
Differential Equations 2280

Shortened Sample Final Exam
Problem Numbers Match the Long Sample Final Exam

Monday, 30 April 2018, 12:45pm-3:15pm, LCB 219

Instructions: This in-class exam is 120 minutes. About 20 minutes per sub-section. No
calculators, notes, tables or books. No answer check is expected. Details count 75%. The
answer counts 25%.

The actual final exam will have 25 sections to solve. This sample exam has 50 sections to
solve. It is intended as a study guide for the final exam, which is why it is twice as long as
the actual final exam.

Chapters 1 and 2: Linear First Order Differential Equations

3. (Solve a Separable Equation)

Given y2y′ =
2x2 + 3x

1 + x2

(
125

64
− y3

)
.

(a) Find all equilibrium solutions.
(b) Find the non-equilibrium solution in implicit form.
To save time, do not solve for y explicitly.

Answer:
(a) y = 5/4
(b)

−1

3
ln |125− 64y3| = 2x+

3

2
ln(1 + x2)− 2 arctan(x) + c

4. (Linear Equations)

(a) [60%] Solve 2v′(t) = −32 +
2

3t+ 1
v(t), v(0) = −8. Show all integrating factor

steps.

(b) [30%] Solve 2
√
x+ 2

dy

dx
= y. The answer contains symbol c.

(c) [10%] The problem 2
√
x+ 2 y′ = y − 5 can be solved using the answer yh from

part (b) plus superposition y = yh + yp. Find yp.

Answer:
(a) v(t) = −24t− 8
(b) y(x) = Ce

√
x+2



Chapter 3: Linear Equations of Higher Order

6. (ch3)
(a) Solve for the general solutions:

(a.1) [25%] y′′ + 4y′ + 4y = 0 ,

(a.2) [25%] yvi + 4yiv = 0 ,

(a.3) [25%] Char. eq. r(r − 3)(r3 − 9r)2(r2 + 4)3 = 0 .

(b) Given 6x′′(t) + 7x′(t) + 2x(t) = 0, which represents a damped spring-mass system
with m = 6, c = 7, k = 2, solve the differential equation [15%] and classify the
answer as over-damped, critically damped or under-damped [5%]. Illustrate in a
physical model drawing the meaning of constants m, c, k [5%].

Answer:
(a)
1: r2 + 4r + 4 = 0, y = c1y1 + c2y2, y1 = e−2x, y2 = xe−2x.
2: riv + 4r2 = 0, roots r = 0, 0, 2i,−2i. Then y = c1e

0x + c2xe
0x + c3 cos 2x+ c4 sin 2x.

3: Write as r3(r − 3)3(r + 3)2(r2 + 4)3 = 0. Then y is a linear combination of the
atoms 1, x, x2, e3x, xe3x, x2e3x, e−3x, xe−3x, cos 2x, x cos 2x, x2 cos 2x, sin 2x, x sin 2x,
x2 sin 2x.
Part (b)
Use 6r2 + 7r + 2 = 0 and the quadratic formula to obtain roots r = −1/2,−2/3. Then
x(t) = c1e

−t/2+c2e
−2t/3. This is over-damped. The illustration shows a spring, dampener

and mass with labels k, c, m, x and the equilibrium position of the mass.

7. (ch3)
Determine for yvi + yiv = x + 2x2 + x3 + e−x + x sinx the shortest trial solution
for yp according to the method of undetermined coefficients. Do not evaluate the
undetermined coefficients!

Answer:
The homogeneous solution is a linear combination of the atoms 1, x, x2, x3, cosx, sinx
because the characteristic polynomial has roots 0, 0, 0, 0, i, −i.
1 An initial trial solution y is constructed by Rule I for atoms 1, x, e3x, e−3x, cosx,

sinx giving
y = y1 + y2 + y3 + y4,
y1 = d1 + d2x+ d3x

2 + d4x
3,

y2 = d5 cosx+ d6x cosx,
y3 = d7 sinx+ d8x sinx,
y4 = d9e

−x.

Linear combinations of the listed independent atoms are supposed to reproduce, by spe-
cialization of constants, all derivatives of the right side of the differential equation.



2 Rule II is applied individually to each of y1, y2, y3, y4.
The result is the shortest trial solution

y = y1 + y2 + y3 + y4,
y1 = d1x

4 + d2x
5 + d3x

6 + d4x
7,

y2 = d5x cosx+ d6x
2 cosx,

y3 = d7x sinx+ d8x
2 sinx,

y4 = d9e
−x.

