mathrm{u}} = \vec{\mathrm{0}}\}.$

Proof. Given $W = \operatorname{span}{\{\vec{u}_1, \ldots, \vec{u}_n\}}$, then

$$egin{aligned} W^{\perp} &= \{ec{\mathbf{v}}\,:\,ec{\mathbf{v}}\cdotec{\mathbf{w}}=0, & ext{all} \;\;ec{\mathbf{w}}\in W\} \ &= \{ec{\mathbf{v}}\,:\,ec{\mathbf{u}}_j\cdotec{\mathbf{v}}=0, \;\;\;j=1,\ldots,n\} \ &= \{ec{\mathbf{v}}\,:\,A^Tec{\mathbf{v}}=ec{\mathbf{0}}\}. \end{aligned}$$

Strang's Special solutions are a basis for the homogeneous problem $A^T \vec{u} = \vec{0}$. Therefore, $W^{\perp} = \text{nullspace}(A^T) = \text{span}\{\text{Strang's Special Solutions for } A^T \vec{u} = \vec{0}\}.$

Column Space, Row Space and Null Space of a Matrix A

The column space, row space and null space of an $m \times n$ matrix A are sets in \mathbb{R}^n or \mathbb{R}^m , defined to be the **span** of a certain set of vectors. The **span theorem** implies that each of these three sets are subspaces.

Definition. The **Column Space** of a matrix A is the span of the columns of A, a subspace of \mathbb{R}^m . The **Pivot Theorem** implies that

$$\operatorname{colspace}(A) = \operatorname{span}\{\operatorname{pivot}\operatorname{columns}\operatorname{of} A\}.$$

Definition. The **Row Space** of a matrix A is the span of the rows of A, a subspace of \mathbb{R}^n . The definition implies two possible bases for this subspace, just one selected in an application:

$$\operatorname{rowspace}(A) = \operatorname{span}\{\operatorname{Nonzero rows of } \operatorname{rref}(A)\} = \operatorname{span}\{\operatorname{pivot columns of } A^T\}.$$

Definition. The **Null Space** of a matrix A is the set of all solutions \vec{x} to the homogeneous problem $A\vec{x} = \vec{0}$, a subspace of R^n . Because solution \vec{x} of $A\vec{x} = \vec{0}$ is a linear combination of Strang's special solutions, then

nullspace $(A) = \text{span}\{\text{Strang's Special Solutions for } A\vec{x} = \vec{0}\}.$

The Row space is orthogonal to the Null Space.

Theorem. Each row vector \vec{r} in matrix \vec{A} satisfies $\vec{r} \cdot \vec{x} = 0$, where \vec{x} is a solution of the homogeneous equation $\vec{A}\vec{x} = \vec{0}$. Therefore

 $rowspace(A) \perp nullspace(A).$

The theorem is remembered from this diagram:

$$\begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \vec{\mathbf{x}} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \text{is equivalent to} \quad \begin{pmatrix} \operatorname{row} 1 \cdot \vec{\mathbf{x}} \\ \operatorname{row} 2 \cdot \vec{\mathbf{x}} \\ \operatorname{row} 3 \cdot \vec{\mathbf{x}} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

which says that the rows of A are orthogonal to solutions \vec{x} of $A\vec{x} = \vec{0}$.

Computing the Orthogonal Complement of a subspace W

Theorem. In case W is the subspace of \mathbb{R}^3 spanned by two independent vectors \vec{u}_1, \vec{u}_2 , then the orthogonal complement of W is the line through the origin generated by the cross product vector $\vec{u}_1 \times \vec{u}_2$:

$$W^\perp = ext{span}\{ec{ ext{u}}_1, ec{ ext{u}}_2\}^\perp = ext{span}\{ec{ ext{u}}_1 imes ec{ ext{u}}_2\}$$

Theorem. In case W is a subspace of \mathbb{R}^m spanned by all column vectors $\vec{u}_1, \ldots, \vec{u}_n$ of an $m \times n$ matrix A, then the orthogonal complement of W is the subspace

$$egin{aligned} W^{\perp} &= \operatorname{span}\{ec{\mathrm{u}}_1,\ldots,ec{\mathrm{u}}_n\}^{\perp} \ &= \{ec{\mathrm{y}}\,:\,ec{\mathrm{y}}\cdotec{\mathrm{u}}_i=0 ext{ for all } i=1,\ldots,n\} \ &= \operatorname{nullspace}(A^T) \ &= \operatorname{span}\{\operatorname{Strang's Special Solutions for } A^Tec{\mathrm{u}}=ec{\mathrm{o}}\} \end{aligned}$$

Method. To compute a basis for W^{\perp} , find Strang's special Solutions for the homogeneous problem $A^T \vec{u} = \vec{0}$. The basis size is k = number of free variables in $A^T \vec{u} = \vec{0}$. Applications may add an additional step to replace this basis by the Gram-Schmidt orthog-

onal basis $\vec{y}_1, \ldots, \vec{y}_k$. Then $W^{\perp} = \operatorname{span}\{\vec{y}_1, \ldots, \vec{y}_k\}$.

Fundamental Theorem of Linear Algebra

Definition. The four fundamental subspaces are rowspace(A), colspace(A), nullspace(A) and $nullspace(A^T)$.

The **Fundamental Theorem of Linear Algebra** has two parts: (1) Dimension of the Four Fundamental Subspaces.

Assume matrix A is $m \times n$ with r pivots. Then

 $\dim(\operatorname{rowspace}(A)) = r, \qquad \dim(\operatorname{colspace}(A)) = r, \\ \dim(\operatorname{nullspace}(A)) = n - r, \ \dim(\operatorname{nullspace}(A^T)) = m - r$

(2) Orthogonality of the Four Fundamental Subspaces.

 $\operatorname{rowspace}(A) \perp \operatorname{nullspace}(A) \\ \operatorname{colspace}(A) \perp \operatorname{nullspace}(A^T)$

Gilbert Strang's textbook *Linear Algebra* has a cover illustration for the fundamental theorem of linear algebra. The original article is *The Fundamental Theorem of Linear Algebra*, http://www.jstor.org/stable/2324660. The free 1993 jstor PDF is available via the Marriott library. Requires UofU 2-factor login.