Differential Equations 2280

Sample Midterm Exam 3 with Solutions Exam Date: Friday 14 April 2017 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4. Problems below cover the possibilities, but the exam day content will be much less, as was the case for Exams 1, 2.

Chapter 3

1. (Linear Constant Equations of Order n)

- (a) Find by variation of parameters a particular solution y_p for the equation y'' = 1 x. Show all steps in variation of parameters. Check the answer by quadrature.
- (b) A particular solution of the equation $mx'' + cx' + kx = F_0 \cos(2t)$ happens to be $x(t) = 11 \cos 2t + e^{-t} \sin \sqrt{11}t \sqrt{11} \sin 2t$. Assume m, c, k all positive. Find the unique periodic steady-state solution x_{SS} .
- (c) A fourth order linear homogeneous differential equation with constant coefficients has two particular solutions $2e^{3x} + 4x$ and xe^{3x} . Write a formula for the general solution.
- (d) Find the Beats solution for the forced undamped spring-mass problem

$$x'' + 64x = 40\cos(4t), \quad x(0) = x'(0) = 0.$$

It is known that this solution is the sum of two harmonic oscillations of different frequencies. **To save time, don't convert to phase-amplitude form**.

(e) Write the solution x(t) of

$$x''(t) + 25x(t) = 180\sin(4t), \quad x(0) = x'(0) = 0,$$

as the sum of two harmonic oscillations of different natural frequencies.

To save time, don't convert to phase-amplitude form.

- (f) Find the steady-state periodic solution for the forced spring-mass system $x'' + 2x' + 2x = 5\sin(t)$.
- (g) Given 5x''(t) + 2x'(t) + 4x(t) = 0, which represents a damped spring-mass system with m = 5, c = 2, k = 4, determine if the equation is over-damped, critically damped or under-damped.

To save time, do not solve for x(t)!

(h) Determine the practical resonance frequency ω for the electric current equation

$$2I'' + 7I' + 50I = 100\omega \cos(\omega t).$$

- (i) Given the forced spring-mass system $x'' + 2x' + 17x = 82\sin(5t)$, find the steady-state periodic solution.
- (j) Let $f(x) = x^3 e^{1.2x} + x^2 e^{-x} \sin(x)$. Find the characteristic polynomial of a constant-coefficient linear homogeneous differential equation of least order which has f(x) as a solution. To save time, do not expand the polynomial and do not find the differential equation.

Answers and Solution Details:

Part (a) Answer: $y_p = \frac{x^2}{2} - \frac{x^3}{6}$.

Variation of Parameters.

Solve y''=0 to get $y_h=c_1y_1+c_2y_2$, $y_1=1$, $y_2=x$. Compute the Wronskian $W=y_1y_2'-y_1'y_2=1$. Then for f(t)=1-x,

$$y_p = y_1 \int y_2 \frac{-f}{W} dx + y_2 \int y_1 \frac{f}{W} dx,$$

$$y_p = 1 \int -x(1-x) dx + x \int 1(1-x) dx,$$

$$y_p = -1(x^2/2 - x^3/3) + x(x - x^2/2),$$

$$y_p = x^2/2 - x^3/6.$$

This answer is checked by quadrature, applied twice to y'' = 1 - x with initial conditions zero.