Chapters 4 and 5: Systems of Differential Equations

9. (ch5)
The eigenanalysis method says that the system x′ = Ax has general solution x(t) =
c1v1e

λ1t + c2v2e
λ2t + c3v3e

λ3t. In the solution formula, (λi,vi), i = 1, 2, 3, is an
eigenpair of A. Given

A =

 5 1 1
1 5 1
0 0 7

 ,
then
(a) [75%] Display eigenanalysis details for A.
(b) [25%] Display the solution x(t) of x′(t) = Ax(t).

Answer:
(1): The eigenpairs are4,

 −1
1
0


 ,

6,

 1
1
0


 ,

7,

 1
1
1


 .

An expected detail is the cofactor expansion of det(A−λI) and factoring to find eigenval-
ues 4, 6, 7. Eigenvectors should be found by a sequence of swap, combo, mult operations
on the augmented matrix, followed by taking the partial ∂t1 on invented symbol t1 in
the general solution to compute the eigenvector. In short, the eigenvectors are Strang’s
Special Solutions, and in general there can be many eigenvectors for a single eigenvalue.
(2): The eigenanalysis method for x′ = Ax implies

x(t) = c1e
4t

 −1
1
0

+ c2e
6t

 1
1
0

+ c3e
7t

 1
1
1

 .



10. (ch5)

(a) [20%] Find the eigenvalues of the matrix A =

 4 1 −1
1 4 −2
0 0 2

.

(c) [40%] Display the general solution of u′ = Au according to the Cayley-Hamilton-
Ziebur Method. In particular, display the equations that determine the three vectors
in the general solution. To save time, don’t solve for the three vectors in the formula.
Only 2× 2 on the final exam.

(d) [40%] Display the general solution of u′ = Au according to the Eigenanalysis
Method. To save time, find one eigenpair explicitly, just to show how it is done,
but don’t solve for the last two eigenpairs.

Answer:
(a) Eigenvalue Calculation
Subtract λ from the diagonal elements of A to obtain matrix B = A− λI, then expand
det(B) by cofactors to obtain the characteristic polynomial. The roots are the eigenvalues
λ = 2, 3, 5.
(c) Cayley-Hamilton-Ziebur Method
The eigenvalues 2, 3, 5 from (a) are used to create the list of atoms e2t, e3t, e5t. Then

the Cayley-Hamilton-Ziebur method implies there are constant vectors ~d1, ~d2, ~d3 which
depend on ~u(0) and A such that

~u(t) = e2t~d1 + e3t~d2 + e5t~d3.

The determining equations are formed from differentiation of this formula two times, then
replace ~u′ = A~u, ~u′′ = A~u′ = AA~u. Finally, remove t from the three equations by
setting t = 0, and define ~u0 = ~u(0). Then the three equations are, with u0 = u(0),

~u0 = ~d1 + ~d2 + ~d3

A~u0 = 2~d1 + 3~d2 + 5~d3

A2~u0 = 4~d1 + 9~d2 + 25~d3

This ends the solution to the problem. We continue, solving for the vectors ~dj, just to
illustrate how it is done. The matrix of coefficients

C =

 1 1 1
2 3 5
4 9 25


and its transpose matrix B = CT give a formal relation

aug(~u0, A~u0, A
2~u0) = aug(~d1, ~d2, ~d3)B.

Multiplying this relation by B−1 gives

aug(~d1, ~d2, ~d3) = aug(~u0, A~u0, A
2~u0)B−1.



Then disassembling the formal matrix multiply implies

~d1 = 5~u0 − 8
3
A~u0 + 1

3
A2~u0

~d2 = −5~u0 + 7
2
A~u0 − 1

2
A2~u0

~d3 = 5~u0 − 5
6
A~u0 + 1

6
A2~u0

The matrix of coefficients is
5 −8

3
1
3

−5 7
2
−1

2

1 −5
6

1
6

 =
(
B−1

)T
= C−1!

This fact, that solving for ~d1, ~d2, ~d3 in the displayed equations reduces to inverting the
matrix of coefficients, can be used as a shortcut in the Cayley-Hamilton-Ziebur method.
(d) Eigenanalysis Method
For matrix

A =

 4 1 −1
1 4 −2
0 0 2


the eigenpairs are computed to be2,

 0
1
1


 ,

3,

 −1
1
0


 ,

5,

 1
1
0


 .

