Differential Equations 2280
 Sample Midterm Exam 3 with Solutions
 Exam Date: Friday 14 April 2017 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$. Problems below cover the possibilities, but the exam day content will be much less, as was the case for Exams 1, 2.

Chapter 3

1. (Linear Constant Equations of Order n)

(a) Find by variation of parameters a particular solution y_{p} for the equation $y^{\prime \prime}=1-x$. Show all steps in variation of parameters. Check the answer by quadrature.
(b) A particular solution of the equation $m x^{\prime \prime}+c x^{\prime}+k x=F_{0} \cos (2 t)$ happens to be $x(t)=11 \cos 2 t+$ $e^{-t} \sin \sqrt{11} t-\sqrt{11} \sin 2 t$. Assume m, c, k all positive. Find the unique periodic steady-state solution x_{SS}.
(c) A fourth order linear homogeneous differential equation with constant coefficients has two particular solutions $2 e^{3 x}+4 x$ and $x e^{3 x}$. Write a formula for the general solution.
(d) Find the Beats solution for the forced undamped spring-mass problem

$$
x^{\prime \prime}+64 x=40 \cos (4 t), \quad x(0)=x^{\prime}(0)=0
$$

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save time, don't convert to phase-amplitude form.
(e) Write the solution $x(t)$ of

$$
x^{\prime \prime}(t)+25 x(t)=180 \sin (4 t), \quad x(0)=x^{\prime}(0)=0,
$$

as the sum of two harmonic oscillations of different natural frequencies.

To save time, don't convert to phase-amplitude form.

(f) Find the steady-state periodic solution for the forced spring-mass system $x^{\prime \prime}+2 x^{\prime}+2 x=5 \sin (t)$.
(g) Given $5 x^{\prime \prime}(t)+2 x^{\prime}(t)+4 x(t)=0$, which represents a damped spring-mass system with $m=5$, $c=2, k=4$, determine if the equation is over-damped, critically damped or under-damped.
To save time, do not solve for $x(t)$!
(h) Determine the practical resonance frequency ω for the electric current equation

$$
2 I^{\prime \prime}+7 I^{\prime}+50 I=100 \omega \cos (\omega t)
$$

(i) Given the forced spring-mass system $x^{\prime \prime}+2 x^{\prime}+17 x=82 \sin (5 t)$, find the steady-state periodic solution.
(j) Let $f(x)=x^{3} e^{1.2 x}+x^{2} e^{-x} \sin (x)$. Find the characteristic polynomial of a constant-coefficient linear homogeneous differential equation of least order which has $f(x)$ as a solution. To save time, do not expand the polynomial and do not find the differential equation.

Answers and Solution Details:

Part (a) Answer: $y_{p}=\frac{x^{2}}{2}-\frac{x^{3}}{6}$.

Variation of Parameters.

