Quiz 1. Please prepare your own report on $8 x 11$ paper, handwritten. Work alone or in groups.

Quiz1 Problem 1. An answer check for the differential equation and initial condition

$$
\begin{equation*}
\frac{d y}{d x}=k(73-y(x)), \quad y(0)=28 \tag{1}
\end{equation*}
$$

requires substitution of the candidate solution $y(x)=73-45 e^{-k x}$ into the left side (LHS) and right side (RHS), then compare the expressions for equality for all symbols. The process of testing LHS $=$ RHS applies to both the differential equation and the initial condition, making the answer check have two presentation panels. Complete the following:

1. Show the two panels in an answer check for initial value problem (11).
2. Relate (1) to a Newton cooling model for warming a 28 F ice cream bar to room temperature 73 F .
3. Let x be the time in minutes. Find the Newton cooling constant k, given the additional information that the ice cream bar reaches 34 F in 5 minutes.

References. Edwards-Penney sections 1.1, 1.4, 1.5. Newton cooling in Serway and Vuille, College Physics 9/E, Brooks-Cole (2011), ISBN-10: 0840062060. Newton cooling differential equation $\frac{d u}{d t}=-h\left(u(t)-u_{1}\right)$, Math 2280 slide Three Examples. Math 2280 slide on Answer checks.

Quiz1 Problem 2. A 2-ft high conical water urn drains from an orifice 6 inches above the base. The tank drains according to the Torricelli model

$$
\begin{equation*}
|y(x)|^{2} \frac{d y}{d x}=-0.021 \sqrt{|y(x)|}, \quad y(0)=y_{0} . \tag{2}
\end{equation*}
$$

Symbol $y(x) \geq 0$ is the tank water height in feet above the orifice at time x seconds, while $y_{0} \geq 0$ is the water height at time $x=0$.
Establish these facts about the physical problem.

1. If $y_{0}>0$, then the solution $y(x)$ is uniquely determined and computable by numerical software. Justify using Picard's existence-uniqueness theorem.
2. Solve equation (2) using separation of variables when y_{0} is 18 inches, then numerically find the drain time. Check your answer with technology.

References. Edwards-Penney, Picard's theorem 1 section 1.3 and Torricelli's Law section 1.4. Tank draining Mathematica demo at Wolfram Research. Carl Schaschke, Fluid Mechanics: Worked Examples for Engineers, The Institution of Chemical Engineers (2005), ISBN-10: 0852954980, Chapter 6. Math 2280 slide on Picard and Peano Theorems, Manuscript on applications of first order equations http://www.math.utah.edu/ gustafso/2250SciEngApplications.pdf, Example 35.