- Part (b) It has to be the terms left over after striking out the transient terms, those terms with limit zero at infinity. Then $x_{SS}(t) = 11\cos 2t \sqrt{11}\sin 2t$.
- Part (c) In order for xe^{3x} to be a solution, the general solution must have Euler atoms e^{3x} , xe^{3x} . Then the first solution $2e^{3x}+4x$ minus 2 times the Euler atom e^{3x} must be a solution, therefore x is a solution, resulting in Euler atoms 1,x. The general solution is then a linear combination of the four Euler atoms: $y=c_1(1)+c_2(x)+c_3(e^{3x})+c_4(xe^{3x})$.
- Part (d) Use undetermined coefficients trial solution $x=d_1\cos 4t+d_2\sin 4t$. Then $d_1=5/6$, $d_2=0$, and finally $x_p(t)=(5/6)\cos(4t)$. The characteristic equation $r^2+64=0$ has roots $\pm 8i$ with corresponding Euler solution atoms $\cos(8t),\sin(8t)$. Then $x_h(t)=c_1\cos(8t)+c_2\sin(8t)$. The general solution is $x=x_h+x_p$. Now use x(0)=x'(0)=0 to determine $c_1=-5/6$, $c_2=0$, which implies the particular solution $x(t)=-\frac{5}{6}\cos(8t)+\frac{5}{6}\cos(4t)$.
- Part (e) The answer is $x(t)=-16\sin(5t)+20\sin(4t)$ by the method of undetermined coefficients. Rule I: $x=d_1\cos(4t)+d_2\sin(4t)$. Rule II does not apply due to natural frequency $\sqrt{25}=5$ not equal to the frequency of the trial solution (no conflict). Substitute the trial solution into $x''(t)+25x(t)=180\sin(4t)$ to get $9d_1\cos(4t)+9d_2\sin(4t)=180\sin(4t)$. Match coefficients, to arrive at the equations $9d_1=0$, $9d_2=180$. Then $d_1=0$, $d_2=20$ and $x_p(t)=20\sin(4t)$. Lastly, add the homogeneous solution to obtain $x(t)=x_h+x_p=c_1\cos(5t)+c_2\sin(5t)+20\sin(4t)$. Use the initial condition relations x(0)=0,x'(0)=0 to obtain the equations $\cos(0)c_1+\sin(0)c_2+20\sin(0)=0$, $-5\sin(0)c_1+5\cos(0)c_2+80\cos(0)=0$. Solve for the coefficients $c_1=0$, $c_2=-16$
- Part (f) The answer is $x = \sin t 2\cos t$ by the method of undetermined coefficients. Rule I: the trial solution x(t) is a linear combination of the Euler atoms found in $f(x) = 5\sin(t)$. Then $x(t) = d_1\cos(t) + d_2\sin(t)$. Rule II does not apply, because solutions of the homogeneous problem contain negative exponential factors (no conflict). Substitute the trial solution into $x'' + 2x' + 2x = 5\sin(t)$ to get $(-2d_1 + d_2)\sin(t) + (d_1 + 2d_2)\cos(t) = 5\sin(t)$. Match coefficients to find the system of equations $(-2d_1 + d_2) = 5$, $(d_1 + 2d_2) = 0$. Solve for the coefficients $d_1 = -2$, $d_2 = 1$.
- Part (g) Use the quadratic formula to decide. The number under the radical sign in the formula, called the discriminant, is $b^2 4ac = 2^2 4(5)(4) = (19)(-4)$, therefore there are two complex conjugate roots and the equation is under-damped. Alternatively, factor $5r^2 + 2r + 4$ to obtain roots $(-1 \pm \sqrt{19}i)/5$ and then classify as under-damped.
- Part (h) The resonant frequency is $\omega=1/\sqrt{LC}=1/\sqrt{2/50}=\sqrt{25}=5$. The solution uses the theory in the textbook, section 3.7, which says that electrical resonance occurs for $\omega=1/\sqrt{LC}$.

Part (i) The answer is $x(t) = -5\cos(5t) - 4\sin(5t)$ by undetermined coefficients.

Rule I: The trial solution is $x_p(t) = A\cos(5t) + B\sin(5t)$. Rule II: because the homogeneous solution $x_h(t)$ has limit zero at $t=\infty$, then Rule II does not apply (no conflict). Substitute the trial solution into the differential equation. Then $-8A\cos(5t) - 8B\sin(5t) - 10A\sin(5t) + 10B\cos(5t) = 82\sin(5t)$. Matching coefficients of sine and cosine gives the equations -8A + 10B = 0, -10A - 8B = 82. Solving, A = -5, B = -4. Then $x_p(t) = -5\cos(5t) - 4\sin(5t)$ is the unique periodic steady-state solution.