Solve $y^{\prime \prime}=0$ to get $y_{h}=c_{1} y_{1}+c_{2} y_{2}, y_{1}=1, y_{2}=x$. Compute the Wronskian $W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=1$. Then for $f(t)=1-x$,
$y_{p}=y_{1} \int y_{2} \frac{-f}{W} d x+y_{2} \int y_{1} \frac{f}{W} d x$,
$y_{p}=1 \int-x(1-x) d x+x \int 1(1-x) d x$,
$y_{p}=-1\left(x^{2} / 2-x^{3} / 3\right)+x\left(x-x^{2} / 2\right)$,
$y_{p}=x^{2} / 2-x^{3} / 6$.
This answer is checked by quadrature, applied twice to $y^{\prime \prime}=1-x$ with initial conditions zero.
Part (b) It has to be the terms left over after striking out the transient terms, those terms with limit zero at infinity. Then $x_{\mathrm{ss}}(t)=11 \cos 2 t-\sqrt{11} \sin 2 t$.
Part (c) In order for $x e^{3 x}$ to be a solution, the general solution must have Euler atoms $e^{3 x}, x e^{3 x}$. Then the first solution $2 e^{3 x}+4 x$ minus 2 times the Euler atom $e^{3 x}$ must be a solution, therefore x is a solution, resulting in Euler atoms $1, x$. The general solution is then a linear combination of the four Euler atoms: $y=c_{1}(1)+c_{2}(x)+c_{3}\left(e^{3 x}\right)+c_{4}\left(x e^{3 x}\right)$.
Part (d) Use undetermined coefficients trial solution $x=d_{1} \cos 4 t+d_{2} \sin 4 t$. Then $d_{1}=5 / 6, d_{2}=0$, and finally $x_{p}(t)=(5 / 6) \cos (4 t)$. The characteristic equation $r^{2}+64=0$ has roots $\pm 8 i$ with corresponding Euler solution atoms $\cos (8 t), \sin (8 t)$. Then $x_{h}(t)=c_{1} \cos (8 t)+c_{2} \sin (8 t)$. The general solution is $x=x_{h}+x_{p}$. Now use $x(0)=x^{\prime}(0)=0$ to determine $c_{1}=-5 / 6, c_{2}=0$, which implies the particular solution $x(t)=-\frac{5}{6} \cos (8 t)+\frac{5}{6} \cos (4 t)$.
Part (e) The answer is $x(t)=-16 \sin (5 t)+20 \sin (4 t)$ by the method of undetermined coefficients.
Rule I: $x=d_{1} \cos (4 t)+d_{2} \sin (4 t)$. Rule II does not apply due to natural frequency $\sqrt{25}=5$ not equal to the frequency of the trial solution (no conflict). Substitute the trial solution into $x^{\prime \prime}(t)+25 x(t)=180 \sin (4 t)$ to get $9 d_{1} \cos (4 t)+9 d_{2} \sin (4 t)=180 \sin (4 t)$. Match coefficients, to arrive at the equations $9 d_{1}=0$, $9 d_{2}=180$. Then $d_{1}=0, d_{2}=20$ and $x_{p}(t)=20 \sin (4 t)$. Lastly, add the homogeneous solution to obtain $x(t)=x_{h}+x_{p}=c_{1} \cos (5 t)+c_{2} \sin (5 t)+20 \sin (4 t)$. Use the initial condition relations $x(0)=0, x^{\prime}(0)=0$ to obtain the equations $\cos (0) c_{1}+\sin (0) c_{2}+20 \sin (0)=0,-5 \sin (0) c_{1}+5 \cos (0) c_{2}+80 \cos (0)=0$. Solve for the coefficients $c_{1}=0, c_{2}=-16$
Part (f) The answer is $x=\sin t-2 \cos t$ by the method of undetermined coefficients.
Rule I: the trial solution $x(t)$ is a linear combination of the Euler atoms found in $f(x)=5 \sin (t)$. Then $x(t)=d_{1} \cos (t)+d_{2} \sin (t)$. Rule II does not apply, because solutions of the homogeneous problem contain negative exponential factors (no conflict). Substitute the trial solution into $x^{\prime \prime}+2 x^{\prime}+2 x=5 \sin (t)$ to get $\left(-2 d_{1}+d_{2}\right) \sin (t)+\left(d_{1}+2 d_{2}\right) \cos (t)=5 \sin (t)$. Match coefficients to find the system of equations $\left(-2 d_{1}+d_{2}\right)=5,\left(d_{1}+2 d_{2}\right)=0$. Solve for the coefficients $d_{1}=-2, d_{2}=1$.
Part (g) Use the quadratic formula to decide. The number under the radical sign in the formula, called the discriminant, is $b^{2}-4 a c=2^{2}-4(5)(4)=(19)(-4)$, therefore there are two complex conjugate roots and the equation is under-damped. Alternatively, factor $5 r^{2}+2 r+4$ to obtain roots $(-1 \pm \sqrt{19 i}) / 5$ and then classify as under-damped.
Part (h) The resonant frequency is $\omega=1 / \sqrt{L C}=1 / \sqrt{2 / 50}=\sqrt{25}=5$. The solution uses the theory in the textbook, section 3.7, which says that electrical resonance occurs for $\omega=1 / \sqrt{L C}$.