Then ~u′ = A~u has general solution

~u(t) = c1e
2t

 0
1
1

+ c2e
3t

 −1
1
0

+ c3e
5t

 1
1
0

 .
(e) Laplace’s Method
The start is the Laplace resolvent formula for matrix differential equation ~u′ = A~u.

(sI − A)L(~u) = ~u0.

This formula expands to s− 4 −1 1
−1 s− 4 2

0 0 s− 2


 L(x)
L(y)
L(z)

 =

 a
b
c


where symbols a, b, c are arbitrary constants for the initial data ~u0. Let W denote the
coefficient matrix. Then the inverse of W can be computed using the adjugate formula
W−1 = adj(W )/ det(W ). The answer for the inverse is

W−1 =
1

(s− 5)(s− 2)(s− 3)

 s2 − 6 s+ 8 s− 2 −s+ 2
s− 2 s2 − 6 s+ 8 −2 s+ 7

0 0 s2 − 8 s+ 15





True, this formula can be derived and then followed by inverse Laplace methods to obtain
an answer in variable t. However, we already know the outcome, because this matrix is
the Laplace of the exponential matrix eAt. The exponential matrix formula was already
derived in (b) above. Expanding the matrix multiplies and collecting terms gives the final
answer

W−1 = L
(
eAt
)

=
1

2
L


e5 t + e3 t e5 t − e3 t −e5 t + e3 t

e5 t − e3 t e5 t + e3 t −e5 t + 2 e2 t − e3 t

0 0 2 e2 t


Canceling the L with Lerch’s Theorem implies the same answer as found in part (b),
which is

~u(t) = eAt

 a
b
c

 =
1

2


e5 t + e3 t e5 t − e3 t −e5 t + e3 t

e5 t − e3 t e5 t + e3 t −e5 t + 2 e2 t − e3 t

0 0 2 e2 t


 a
b
c

 .

11. (ch5)

(a) [50%] The eigenvalues are 4, 6 for the matrix A =

[
5 1
1 5

]
.

Display the general solution of u′ = Au. Show details from either the eigenanalysis
method or the Laplace method.

(b) [50%] Using the same matrix A from part (a), display the solution of u′ = Au
according to the Cayley-Hamilton Method. To save time, write out the system to be
solved for the two vectors, and then stop, without solving for the vectors.

(c) [50%] Using the same matrix A from part (a), compute the exponential matrix
eAt by any known method, for example, the formula eAt = Φ(t)Φ−1(0) where Φ(t) is
any fundamental matrix, or via Putzer’s formula.

Answer:
(a) Eigenanalysis method
The eigenpairs of A are (

4,

(
1
−1

))
,

(
6,

(
1
1

))
which implies the eigenanalysis general solution

u(t) = c1e
4t

(
1
−1

)
+ c2e

6t

(
1
1

)
.

(b)Cayley-Hamilton-Ziebur method



Then u(t) = e4t~c1 + e6t~c2 for some constant vectors ~c1, ~c2 that depend on ~u(0) and A.
Differentiate this equation once and use ~u′ = A~u, then set t = 0. The resulting system
is

~u0 = e0~c1 + e0~c2

A~u0 = 4e0~c1 + 6e0~c2

(c) Putzer Method
The result is eAt = e4tI + e4t−e6t

4−6
(A− 4I). Functions r1, r2 are computed from r′1 = 4r1,

r1(0) = 1, r′2 = 6r2 + r1, r2(0) = 0.

eAt =
1

2

 e4 t + e6 t e6 t − e4 t

e6 t − e4 t e4 t + e6 t

 .

12. (ch5)

(a) [50%] Display the solution of u′ =

(
2 0
1 2

)
u, u(0) =

(
0
1

)
, using any method

that applies.

Answer:
(a) Resolvent method
The resolvent equation (sI − A)L(~u) = ~u(0) is the system(

s− 2 0
−1 s− 2

)(
L(x)
L(y)

)
=

(
0
1

)
.

The system is solved by Cramer’s rule for unknowns L(x), L(y) to obtain

L(x) =
0

(s− 2)2
, L(y) =

s− 2

(s− 2)2
.

The backward Laplace table implies

x(t) = 0, y(t) = e2t.

Best method. Look at the equations as scalar equations x′ = 2x, x(0) = 0 and
y′ = x + 2y, y(0) = 1. Clearly x(t) = 0 and then y′ = 0 + 2y, y(0) = 1 implies
y(t) = e2t.

