Differential Equations 2280 Shortened Sample Final Exam
 Thursday, 28 April 2016, 12:45pm-3:15pm, LCB 219

Instructions: This in-class exam is 120 minutes. About 20 minutes per sub-section. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

Chapters 1 and 2: Linear First Order Differential Equations

3. (Solve a Separable Equation)

Given $y^{2} y^{\prime}=\frac{2 x^{2}+3 x}{1+x^{2}}\left(\frac{125}{64}-y^{3}\right)$.
(a) Find all equilibrium solutions.
(b) Find the non-equilibrium solution in implicit form.

To save time, do not solve for y explicitly.

4. (Linear Equations)

(a) $[60 \%]$ Solve $2 v^{\prime}(t)=-32+\frac{2}{3 t+1} v(t), v(0)=-8$. Show all integrating factor steps.
(b) $[30 \%]$ Solve $2 \sqrt{x+2} \frac{d y}{d x}=y$. The answer contains symbol c.
(c) $[10 \%]$ The problem $2 \sqrt{x+2} y^{\prime}=y-5$ can be solved using the answer y_{h} from part (b) plus superposition $y=y_{h}+y_{p}$. Find y_{p}.

Chapter 3: Linear Equations of Higher Order

6. (ch3)
(a) Solve for the general solutions:
(a.1) $[25 \%] \quad y^{\prime \prime}+4 y^{\prime}+4 y=0$,
(a.2) $[25 \%] \quad y^{v i}+4 y^{i v}=0$,
(a.3) [25\%] Char. eq. $r(r-3)\left(r^{3}-9 r\right)^{2}\left(r^{2}+4\right)^{3}=0$.
(b) Given $6 x^{\prime \prime}(t)+7 x^{\prime}(t)+2 x(t)=0$, which represents a damped spring-mass system with $m=6, c=7, k=2$, solve the differential equation [15\%] and classify the answer as over-damped, critically damped or under-damped [5\%]. Illustrate in a physical model drawing the meaning of constants $m, c, k[5 \%]$.
7. (ch3)

Determine for $y^{v i}+y^{i v}=x+2 x^{2}+x^{3}+e^{-x}+x \sin x$ the shortest trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients!

Chapters 4 and 5: Systems of Differential Equations

9. (ch5)

The eigenanalysis method says that the system $\mathbf{x}^{\prime}=A \mathbf{x}$ has general solution $\mathbf{x}(t)=$ $c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+c_{3} \mathbf{v}_{3} e^{\lambda_{3} t}$. In the solution formula, $\left(\lambda_{i}, \mathbf{v}_{i}\right), i=1,2,3$, is an eigenpair of A. Given

$$
A=\left[\begin{array}{lll}
5 & 1 & 1 \\
1 & 5 & 1 \\
0 & 0 & 7
\end{array}\right]
$$

then
(a) $[75 \%]$ Display eigenanalysis details for A.
(b) [25\%] Display the solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
10. (ch5)
(a) $[20 \%]$ Find the eigenvalues of the matrix $A=\left[\begin{array}{rrr}4 & 1 & -1 \\ 1 & 4 & -2 \\ 0 & 0 & 2\end{array}\right]$.
(c) [40\%] Display the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to the Cayley-HamiltonZiebur Method. In particular, display the equations that determine the three vectors in the general solution. To save time, don't solve for the three vectors in the formula. Only 2×2 on the final exam.
(d) $[40 \%]$ Display the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to the Eigenanalysis Method. To save time, find one eigenpair explicitly, just to show how it is done, but don't solve for the last two eigenpairs.
11. (ch5)
(a) $[50 \%]$ The eigenvalues are 4,6 for the matrix $A=\left[\begin{array}{ll}5 & 1 \\ 1 & 5\end{array}\right]$.

Display the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$. Show details from either the eigenanalysis method or the Laplace method.
(b) $[50 \%]$ Using the same matrix A from part (a), display the solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to the Cayley-Hamilton Method. To save time, write out the system to be solved for the two vectors, and then stop, without solving for the vectors.
(c) $[50 \%]$ Using the same matrix A from part (a), compute the exponential matrix $e^{A t}$ by any known method, for example, the formula $e^{A t}=\Phi(t) \Phi^{-1}(0)$ where $\Phi(t)$ is any fundamental matrix, or via Putzer's formula.
12. (ch5)
(a) [50\%] Display the solution of $\mathbf{u}^{\prime}=\left(\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right) \mathbf{u}, \mathbf{u}(0)=\binom{0}{1}$, using any method that applies.