Part (j) The characteristic polynomial is the expansion $(r-1.2)^4((r+1)^2+1)^3$. Because x^3e^{ax} is an Euler solution atom for the differential equation if and only if $e^{ax}, xe^{ax}, x^2e^{ax}, x^3e^{ax}$ are Euler solution atoms, then the characteristic equation must have roots 1.2, 1.2, 1.2, 1.2, 1.2, listing according to multiplicity. Similarly, $x^2e^{-x}\sin(x)$ is an Euler solution atom for the differential equation if and only if $-1\pm i, -1\pm i$ are roots of the characteristic equation. There is a total of 10 roots with product of the factors $(r-1)^4((r+1)^2+1)^3$ equal to the 10th degree characteristic polynomial.

Chapters 4 and 5

2. (Systems of Differential Equations)

Background. Let A be a real 3×3 matrix with eigenpairs $(\lambda_1, \mathbf{v}_1), (\lambda_2, \mathbf{v}_2), (\lambda_3, \mathbf{v}_3)$. The eigenanalysis method says that the 3×3 system $\mathbf{x}' = A\mathbf{x}$ has general solution

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t} + c_3 \mathbf{v}_3 e^{\lambda_3 t}.$$

Background. Let A be an $n \times n$ real matrix. The method called **Cayley-Hamilton-Ziebur** is based upon the result

The components of solution \mathbf{x} of $\mathbf{x}'(t) = A\mathbf{x}(t)$ are linear combinations of Euler solution atoms obtained from the roots of the characteristic equation $|A - \lambda I| = 0$.

Background. Let A be an $n \times n$ real matrix. An augmented matrix $\Phi(t)$ of n independent solutions of $\mathbf{x}'(t) = A\mathbf{x}(t)$ is called a **fundamental matrix**. It is known that the general solution is $\mathbf{x}(t) = \Phi(t)\mathbf{c}$, where \mathbf{c} is a column vector of arbitrary constants c_1, \ldots, c_n . An alternate and widely used definition of fundamental matrix is $\Phi'(t) = A\Phi(t)$, $|\Phi(0)| \neq 0$.

(a) Display eigenanalysis details for the 3×3 matrix

$$A = \left(\begin{array}{ccc} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 0 & 0 & 4 \end{array}\right),$$

then display the general solution $\mathbf{x}(t)$ of $\mathbf{x}'(t) = A\mathbf{x}(t)$.

(b) The 3×3 triangular matrix

$$A = \left(\begin{array}{rrr} 3 & 1 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & 5 \end{array}\right),$$

represents a linear cascade, such as found in brine tank models. Using the linear integrating factor method, starting with component $x_3(t)$, find the vector general solution $\mathbf{x}(t)$ of $\mathbf{x}'(t) = A\mathbf{x}(t)$.

(c) The exponential matrix e^{At} is defined to be a fundamental matrix $\Psi(t)$ selected such that $\Psi(0) = I$, the $n \times n$ identity matrix. Justify the formula $e^{At} = \Phi(t)\Phi(0)^{-1}$, valid for any fundamental matrix $\Phi(t)$.

(d) Let A denote a 2×2 matrix. Assume $\mathbf{x}'(t) = A\mathbf{x}(t)$ has scalar general solution $x_1 = c_1e^t + c_2e^{2t}$, $x_2 = (c_1 - c_2)e^t + 2c_1 + c_2)e^{2t}$, where c_1, c_2 are arbitrary constants. Find a fundamental matrix $\Phi(t)$ and then go on to find e^{At} from the formula in part (c) above.

(e) Let A denote a 2×2 matrix and consider the system $\mathbf{x}'(t) = A\mathbf{x}(t)$. Assume fundamental matrix $\Phi(t) = \begin{pmatrix} e^t & e^{2t} \\ 2e^t & -e^{2t} \end{pmatrix}$. Find the 2×2 matrix A.