Chapter 6: Dynamical Systems

14. (ch6) Only half of these items appear on the final exam.
Find the equilibrium points of x′ = 14x−x2/2−xy, y′ = 16y−y2/2−xy and classify



each linearization at an equilibrium as a node, spiral, center, saddle. What classifi-
cations can be deduced for the nonlinear system, according to the Paste Theorem?

Answer:
The equilibria are constant solutions, which are found from the equations

0 = (14− x/2− y)x
0 = (16− y/2− x)y

Considering when a zero factor can occur leads to the four equilibria (0, 0), (0, 32), (28, 0),
(12, 8). The last equilibrium comes from solving the system of equations

x/2 + y = 14
x+ y/2 = 16

Linearization
The Jacobian matrix J is the augmented matrix of partial derivatives ∂x~F, ∂y~F (column
vectors) computed from

~f(x, y) =

(
14x− x2/2− yx
16y − y2/2− xy

)
.

Then

J(x, y) =

(
14− x− y −x
−y 16− y − x

)
.

The four matrices below are J(x, y) when (x, y) is replaced by an equilibrium point.
Included in the table are the roots of the characteristic equation for each matrix and its
classification based on the roots. No book was consulted for the classifications. The idea
in each is to examine the limits at t = ±∞, then eliminate classifications. No matrix has
complex eigenvalues, and that eliminates the center and spiral. The first three are stable
at either t = ∞ or t = ∞, which eliminates the saddle and leaves the node as the only
possible classification.

A1 = J(0, 0) =

(
14 0
0 16

)
r = 14, 16 node

A2 = J(0, 32) =

(
−18 0
−32 −16

)
r = −18,−16 node

A3 = J(28, 0) =

(
−14 −28

0 −12

)
r = −14,−12 node

A4 = J(12, 8) =

(
−6 −12
−8 −4

)
r = −5 +

√
97,−5−

√
97 saddle

Some maple code for checking the answers:



F:=unapply([14*x-x^2/2-y*x , 16*y-y^2/2 -x*y],(x,y));

Fx:=unapply(map(u->diff(u,x),F(x,y)),(x,y));

Fy:=unapply(map(u->diff(u,y),F(x,y)),(x,y));

Fx(0,0);Fy(0,0);Fx(28,0);Fy(28,0);Fx(0,32);Fy(0,32);Fx(0,32);Fy(0,32);

15. (ch6) Only half of these items appear on the final exam.
(a) [25%] Which of the four types center, spiral, node, saddle can be unstable at
t =∞? Explain your answer.
(b) [25%] Give an example of a linear 2-dimensional system u′ = Au with a saddle
at equilibrium point x = y = 0, and A is not triangular.
(c) [25%] Give an example of a nonlinear 2-dimensional predator-prey system with
exactly four equilibria.

(d) [25%] Display a formula for the general solution of the equation u′ =

(
1 1
−1 1

)
u.

Then explain why the system has a spiral at (0, 0).
(e) [25%] Is the origin an isolated equilibrium point of the linear system u′ =(

1 1
1 1

)
u? Explain your answer.

Answer:
(a) All except the center, which is stable but not asymptotically stable. All the others
correspond to a general solution which can have an exponential factor ekt in each term.
If k > 0, then the solution cannot approach the origin at t =∞.

(b) Required are characteristic roots like 1, −1. Let B =

(
−1 0

0 1

)
. Define A =

PBP−1 where P =

(
1 1
1 2

)
. Then u′ = Au has a saddle at the origin, because the

characteristic roots of A are still 1, −1. And A =

(
−3 2
−4 3

)
is not triangular.

(c) Example: The nonlinear predator-prey system x′ = (x+y−4)x, y′ = (−x+2y−2)y
has exactly four equilibrium points (0, 0), (4, 0), (0, 1), (2, 2).
(d) The characteristic equation det(A− λI) = 0 is (1− λ)2 + 1 = 0 with complex roots
1± i and corresponding atoms et cos t, et sin t. Then the Cayley-Hamilton-Ziebur Method
implies

~u(t) = et cos t~c1 + et sin t~c2.

