Differential Equations 2280

Sample Midterm Exam 2 Problems Only
Exam Date: 31 March 2017 at 12:50pm
Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$. Problems below cover the possibilities, but the exam day content will be much less, as was the case for Exam 1.

1. (Chapter 3)
(a) $[50 \%]$ Find by any applicable method the steady-state periodic solution for the current equation $I^{\prime \prime}+2 I^{\prime}+5 I=-10 \sin (t)$.
(b) $[50 \%]$ Find by variation of parameters a particular solution y_{p} for the equation $y^{\prime \prime}=1-x$. Show all steps in variation of parameters. Check the answer by quadrature.
2. (Chapters 1, 2, 3)
(2a) [20\%] Solve $2 v^{\prime}(t)=-8+\frac{2}{2 t+1} v(t), v(0)=-4$. Show all integrating factor steps.
(2b) $[10 \%]$ Solve for the general solution: $y^{\prime \prime}+4 y^{\prime}+6 y=0$.
(2c) $[10 \%]$ Solve for the general solution of the homogeneous constant-coefficient differential equation whose characteristic equation is $r\left(r^{2}+r\right)^{2}\left(r^{2}+9\right)^{2}=0$.
(2d) [20\%] Find a linear homogeneous constant coefficient differential equation of lowest order which has a particular solution $y=x+\sin \sqrt{2} x+e^{-x} \cos 3 x$.
(2e) [15\%] A particular solution of the equation $m x^{\prime \prime}+c x^{\prime}+k x=F_{0} \cos (2 t)$ happens to be $x(t)=$ $11 \cos 2 t+e^{-t} \sin \sqrt{11} t-\sqrt{11} \sin 2 t$. Assume m, c, k all positive. Find the unique periodic steady-state solution $x_{\text {SS }}$.
(2f) [25\%] Determine for $y^{\prime \prime \prime}+y^{\prime \prime}=100 x^{2}+\sin x$ the shortest trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients!
3. (Laplace Theory)
(a) $[50 \%]$ Solve by Laplace's method $x^{\prime \prime}+2 x^{\prime}+x=e^{t}, x(0)=x^{\prime}(0)=0$.
(b) [25\%] Assume $f(t)$ is of exponential order. Find $f(t)$ in the relation

$$
\left.\frac{d}{d s} \mathcal{L}(f(t))\right|_{s \rightarrow(s-3)}=\mathcal{L}(f(t)-t)
$$

(c) $[25 \%]$ Derive an integral formula for $y(t)$ by Laplace transform methods, explicitly using the Convolution Theorem, for the problem

$$
y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y(t)=f(t), \quad y(0)=y^{\prime}(0)=0
$$

This is similar to a required homework problem from Chapter 7.
4. (Laplace Theory)
(4a) [20\%] Explain Laplace's Method, as applied to the differential equation $x^{\prime}(t)+2 x(t)=e^{t}, x(0)=1$. Reference only. Not to appear on any exam.
(4b) [15\%] Solve $\mathcal{L}(f(t))=\frac{100}{\left(s^{2}+1\right)\left(s^{2}+4\right)}$ for $f(t)$.
(4c) $[15 \%]$ Solve for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{1}{s^{2}(s+3)}$.
(4d) [10\%] Find $\mathcal{L}(f)$ given $f(t)=(-t) e^{2 t} \sin (3 t)$.
(4e) $[20 \%]$ Solve $x^{\prime \prime \prime}+x^{\prime \prime}=0, x(0)=1, x^{\prime}(0)=0, x^{\prime \prime}(0)=0$ by Laplace's Method.
(4f) [20\%] Solve the system $x^{\prime}=x+y, y^{\prime}=x-y+2, x(0)=0, y(0)=0$ by Laplace's Method.
5. (Laplace Theory)
(a) $[30 \%]$ Solve $\mathcal{L}(f(t))=\frac{1}{\left(s^{2}+s\right)\left(s^{2}-s\right)}$ for $f(t)$.
(b) $[20 \%]$ Solve for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{s+1}{s^{2}+4 s+5}$.
(c) $[20 \%]$ Let $u(t)$ denote the unit step. Solve for $f(t)$ in the relation

$$
\mathcal{L}(f(t))=\frac{d}{d s} \mathcal{L}(u(t-1) \sin 2 t)
$$

Remark: This is not a second shifting theorem problem.
(d) [30\%] Compute $\mathcal{L}\left(e^{2 t} f(t)\right)$ for

$$
f(t)=\frac{e^{t}-e^{-t}}{t}
$$

6. (Systems of Differential Equations)

The eigenanalysis method says that, for a 3×3 system $\mathbf{x}^{\prime}=A \mathbf{x}$, the general solution is $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+$ $c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+c_{3} \mathbf{v}_{3} e^{\lambda_{3} t}$. In the solution formula, $\left(\lambda_{i}, \mathbf{v}_{i}\right), i=1,2,3$, is an eigenpair of A. Given

$$
A=\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
0 & 0 & 4
\end{array}\right]
$$

then
(a) $[75 \%]$ Display eigenanalysis details for A.
(b) [25\%] Display the solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
(c) Repeat (a), (b) for the matrix $A=\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 0 & 0 & 7\end{array}\right]$.
7. (Systems of Differential Equations)
(a) $[30 \%]$ Find the eigenvalues of the matrix $A=\left[\begin{array}{rrrr}4 & 1 & -1 & 0 \\ 1 & 4 & -2 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 4\end{array}\right]$.
(b) [20\%] Justify that eigenvectors of A corresponding to the eigenvalues in increasing order are the four vectors

$$
\left(\begin{array}{r}
1 \\
-5 \\
-3 \\
3
\end{array}\right), \quad\left(\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{r}
-1 \\
0 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)
$$

(c) $[50 \%]$ Display the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to the Eigenanalysis method.

8. (Systems of Differential Equations)

(a) $[100 \%]$ The eigenvalues are 3,5 for the matrix $A=\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right]$.

Display the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to the Cayley-Hamilton-Ziebur shortcut (textbook chapters 4,5). Assume initial condition $\vec{u}_{0}=\binom{1}{-1}$.