(f) The Cayley-Hamilton-Ziebur shortcut applies especially to the system

$$x' = 3x + y, \quad y' = -x + 3y,$$

which has complex eigenvalues $\lambda = 3 \pm i$. Show the details of the method, then go on to report a fundamental matrix $\Phi(t)$.

Remark. The vector general solution is $\mathbf{x}(t) = \Phi(t)\mathbf{c}$, which contains no complex numbers. Reference: 4.1, Examples 6,7,8.

Answers and Solution Details:

Part (a) The details should solve the equation $|A - \lambda I| = 0$ for the three eigenvalues $\lambda = 5, 4, 3$. Then solve the three systems $(A - \lambda I)\vec{v} = \vec{0}$ for eigenvector \vec{v} , for $\lambda = 5, 4, 3$.

The eigenpairs are

$$5, \begin{pmatrix} 1\\1\\0 \end{pmatrix}; \quad 4, \begin{pmatrix} -1\\-1\\1 \end{pmatrix}; \quad 3, \begin{pmatrix} 1\\-1\\0 \end{pmatrix}.$$

The eigenanalysis method implies

$$\mathbf{x}(t) = c_1 e^{5t} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c_2 e^{4t} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} + c_3 e^{3t} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

Part (b) Write the system in scalar form

$$x' = 3x + y + z,$$

$$y' = 4y + z,$$

$$z' = 5z.$$

Solve the last equation as

$$z = \frac{\text{constant}}{\text{integrating factor}} = c_3 e^{5t}.$$

$$z = c_3 e^{5t}$$

The second equation is

$$y' = 4y + c_3 e^{5t}$$

The linear integrating factor method applies.

$$y' - 4y = c_3 e^{-5t}$$

 $\frac{(Wy)'}{W} = c_3 e^{5t}$, where $W = e^{-4t}$,
 $(Wy)' = c_3 W e^{5t}$
 $(e^{-4t}y)' = c_3 e^{-4t} e^{5t}$
 $e^{-4t}y = c_3 e^t + c_2$.
 $y = c_3 e^{5t} + c_2 e^{4t}$

Stuff these two expressions into the first differential equation:

$$x' = 3x + y + z = 3x + 2c_3e^{5t} + c_2e^{4t}$$

Then solve with the linear integrating factor method.

$$\begin{array}{l} x'-3x=2c_3e^{5t}+c_2e^{4t}\\ \frac{(Wx)'}{W}=2c_3e^{5t}+c_2e^{4t}, \ \text{where}\ W=e^{-3t}. \ \text{Cross-multiply:}\\ (e^{-3t}x)'=2c_3e^{5t}e^{-3t}+c_2e^{4t}e^{-3t}, \ \text{then integrate:}\\ e^{-3t}x=c_3e^{2t}+c_2e^t+c_1\\ e^{-3t}x=c_3e^{2t}+c_2e^t+c_1, \ \text{divide by}\ e^{-3t}:\\ \hline x=c_3e^{5t}+c_2e^{4t}+c_1e^{3t} \end{array}$$

Part (c) The question reduces to showing that e^{At} and $\Phi(t)\Phi(0)^{-1}$ have equal columns. This is done by showing that the matching columns are solutions of $\vec{u}' = A\vec{u}$ with the same initial condition $\vec{u}(0)$, then apply Picard's theorem on uniqueness of initial value problems.

Part (d) Take partial derivatives on the symbols c_1, c_2 to find vector solutions $\vec{v}_1(t)$, $\vec{v}_2(t)$. Define $\Phi(t)$ to be the augmented matrix of $\vec{v}_1(t)$, $\vec{v}_2(t)$. Compute $\Phi(0)^{-1}$, then multiply on the right of $\Phi(t)$ to obtain

 $e^{At}=\Phi(t)\Phi(0)^{-1}.$ Check the answer in a computer algebra system or using Putzer's formula.