Explanation, why the classification is a spiral. Such solutions containing sine and
cosine factors wrap around the origin. This makes it a spiral or a center. Because of the
exponential factor et, it is asymptotically stable at t = −∞, which disallows a center, so
it is a spiral.
(e) No, because det(A) = 0. In this case, Au = 0 has infinitely many solutions, describing
a line of equilibria through the origin. This implies the equilibrium point (0, 0) is not
isolated [you cannot draw a circle about (0, 0) which contains no other equilibrium point].



Chapter 7: Laplace Theory

16. (ch7)

(d) Explain all the steps in Laplace’s Method, as applied to the differential equation
x′(t) + 2x(t) = et, x(0) = 1.

Answer:
(d) Laplace’s method explained.
The first step transforms the equation using the parts formula and initial data to get

(s+ 2)L(x) = 1 + L(et).

The forward Laplace table applies to write, after a division, the isolated formula for L(x):

L(x) =
1 + 1/(s− 1)

s+ 2
=

s

(s− 1)(s+ 2)
.

Partial fraction methods imply

L(x) =
a

s− 1
+

b

s+ 2
= L(aet + be−2t)

and then x(t) = aet + be−2t by Lerch’s theorem. The constants are a = 1/3, b = 2/3.

17. (ch7) Only half of the items appear on the final exam.

(a) Solve L(f(t)) =
100

(s2 + 1)(s2 + 4)
for f(t).

(b) Solve for f(t) in the equation L(f(t)) =
1

s2(s− 3)
.

(c) Find L(f) given f(t) = (−t)e2t sin(3t).

(d) Find L(f) where f(t) is the periodic function of period 2 equal to t/2 on 0 ≤ t ≤ 2
(sawtooth wave).

Answer:
(a) L(f) = 100

(u+1)(u+4)
= 100/3

u+1
+ −100/3

u+4
where u = s2. Then L(f) = 100

3
( 1
s2+1
− 1

s2+4
) =

100
3
L(sin t− 1

2
sin 2t) implies f(t) = 100

3
(sin t− 1

2
sin 2t).

(b) L(f) = a
s

+ b
s2

+ c
s−3

= L(a+ bt+ ce3t) implies f(t) = a+ bt+ ce3t. The constants,
by Heaviside coverup, are a = −1/9, b = −1/3, c = 1/9.
(c) L(f) = d

ds
L(e2t sin 3t) by the s-differentiation theorem. The first shifting theo-

rem implies L(e2t sin 3t) = L(sin 3t)|s→(s−2). Finally, the forward table implies L(f) =
d
ds

(
1

(s−2)2+9

)
= −2(s−2)

((s−2)2+9)2
.



18. (ch7)

(a) Solve y′′ + 4y′ + 4y = t2, y(0) = y′(0) = 0 by Laplace’s Method.

(c) Solve the system x′ = x + y, y′ = x − y + et, x(0) = 0, y(0) = 0 by Laplace’s
Method.

Answer:
(a) Transform to get L(x) = L(t2)

s2+4s+4
. Then L(x) = 1

s3(s+2)2
= a

s
+ b
s2

+ c
s3

+ d
s+2

+ f
(s+2)2

=

L(a+ bt+ ct2 + de−2t + fte−2t). The answer is x(t) = a+ bt+ +ct2 + de−2t + fte−2t.
The partial fraction constants are a = 3/16, b = −1/4, c = 1/4, d = −3/16, f = −1/8.
(c) Transform to get L(x) = 1

s3+s2−6s
= 1

s(s−2)(s+3)
= a

s
+ b

s−2
+ c

s+3
= L(a+be2t+ce−3t).

Then the answer is x(t) = a + be2t + ce−3t. The partial fraction constants are a =
−1/6, b = 1/10, c = 1/15.

19. (ch7)
(a) [50%] Solve by Laplace’s method x′′ + x = cos t, x(0) = x′(0) = 0.

(d) [50%] Solve by Laplace’s resolvent method

x′(t) = x(t) + y(t),
y′(t) = 2x(t),

with initial conditions x(0) = −1, y(0) = 2.

Answer:
(a) Transform to obtain L(x) = s

(s2+1)2
.

Calculus method. Observe that d
ds

1
s2+1

= −2s
(s2+1)2

. Then L(x) = −1
2
d
ds

1
s2+1

=

−1
2
d
ds
L(sin t) = −1

2
L((−t) sin t) by the s-differentiation theorem. Finally, x(t) = 1

2
t sin t.

