
Strang: Chapter 6

Section 6.1. Exercises 1, 2, 3, 4, 5, 6, 9, 16, 25, 32

Section 6.2. Exercises 4, 11, 12, 15, 16, 18, 20, 26

Section 6.3. Exercises 4, 10, 18, 19

Section 6.4. Exercises 5, 7, 11, 14, 21, 23

Section 6.5. Exercises 3, 8, 10, 23, 24, 35

Problem week13-1. Find the eigenvalues of the Markov matrix A =

(
.90 .15
.10 .85

)
. The sum of the eigen-

values is the trace of A. What is the steady state eigenvector for the eigenvalue λ1 = 1? See Exercise
8.3-1.

Problem week13-2. Prove that the square M2 of a Markov matrix M is also a Markov matrix. See Exercise
8.3-9.

Problem week13-3. If A is a Markov matrix, then does I+A+A2 + · · · add up to the resolvent (A− I)−1?
See Exercise 8.3-17.

Section 6.6. Exercises 3, 17, 20

Section 6.7. Exercises 1, 4, 5, 6

Some Answers

6.1. Exercises 1, 3, 6, 16, 32 have textbook answers.

6.1-2. A has λ1 = −1 and λ2 = 5 with eigenvectors x1 = (−2, 1) and x2 = (1, 1). The matrix A+ I has the
same eigenvectors, with eigenvalues increased by 1 to 0 and 6. That zero eigenvalue correctly indicates that
A+ I is singular.

6.1-4. A has λ1 = −3 and λ2 = 2 (check trace = −1 and determinant = −6) with x1 = (3,−2) and x2 = (1, 1).
A2 has the same eigenvectors as A, with eigenvalues λ21 = 9 and λ22 = 4.

6.1-5. A and B have eigenvalues 1 and 3. A+B has λ1 = 3, λ2 = 5. Eigenvalues of A+B are not equal to
eigenvalues of A plus eigenvalues of B.

6.1-9. (a) Multiply by A: A(Ax) = A(λx) = λAx gives A2x = λ2x (b) Multiply by A−1: x = A−1Ax =
A−1(λx) = λA−1x gives A−1x = 1

λx (c) Add Ix = x: (A+ I)x = (λ+ 1)x.

6.1-25. With the same n eigenpairs (λi, xi), then x = c1x1 + · · ·+ cnxn implies Ax = c1λ1x1 + · · ·+ cnλnxn
and Bx = c1λ1x1 + · · ·+ cnλnxn, therefore Ax = Bx for all vectors x, which implies A = B.

6.2. Exercises 4, 12, 15, 26 have textbook answers.

6.2-11. (a) True (no zero eigenvalues) (b) False (repeated λ = 2 may have only one line of eigenvectors) (c)
False (repeated λ may have a full set of eigenvectors).

6.2-16. Λ =

(
1 0
0 0.2

)
, S =

(
1 1
1 −1

)
, Λk →

(
1 0
0 0

)
, SΛkS−1 → 1

2

(
1 1
1 1

)
, which is the steady

state.

6.2-18. Ak = 1
2

(
1 + 3k 1− 3k

1− 3k 1 + 3k

)



6.2-20. This proof works when A is diagonalizable, A = SΛS−1:

det(A) = det(S) det(Λ) det(S−1) = det(Λ) = λ1 · · ·λn

6.3. Exercise 4 has a textbook answer.

6.3-10. A =

(
0 1
4 5

)
. λ2 − 5λ− 4 = 0 is the characteristic equation of A with roots 5

2 ±
1
2

√
41. Check the

characteristic equation by substitution of y = eλx into the differential equation y′′ − 5y′ − 4y = 0.

6.3-18. Differentiate the matrix series for eAt as though A was a scalar to get the calculus answer A+A2t+
A3t2/2 + · · · which is exactly A times the infinite series for eAt.

6.3-19. eBt = I + Bt (because B2, B3, . . . are all the zero matrix). Then eBt =

(
1 −4t
0 1

)
. Check

d
dte

Bt =

(
0 −4
0 0

)
and BeBt = B(I +Bt) = B +B2t = B + zero matrix =

(
0 −4
0 0

)
.

6.4. Exercises 5, 11, 14, 21, 23 have textbook answers.

6.4-7. (a)

(
1 2
2 1

)
has eigenvalues −1 and 3. (b) Each pivot has the same signs as the λs (c) trace

= λ1 + λ2 = 2, so A cannot have two negative eigenvalues.

6.5. Exercises 3, 8, 10, 24 have textbook answers.

6.5-23. x2/a2 +y2/b2 is xTAx when A = diag(1/a2, 1/b2). Then λ1 = 1/a2 and λ2 = 1/b2 so a = 1/
√
λ1 and

b = 1/
√
λ2. The ellipse 9x2 + 16y2 = 1 has axes with half-lengths a = 1/3 and b = 1/4. The points (1/3, 0)

and (0, 1/4) are at the ends of the axes.

6.5-35. Put parentheses in xTATCAx to get (Ax)TC(Ax). Since C is assumed positive definite, this energy
can drop to zero only when Ax = 0. Since A is assumed to have independent columns, then Ax = 0 only
happens when x = 0. Thus ATCA has positive energy and it is positive definite.

Strang: My textbooks Computational Science and Engineering and Introduction to Applied Mathematics
start with many examples of ATCA in a wide range of applications. I believe this is a unifying concept from
linear algebra.

Problem week13-1. Eigenvalues λ = 1, 0.75; (A− I)x = 0 gives the steady state x = (.6, .4) with Ax = x.

Problem week13-2. M2 is still nonnegative; multiply M on the left by y = [1, . . . , 1] (all ones) to obtain
yM = y. Then multiply yM = y on the right by M to find yM2 = y, which implies that the columns of M2

add to 1.

Problem week13-3. No, A has an eigenvalue λ = 1 and (I −A)−1 does not exist.

6.6. Exercise 17 has a textbook answer.

6.6-3. B =

(
1 0
0 0

)
=

(
1 0
1 1

)−1(
1 0
1 0

)(
1 0
1 1

)
= M−1AM ;

B =

(
1 −1
−1 1

)
=

(
1 0
0 −1

)−1(
1 1
1 1

)(
1 0
0 −1

)
;

B =

(
4 3
2 1

)
=

(
0 1
1 0

)−1(
1 2
3 4

)(
0 1
1 0

)
.



6.6-20. (a) A = M−1BM implies A2 = AA = M−1B2M . So A2 is similar to B2. (b) A2 equals (−A)2 but

A may not be similar to −B (it could be!). (c)

(
3 1
0 4

)
is diagonalizable to

(
3 0
0 4

)
because λ1 6= λ2, so

these matrices are similar. (d)

(
3 1
0 3

)
has only one eigenvector, so it is not diagonalizable (e) PAP T is

similar to A.

6.7. Exercises 1, 4, 5 have textbook answers.

6.7-6. AAT =

(
2 1
1 2

)
has σ21 = 3 with u1 = 1√

2

(
1
1

)
and σ22 = 1 with u2 = 1√

2

(
1
−1

)
.

ATA =

 1 1 0
1 2 1
0 1 1

 has σ21 = 3 with v1 = 1√
6

 1
2
1

, σ22 = 1 with v2 = 1√
2

 1
0
−1

 and v3 = 1√
3

 1
−1

1

.

Then (
1 1 0
0 1 1

)
= aug(u1, u2)

( √
3 0 0
0 1 0

)
aug(v1, v2, v3)

T