Part (i) The answer is $x(t)=-5 \cos (5 t)-4 \sin (5 t)$ by undetermined coefficients.
Rule I: The trial solution is $x_{p}(t)=A \cos (5 t)+B \sin (5 t)$. Rule II: because the homogeneous solution $x_{h}(t)$ has limit zero at $t=\infty$, then Rule II does not apply (no conflict). Substitute the trial solution into the differential equation. Then $-8 A \cos (5 t)-8 B \sin (5 t)-10 A \sin (5 t)+10 B \cos (5 t)=82 \sin (5 t)$. Matching coefficients of sine and cosine gives the equations $-8 A+10 B=0,-10 A-8 B=82$. Solving, $A=-5, B=-4$. Then $x_{p}(t)=-5 \cos (5 t)-4 \sin (5 t)$ is the unique periodic steady-state solution.
Part (j) The characteristic polynomial is the expansion $(r-1.2)^{4}\left((r+1)^{2}+1\right)^{3}$. Because $x^{3} e^{a x}$ is an Euler solution atom for the differential equation if and only if $e^{a x}, x e^{a x}, x^{2} e^{a x}, x^{3} e^{a x}$ are Euler solution atoms, then the characteristic equation must have roots $1.2,1.2,1.2,1.2$, listing according to multiplicity. Similarly, $x^{2} e^{-x} \sin (x)$ is an Euler solution atom for the differential equation if and only if $-1 \pm i,-1 \pm i,-1 \pm i$ are roots of the characteristic equation. There is a total of 10 roots with product of the factors $(r-1)^{4}\left((r+1)^{2}+1\right)^{3}$ equal to the 10th degree characteristic polynomial.

Use this page to start your solution.

Chapters 4 and 5

2. (Systems of Differential Equations)

Background. Let A be a real 3×3 matrix with eigenpairs $\left(\lambda_{1}, \mathbf{v}_{1}\right),\left(\lambda_{2}, \mathbf{v}_{2}\right),\left(\lambda_{3}, \mathbf{v}_{3}\right)$. The eigenanalysis method says that the 3×3 system $\mathbf{x}^{\prime}=A \mathbf{x}$ has general solution

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+c_{3} \mathbf{v}_{3} e^{\lambda_{3} t}
$$

Background. Let A be an $n \times n$ real matrix. The method called Cayley-Hamilton-Ziebur is based upon the result

The components of solution \mathbf{x} of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ are linear combinations of Euler solution atoms obtained from the roots of the characteristic equation $|A-\lambda I|=0$.

Background. Let A be an $n \times n$ real matrix. An augmented matrix $\Phi(t)$ of n independent solutions of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is called a fundamental matrix. It is known that the general solution is $\mathbf{x}(t)=\Phi(t) \mathbf{c}$, where \mathbf{c} is a column vector of arbitrary constants c_{1}, \ldots, c_{n}. An alternate and widely used definition of fundamental matrix is $\Phi^{\prime}(t)=A \Phi(t),|\Phi(0)| \neq 0$.
(a) Display eigenanalysis details for the 3×3 matrix

$$
A=\left(\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
0 & 0 & 4
\end{array}\right)
$$

then display the general solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
(b) The 3×3 triangular matrix

$$
A=\left(\begin{array}{lll}
3 & 1 & 1 \\
0 & 4 & 1 \\
0 & 0 & 5
\end{array}\right)
$$

represents a linear cascade, such as found in brine tank models. Using the linear integrating factor method, starting with component $x_{3}(t)$, find the vector general solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
(c) The exponential matrix $e^{A t}$ is defined to be a fundamental matrix $\Psi(t)$ selected such that $\Psi(0)=I$, the $n \times n$ identity matrix. Justify the formula $e^{A t}=\Phi(t) \Phi(0)^{-1}$, valid for any fundamental matrix $\Phi(t)$.
(d) Let A denote a 2×2 matrix. Assume $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ has scalar general solution $x_{1}=c_{1} e^{t}+c_{2} e^{2 t}$, $\left.x_{2}=\left(c_{1}-c_{2}\right) e^{t}+2 c_{1}+c_{2}\right) e^{2 t}$, where c_{1}, c_{2} are arbitrary constants. Find a fundamental matrix $\Phi(t)$ and then go on to find $e^{A t}$ from the formula in part (c) above.
(e) Let A denote a 2×2 matrix and consider the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$. Assume fundamental matrix $\Phi(t)=\left(\begin{array}{rr}e^{t} & e^{2 t} \\ 2 e^{t} & -e^{2 t}\end{array}\right)$. Find the 2×2 matrix A.
(f) The Cayley-Hamilton-Ziebur shortcut applies especially to the system