Convolution method. Write L(x) = L(sin t)L(cos t). Apply the convolution the-
orem to obtain x(t) =

∫ t
0 sinu cos(t − u)du = 1

2
t sin t. A maple answer check is

int(sin(u)*cos(t-u),u=0..t); .
Hand integration uses the trigonometric identity 2 sin(a) cos(b) = cos(a−b)−cos(a+b).
(d) The resolvent formula (sI − A)L(~u) = ~u0 becomes the 2× system of equations(

s− 1 −1
−2 s− 0

)(
L(x)
L(y)

)
=

(
−1

2

)
.

Multiply by the inverse matrix of (sI − A) on the left to obtain(
L(x)
L(y)

)
=

(
s− 1 −1
−2 s− 0

)−1 ( −1
2

)
=

1

∆

(
s− 0 1

2 s− 1

)(
−1

2

)
,

where ∆ = det(sI − A) = (s + 1)(s − 2). Then L(x) = 2−s
∆

= −1
s+1

, L(y) = 2s
∆

=
2s−4

(s+1)(s−2)
= 2

s+1
. Then x(t) = −e−t, y(t) = 2e−t.



20. (ch7) Fewer items appear on the final exam.

(a) [25%] Solve L(f(t)) =
10

(s2 + 8)(s2 + 4)
for f(t).

(b) [25%] Solve for f(t) in the equation L(f(t)) =
s+ 1

s2(s+ 2)
.

(c) [20%] Solve for f(t) in the equation L(f(t)) =
s− 1

s2 + 2s+ 5
.

(d) [10%] Solve for f(t) in the relation

L(f) =
d

ds
L(t2 sin 3t)

(e) [10%] Solve for f(t) in the relation

L(f) =
(
L
(
t3e9t cos 8t

))∣∣∣
s→s+3

.

Answer:
(a) L(f(t)) = 10

u+8
u+ 4 where u = s2. Use Heaviside’s coverup method to find the

partial fraction expansion

10

u+ 8
u+ 4 =

−5/2

u+ 8
+

5/2

u+ 4
=
−5/2

s2 + 8
+

5/2

s2 + 4
.

Then L(f(t)) = L
(
−5

2
sin
√

8t√
8

+ 5
2

sin 2t
2

)
implies by Lerch’s theorem

f(t) = −5

2

sin
√

8t√
8

+
5

2

sin 2t

2
.

(b) Expand the fraction into partial fractions as follows:

L(f) =
s+ 1

s2(s+ 2)
=
a

s
+

b

s2
+

c

s+ 2
= L(a+ bt+ ce−2t).

Then Lerch’s theorem implies f(t) = a + bt + ce−2t. The partial fraction constants are
a = 1/4, b = 1/2, c = −1/4.
(d) Because d

ds
L(g(t)) = L((−t)g(t)), then L(f) = L((−t)t2 sin 3t). Lerch’s theorem

implies f(t) = −t3 sin 3t.
(e) The shifting theorem L(g(t))|s→(s−a) = L(eatg(t)) is applied to remove the shift on

the outside and put e−3t into the Laplace integrand. Then L(f(t)) = L(e−3tt3e9t cos 8t).
Lerch’s theorem implies f(t) = t3e6t cos 8t.

Chapter 9: Fourier Series and Partial Differential Equations

21. (ch9)
(b) State Fourier’s convergence theorem.
(c) State the results for term-by-term integration and differentiation of Fourier series.



Answer:
(a) Let f(x) be piecewise smooth and 2π-periodic on the whole real line. Then

1

2
(f(x+) + f(x−)) =

a0

2
+
∞∑
n=1

an cos(nx) + bn sin(nx)

where the Fourier coefficients are given by the inner product formulas

an =
< f(x), cos(nx) >

< cos(nx), cos(nx) >
=

1

π

∫ π

−π
f(x) cos(nx)dx, bn =

< f(x), sin(nx) >

< sin(nx), sin(nx) >
=

1

π

∫ π

−π
f(x) sin(nx)dx.

The convergence is pointwise on the whole real line.
(b) INTEGRATION. Assume f(x) is piecewise continuous and periodic of period 2L on
the whole real line. Then∫ t

0
f(x)dx =

a0

2
t+

a0

2
+
∞∑
n=1

∫ t

0
(an cos(nπx/L) + bn sin(nπx/L)) dt

where the Fourier coefficients are given by the inner product formulas

an =
< f(x), cos(nπx/L) >

< cos(nπx/L), cos(nπx/L) >
=

1

L

∫ L

−L
f(x) cos(nx)dx, bn =

< f(x), sin(nπx/L) >

< sin(nπx/L), sin(nπx/L) >
=

1

L

∫ L

−L
f(x) sin(nπx/L)dx.