 $\mathbf{Part} \ \big(\mathbf{e} \big) \quad \text{The equation } \Phi'(t) = A\Phi(t) \text{ holds for every } t. \ \text{Choose } t = 0 \text{ and then solve for } A = \Phi'(0)\Phi(0)^{-1}.$

Part (f) By C-H-Z, $x=c_1e^{3t}\cos(t)+c_2e^{3t}\sin(t)$. Isolate y from the first differential equation x'=3x+y, obtaining the formula $y=x'-3x=-c_1e^{3t}\sin(t)+c_2e^{3t}\cos(t)$. A fundamental matrix is found by taking partial derivatives on the symbols c_1,c_2 . The answer is exactly the Jacobian matrix of $\begin{pmatrix} x \\ y \end{pmatrix}$ with respect to variables c_1,c_2 .

$$\Phi(t) = \begin{pmatrix} e^{3t}\cos(t) & e^{3t}\sin(t) \\ -e^{3t}\sin(t) & e^{3t}\cos(t) \end{pmatrix}.$$

Chapter 6

3. (Linear and Nonlinear Dynamical Systems)

(a) Determine whether the unique equilibrium $\vec{u} = \vec{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u} = \vec{0}$ as a saddle, center, spiral or node.

$$\vec{u}' = \left(\begin{array}{cc} 3 & 4 \\ -2 & -1 \end{array}\right) \vec{u}$$

(b) Determine whether the unique equilibrium $\vec{u} = \vec{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u} = \vec{0}$ as a saddle, center, spiral or node.

$$\vec{u}' = \left(\begin{array}{cc} -3 & 2 \\ -4 & 1 \end{array} \right) \vec{u}$$

(c) Consider the nonlinear dynamical system

$$x' = x - 2y^2 - y + 32,$$

 $y' = 2x^2 - 2xy.$

An equilibrium point is x = 4, y = 4. Compute the Jacobian matrix A = J(4, 4) of the linearized system at this equilibrium point.

(d) Consider the nonlinear dynamical system

$$x' = -x - 2y^2 - y + 32$$

$$y' = 2x^2 + 2xy.$$

An equilibrium point is x = -4, y = 4. Compute the Jacobian matrix A = J(-4, 4) of the linearized system at this equilibrium point.

(e) Consider the nonlinear dynamical system $\begin{cases} x' = -4x + 4y + 9 - x^2, \\ y' = 3x - 3y. \end{cases}$

At equilibrium point x = 3, y = 3, the Jacobian matrix is $A = J(3,3) = \begin{pmatrix} -10 & 4 \\ 3 & -3 \end{pmatrix}$.

(1) Determine the stability at $t = \infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u} = \vec{0}$ for the linear system $\frac{d}{dt}\vec{u} = A\vec{u}$.

(2) Apply the Pasting Theorem to classify x = 3, y = 3 as a saddle, center, spiral or node for the **nonlinear dynamical system**. Discuss all details of the application of the theorem. Details count 75%.

(f) Consider the nonlinear dynamical system $\begin{cases} x' = -4x - 4y + 9 - x^2, \\ y' = 3x + 3y. \end{cases}$

At equilibrium point x = 3, y = -3, the Jacobian matrix is $A = J(3, -3) = \begin{pmatrix} -10 & -4 \\ 3 & 3 \end{pmatrix}$.

Linearization. Determine the stability at $t = \infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u} = \vec{0}$ for the **linear dynamical system** $\frac{d}{dt}\vec{u} = A\vec{u}$.

Nonlinear System. Apply the Pasting Theorem to classify x = 3, y = -3 as a saddle, center, spiral or node for the **nonlinear dynamical system**. Discuss all details of the application of the theorem. *Details count* 75%.