$$
x^{\prime}=3 x+y, \quad y^{\prime}=-x+3 y,
$$

which has complex eigenvalues $\lambda=3 \pm i$. Show the details of the method, then go on to report a fundamental matrix $\Phi(t)$.
Remark. The vector general solution is $\mathbf{x}(t)=\Phi(t) \mathbf{c}$, which contains no complex numbers. Reference: 4.1, Examples 6,7,8.

Answers and Solution Details:

Part (a) The details should solve the equation $|A-\lambda I|=0$ for the three eigenvalues $\lambda=5,4,3$. Then solve the three systems $(A-\lambda I) \vec{v}=\overrightarrow{0}$ for eigenvector \vec{v}, for $\lambda=5,4,3$.
The eigenpairs are

$$
5,\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) ; \quad 4,\left(\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right) ; \quad 3,\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)
$$

The eigenanalysis method implies

$$
\mathbf{x}(t)=c_{1} e^{5 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{2} e^{4 t}\left(\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right)+c_{3} e^{3 t}\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)
$$

Part (b) Write the system in scalar form

$$
\begin{aligned}
& x^{\prime}=3 x+y+z, \\
& y^{\prime}=4 y+z, \\
& z^{\prime}=5 z .
\end{aligned}
$$

Solve the last equation as
$z=\frac{\text { constant }}{\text { integrating factor }}=c_{3} e^{5 t}$.
$z=c_{3} e^{5 t}$
The second equation is
$y^{\prime}=4 y+c_{3} e^{5 t}$
The linear integrating factor method applies.
$y^{\prime}-4 y=c_{3} e^{-5 t}$
$\frac{(W y)^{\prime}}{W}=c_{3} e^{5 t}$, where $W=e^{-4 t}$,
$(W y)^{\prime}=c_{3} W e^{5 t}$
$\left(e^{-4 t} y\right)^{\prime}=c_{3} e^{-4 t} e^{5 t}$
$e^{-4 t} y=c_{3} e^{t}+c_{2}$.
$y=c_{3} e^{5 t}+c_{2} e^{4 t}$
Stuff these two expressions into the first differential equation:
$x^{\prime}=3 x+y+z=3 x+2 c_{3} e^{5 t}+c_{2} e^{4 t}$
Then solve with the linear integrating factor method.
$x^{\prime}-3 x=2 c_{3} e^{5 t}+c_{2} e^{4 t}$
$\frac{(W x)^{\prime}}{W}=2 c_{3} e^{5 t}+c_{2} e^{4 t}$, where $W=e^{-3 t}$. Cross-multiply:
$\left(e^{-3 t} x\right)^{\prime}=2 c_{3} e^{5 t} e^{-3 t}+c_{2} e^{4 t} e^{-3 t}$, then integrate:
$e^{-3 t} x=c_{3} e^{2 t}+c_{2} e^{t}+c_{1}$
$e^{-3 t} x=c_{3} e^{2 t}+c_{2} e^{t}+c_{1}$, divide by $e^{-3 t}$:
$x=c_{3} e^{5 t}+c_{2} e^{4 t}+c_{1} e^{3 t}$
Part (c) The question reduces to showing that $e^{A t}$ and $\Phi(t) \Phi(0)^{-1}$ have equal columns. This is done by showing that the matching columns are solutions of $\vec{u}^{\prime}=A \vec{u}$ with the same initial condition $\vec{u}(0)$, then apply Picard's theorem on uniqueness of initial value problems.
Part (d) Take partial derivatives on the symbols c_{1}, c_{2} to find vector solutions $\vec{v}_{1}(t), \vec{v}_{2}(t)$. Define $\Phi(t)$ to be the augmented matrix of $\vec{v}_{1}(t), \vec{v}_{2}(t)$. Compute $\Phi(0)^{-1}$, then multiply on the right of $\Phi(t)$ to obtain
$e^{A t}=\Phi(t) \Phi(0)^{-1}$. Check the answer in a computer algebra system or using Putzer's formula.
Part (e) The equation $\Phi^{\prime}(t)=A \Phi(t)$ holds for every t. Choose $t=0$ and then solve for $A=\Phi^{\prime}(0) \Phi(0)^{-1}$. Part (f) By C-H-Z, $x=c_{1} e^{3 t} \cos (t)+c_{2} e^{3 t} \sin (t)$. Isolate y from the first differential equation $x^{\prime}=3 x+y$, obtaining the formula $y=x^{\prime}-3 x=-c_{1} e^{3 t} \sin (t)+c_{2} e^{3 t} \cos (t)$. A fundamental matrix is found by taking partial derivatives on the symbols c_{1}, c_{2}. The answer is exactly the Jacobian matrix of $\binom{x}{y}$ with respect to variables c_{1}, c_{2}.
$\Phi(t)=\left(\begin{array}{rr}e^{3 t} \cos (t) & e^{3 t} \sin (t) \\ -e^{3 t} \sin (t) & e^{3 t} \cos (t)\end{array}\right)$.