(b) DIFFERENTIATION.

22. (ch9)
(c) Solve ut = uxx, u(0, t) = u(π, t) = 0, u(x, 0) = 80 sin3 x on 0 ≤ x ≤ π, t ≥ 0.

Answer:
(c)
A possible shortcut trick is to apply Fourier’s exponential insertion method, after writing
f(x) as a sine series. This uses trig identities, as follows.
sin3(x) = (1− cos2(x)) sin(x) = sin(x)− 1

2
cos(x)(2 sin(x) cos(x))

= sin(x)− 1
2

cos(x) sin(2x)

= sin(x)− 1
2

1
2

(sin(2x+ x) + sin(2x− x))

= sin(x)− 1
4

sin(3x) + 1
4

sin(x)

= 3
4

sin(x)− 1
4

sin(3x)

Then

f(x) = 80
(

3

4
sin(x)− 1

4
sin(3x)

)
= 60 sin(x)− 20 sin(3x).

Fourier’s method inserts the correct exponential factors to obtain the answer

u(x, t) = 60 sin(x)e−t − 20 sin(3x)e−9t.



23. (Vibration of a Finite String)
The normal modes for the string equation utt = c2uxx are given by the functions

sin
(
nπx

L

)
cos

(
nπct

L

)
, sin

(
nπx

L

)
sin

(
nπct

L

)
.

It is known that each normal mode is a solution of the string equation and that the
problem below has solution u(x, t) equal to an infinite series of constants times normal
modes.

Solve the finite string vibration problem on 0 ≤ x ≤ 2, t > 0,

utt = c2uxx,
u(0, t) = 0,
u(2, t) = 0,
u(x, 0) = 0,
ut(x, 0) = −11 sin(5πx).

Answer: Because the wave initial shape is zero, then the only normal modes are sine times sine.
The initial wave velocity is already a Fourier series, using orthogonal set {sin(nπx/2)}∞n=1. The
1-term Fourier series −11 sin(5πx) can be modified into a solution by inserting the missing sine
factor present in the corresponding normal mode. Then u(x, t) = −11 sin(5πx) sin(5πct)/(5π).
We check it is a solution.

24. (Periodic Functions)
(c) [30%] Mark the expressions which are periodic with letter P, those odd with O
and those even with E.

sin(cos(2x)) ln |2 + sin(x)| sin(2x) cos(x)
1 + sin(x)

2 + cos(x)

Answer:
(c) All are periodic of period 2π, satisfying f(x + 2π) = f(x). The first is even and the third
is odd.

25. (Fourier Series)
Let f0(x) = x on the interval 0 < x < 2, f0(x) = −x on −2 < x < 0, f0(x) = 0 for
x = 0, f0(x) = 2 at x = ±2. Let f(x) be the periodic extension of f0 to the whole
real line, of period 4.

(a) [80%] Compute the Fourier coefficients of f(x) (defined above) for the terms
sin(67πx) and cos(2πx). Leave tedious integrations in integral form, but evaluate the
easy ones like the integral of the square of sine or cosine.

(b) [20%] Which values of x in |x| < 12 might exhibit Gibb’s over-shoot?



Answer: (a) Because f0(x) is even, then f(x) is even. Then the coefficient of sin(67πx) is
zero, without computation, because all sine terms in the Fourier series of f have zero coefficient.
The coefficient of cos(nπx/2) for n > 0 is given by the formula

an =
1

2

∫ 2

−2
f0(x) cos(nπx/2)dx =

∫ 2

0
x cos(nπx/2)dx.

For cos(2πx), we select nπx/2 = 2πx, or index n = 4.

(b) There are no jump discontinuities, f is continuous, so no Gibbs overshoot.

27. (Convergence of Fourier Series)
(c) [30%] Give an example of a function f(x) periodic of period 2 that has a Gibb’s
over-shoot at the integers x = 0,±2,±4, . . ., (all ±2n) and nowhere else.

Answer:
(c) Any 2-periodic continuous function f will work, if we alter the values of f at the desired
points to produce a jump discontinuity. For example, define f(x) = sin(πx) except at the
points ±2n, where f(2n) = 2 (n = 0, 1, 2, 3, . . .).