Answers and Solution Details:

Part (a) It is an unstable spiral. Details: The eigenvalues of A are roots of $r^2-2r+5=(r-1)^2+4=0$, which are complex conjugate roots $1\pm 2i$. Rotation eliminates the saddle and node. Finally, the atoms $e^t\cos 2t,\ e^t\sin 2t$ have limit zero at $t=-\infty$, therefore the system is stable at $t=-\infty$ and unstable at $t=\infty$. So it must be a spiral [centers have no exponentials]. Report: unstable spiral.

Part (b) It is a stable spiral. Details: The eigenvalues of A are roots of $r^2+2r+5=(r+1)^2+4=0$, which are complex conjugate roots $-1\pm 2i$. Rotation eliminates the saddle and node. Finally, the atoms $e^{-t}\cos 2t$, $e^{-t}\sin 2t$ have limit zero at $t=\infty$, therefore the system is stable at $t=\infty$ and unstable at $t=-\infty$. So it must be a spiral [centers have no exponentials]. Report: stable spiral.

$$\mathbf{Part} \ \ \mathbf{(c)} \quad \text{The Jacobian is} \ J(x,y) = \left(\begin{array}{cc} 1 & -4y-1 \\ 4x-2y & -2x \end{array} \right) . \ \ \text{Then} \ \ A = J(4,4) = \left(\begin{array}{cc} 1 & -17 \\ 8 & -8 \end{array} \right) .$$

$$\mathbf{Part} \ \ \mathbf{(d)} \quad \text{The Jacobian is } J(x,y) = \left(\begin{array}{cc} -1 & -4y-1 \\ 4x+2y & 2x \end{array} \right). \ \ \text{Then} \ \ A = J(-4,4) = \left(\begin{array}{cc} -1 & -17 \\ -8 & -8 \end{array} \right).$$

Part (e) (1) The Jacobian is
$$J(x,y) = \begin{pmatrix} -4 - 2x & 4 \\ 3 & -3 \end{pmatrix}$$
. Then $A = J(3,3) = \begin{pmatrix} -10 & 4 \\ 3 & -3 \end{pmatrix}$. The

eigenvalues of A are found from $r^2+13r+18=0$, giving distinct real negative roots $-\frac{13}{2}\pm(\frac{1}{2})\sqrt{97}$. Because there are no trig functions in the Euler solution aistoms, then no rotation happens, and the classification must be a saddle or node. The Euler solution atoms limit to zero at $t=\infty$, therefore it is a node and we report a stable node for the linear problem $\vec{u}'=A\vec{u}$ at equilibrium $\vec{u}=\vec{0}$.

(2) Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system: stable node at x=3, y=3. The exceptional case in Theorem 2 is a proper node, having characteristic equation roots that are equal. Stability is always preserved for nodes.

Part (f)

Linearization. The Jacobian is
$$J(x,y)=\begin{pmatrix} -4-2x & -4 \\ 3 & 3 \end{pmatrix}$$
. Then $A=J(3,3)=\begin{pmatrix} -10 & -4 \\ 3 & 3 \end{pmatrix}$. The

eigenvalues of A are found from $r^2+7r-18=0$, giving distinct real roots 2,-9. Because there are no trig functions in the Euler solution atoms e^{2t},e^{-9t} , then no rotation happens, and the classification must be a saddle or node. The Euler solution atoms do not limit to zero at $t=\infty$ or $t=-\infty$, therefore it is a saddle and we report a **unstable saddle** for the linear problem $\vec{u}'=A\vec{u}$ at equilibrium $\vec{u}=\vec{0}$.

Nonlinear System. Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system: **unstable saddle** at x = 3, y = 3-.

Final Exam Problems

Chapter 5. Solve a homogeneous system u' = Au, $u(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $A = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}$ using the matrix exponential, Zeibur's method, Laplace resolvent and eigenanalysis.

Chapter 5. Solve a non-homogeneous system u' = Au + F(t), $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $A = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}$, $F(t) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ using variation of parameters.