Chapter 6

3. (Linear and Nonlinear Dynamical Systems)
(a) Determine whether the unique equilibrium $\vec{u}=\overrightarrow{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u}=\overrightarrow{0}$ as a saddle, center, spiral or node.

$$
\vec{u}^{\prime}=\left(\begin{array}{rr}
3 & 4 \\
-2 & -1
\end{array}\right) \vec{u}
$$

(b) Determine whether the unique equilibrium $\vec{u}=\overrightarrow{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u}=\overrightarrow{0}$ as a saddle, center, spiral or node.

$$
\vec{u}^{\prime}=\left(\begin{array}{ll}
-3 & 2 \\
-4 & 1
\end{array}\right) \vec{u}
$$

(c) Consider the nonlinear dynamical system

$$
\begin{aligned}
x^{\prime} & =x-2 y^{2}-y+32, \\
y^{\prime} & =2 x^{2}-2 x y .
\end{aligned}
$$

An equilibrium point is $x=4, y=4$. Compute the Jacobian matrix $A=J(4,4)$ of the linearized system at this equilibrium point.
(d) Consider the nonlinear dynamical system

$$
\begin{aligned}
& x^{\prime}=-x-2 y^{2}-y+32, \\
& y^{\prime}=2 x^{2}+2 x y .
\end{aligned}
$$

An equilibrium point is $x=-4, y=4$. Compute the Jacobian matrix $A=J(-4,4)$ of the linearized system at this equilibrium point.
(e) Consider the nonlinear dynamical system $\left\{\begin{aligned} x^{\prime} & =-4 x+4 y+9-x^{2}, \\ y^{\prime} & =3 x-3 y .\end{aligned}\right.$

At equilibrium point $x=3, y=3$, the Jacobian matrix is $A=J(3,3)=\left(\begin{array}{rr}-10 & 4 \\ 3 & -3\end{array}\right)$.
(1) Determine the stability at $t=\infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u}=\overrightarrow{0}$ for the linear system $\frac{d}{d t} \vec{u}=A \vec{u}$.
(2) Apply the Pasting Theorem to classify $x=3, y=3$ as a saddle, center, spiral or node for the nonlinear dynamical system. Discuss all details of the application of the theorem. Details count 75\%.
(f) Consider the nonlinear dynamical system $\left\{\begin{array}{l}x^{\prime}=-4 x-4 y+9-x^{2}, \\ y^{\prime}=3 x+3 y .\end{array}\right.$

At equilibrium point $x=3, y=-3$, the Jacobian matrix is $A=J(3,-3)=\left(\begin{array}{rr}-10 & -4 \\ 3 & 3\end{array}\right)$.
Linearization. Determine the stability at $t=\infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u}=\overrightarrow{0}$ for the linear dynamical system $\frac{d}{d t} \vec{u}=A \vec{u}$.
Nonlinear System. Apply the Pasting Theorem to classify $x=3, y=-3$ as a saddle, center, spiral or node for the nonlinear dynamical system. Discuss all details of the application of the theorem. Details count 75%.

