Week 3 Examples

Example 1: Solve: (1) $y^{\prime \prime}=-9.8$, (2) $y^{\prime \prime}=-0.04 y^{\prime}-9.8$, both with $y(0)=0, y^{\prime}(0)=49$.
Answers: (1) $y=-9.8 t^{2} / 2+49 t$; (2) $y=7350-245 t-7350 e^{-t / 25}$.
Example 2: Let $w=v \sqrt{\rho / g}$ and $p=\frac{1}{\sqrt{g \rho}}$ to replace Newton's quadratic drag model $v^{\prime}=$ $-g-\rho v|v|$ by $p w^{\prime}=-1-w|w|$. Explain rise model $p w^{\prime}=-1-w^{2}$ and fall model $p w^{\prime}=-1+w^{2}$.
Example 3: Solve $p w^{\prime}=-w^{2}+1$ and $p w^{\prime}=w^{2}+1$ as separable equations. See the previous example. Answers: $w(t)=\tanh \left(c_{1}+t / p\right)$ and $w(t)=\tan \left(c_{2}+t / p\right)$
Example 4: Verify rise time 4.6 and fall time 4.8 for Newton's quadratic drag model $v^{\prime}=$ $-9.8-0.0011 v|v|, v(0)=49$. Use textbook formulas or the previous two examples.
Example 5: Find the point $r=r^{*}$ of zero acceleration in the Jules Verne equation $r^{\prime \prime}=$ $-\frac{G m_{1}}{\left(R_{1}+r\right)^{2}}+\frac{G m_{2}}{\left(R_{3}-r\right)^{2}}$. The answer has symbols. Then calculate $r^{*} \approx 339,620,820$ meters for the earth-moon problem. Reference:
http://www.math.utah.edu/~gustafso/s2016/2280/julesVerneDE2008.pdf