Answers and Solution Details:

Part (a) It is an unstable spiral. Details: The eigenvalues of A are roots of $r^{2}-2 r+5=(r-1)^{2}+4=0$, which are complex conjugate roots $1 \pm 2 i$. Rotation eliminates the saddle and node. Finally, the atoms $e^{t} \cos 2 t, e^{t} \sin 2 t$ have limit zero at $t=-\infty$, therefore the system is stable at $t=-\infty$ and unstable at $t=\infty$. So it must be a spiral [centers have no exponentials]. Report: unstable spiral.
Part (b) It is a stable spiral. Details: The eigenvalues of A are roots of $r^{2}+2 r+5=(r+1)^{2}+4=0$, which are complex conjugate roots $-1 \pm 2 i$. Rotation eliminates the saddle and node. Finally, the atoms $e^{-t} \cos 2 t, e^{-t} \sin 2 t$ have limit zero at $t=\infty$, therefore the system is stable at $t=\infty$ and unstable at $t=-\infty$. So it must be a spiral [centers have no exponentials]. Report: stable spiral.
Part (c) The Jacobian is $J(x, y)=\left(\begin{array}{rr}1 & -4 y-1 \\ 4 x-2 y & -2 x\end{array}\right)$. Then $A=J(4,4)=\left(\begin{array}{rr}1 & -17 \\ 8 & -8\end{array}\right)$.
Part (d) The Jacobian is $J(x, y)=\left(\begin{array}{rr}-1 & -4 y-1 \\ 4 x+2 y & 2 x\end{array}\right)$. Then $A=J(-4,4)=\left(\begin{array}{rr}-1 & -17 \\ -8 & -8\end{array}\right)$.
Part (e) (1) The Jacobian is $J(x, y)=\left(\begin{array}{rr}-4-2 x & 4 \\ 3 & -3\end{array}\right)$. Then $A=J(3,3)=\left(\begin{array}{rr}-10 & 4 \\ 3 & -3\end{array}\right)$. The eigenvalues of A are found from $r^{2}+13 r+18=0$, giving distinct real negative roots $-\frac{13}{2} \pm\left(\frac{1}{2}\right) \sqrt{97}$. Because there are no trig functions in the Euler solution aistoms, then no rotation happens, and the classification must be a saddle or node. The Euler solution atoms limit to zero at $t=\infty$, therefore it is a node and we report a stable node for the linear problem $\vec{u}^{\prime}=A \vec{u}$ at equilibrium $\vec{u}=\overrightarrow{0}$.
(2) Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system: stable node at $x=3, y=3$. The exceptional case in Theorem 2 is a proper node, having characteristic equation roots that are equal. Stability is always preserved for nodes.

Part (f)

Linearization. The Jacobian is $J(x, y)=\left(\begin{array}{rr}-4-2 x & -4 \\ 3 & 3\end{array}\right)$. Then $A=J(3,3)=\left(\begin{array}{rr}-10 & -4 \\ 3 & 3\end{array}\right)$. The eigenvalues of A are found from $r^{2}+7 r-18=0$, giving distinct real roots $2,-9$. Because there are no trig functions in the Euler solution atoms $e^{2 t}, e^{-9 t}$, then no rotation happens, and the classification must be a saddle or node. The Euler solution atoms do not limit to zero at $t=\infty$ or $t=-\infty$, therefore it is a saddle and we report a unstable saddle for the linear problem $\vec{u}^{\prime}=A \vec{u}$ at equilibrium $\vec{u}=\overrightarrow{0}$.
Nonlinear System. Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system: unstable saddle at $x=3, y=3-$.

Use this page to start your solution.

Final Exam Problems

Chapter 5. Solve a homogeneous system $u^{\prime}=A u, u(0)=\binom{1}{2}, A=\left(\begin{array}{ll}2 & 3 \\ 0 & 4\end{array}\right)$ using the matrix exponential, Zeibur's method, Laplace resolvent and eigenanalysis.

Chapter 5. Solve a non-homogeneous system $u^{\prime}=A u+F(t), u(0)=\binom{0}{0}, A=\left(\begin{array}{ll}2 & 3 \\ 0 & 4\end{array}\right), F(t)=\binom{3}{1}$ using variation of parameters.