Chapter 6: Dynamical Systems

14. (ch6) Only half of these items appear on the final exam.

Find the equilibrium points of $x^{\prime}=14 x-x^{2} / 2-x y, y^{\prime}=16 y-y^{2} / 2-x y$ and classify each linearization at an equilibrium as a node, spiral, center, saddle. What classifications can be deduced for the nonlinear system, according to the Paste Theorem?
Some maple code for checking the answers:
$\mathrm{F}:=$ unapply([14*x-x^2/2-y*x , $\left.\left.16 * y-y^{\wedge} 2 / 2-x * y\right],(x, y)\right)$;
Fx: =unapply (map(u->diff(u,x), $\mathrm{F}(\mathrm{x}, \mathrm{y}))$) ($\mathrm{x}, \mathrm{y})$);
Fy:=unapply (map(u->diff(u,y),F(x,y)),(x,y));
$\operatorname{Fx}(0,0) ; \operatorname{Fy}(0,0) ; \operatorname{Fx}(28,0) ; \operatorname{Fy}(28,0) ; \operatorname{Fx}(0,32) ; \operatorname{Fy}(0,32) ; \operatorname{Fx}(0,32) ; \operatorname{Fy}(0,32)$;
15. (ch6) Only half of these items appear on the final exam.
(a) [25\%] Which of the four types center, spiral, node, saddle can be unstable at $t=\infty$? Explain your answer.
(b) [25\%] Give an example of a linear 2-dimensional system $\mathbf{u}^{\prime}=A \mathbf{u}$ with a saddle at equilibrium point $x=y=0$, and A is not triangular.
(c) [25\%] Give an example of a nonlinear 2-dimensional predator-prey system with exactly four equilibria.
(d) [25\%] Display a formula for the general solution of the equation $\mathbf{u}^{\prime}=\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right) \mathbf{u}$.

Then explain why the system has a spiral at $(0,0)$.
(e) $[25 \%]$ Is the origin an isolated equilibrium point of the linear system $\mathbf{u}^{\prime}=$ $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right) \mathbf{u}$? Explain your answer.

Chapter 7: Laplace Theory

16. (ch7)
(d) Explain all the steps in Laplace's Method, as applied to the differential equation $x^{\prime}(t)+2 x(t)=e^{t}, x(0)=1$.
17. (ch7) Only half of the items appear on the final exam.
(a) Solve $\mathcal{L}(f(t))=\frac{100}{\left(s^{2}+1\right)\left(s^{2}+4\right)}$ for $f(t)$.
(b) Solve for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{1}{s^{2}(s-3)}$.
(c) Find $\mathcal{L}(f)$ given $f(t)=(-t) e^{2 t} \sin (3 t)$.
(d) Find $\mathcal{L}(f)$ where $f(t)$ is the periodic function of period 2 equal to $t / 2$ on $0 \leq t \leq 2$ (sawtooth wave).
18. (ch7)
(a) Solve $y^{\prime \prime}+4 y^{\prime}+4 y=t^{2}, y(0)=y^{\prime}(0)=0$ by Laplace's Method.
(c) Solve the system $x^{\prime}=x+y, y^{\prime}=x-y+e^{t}, x(0)=0, y(0)=0$ by Laplace's Method.
19. (ch7)
(a) $[50 \%]$ Solve by Laplace's method $x^{\prime \prime}+x=\cos t, x(0)=x^{\prime}(0)=0$.
(d) [50\%] Solve by Laplace's resolvent method

$$
\begin{aligned}
x^{\prime}(t) & =x(t)+y(t), \\
y^{\prime}(t) & =2 x(t)
\end{aligned}
$$

with initial conditions $x(0)=-1, y(0)=2$.
20. (ch7) Fewer items appear on the final exam.
(a) $[25 \%]$ Solve $\mathcal{L}(f(t))=\frac{10}{\left(s^{2}+8\right)\left(s^{2}+4\right)}$ for $f(t)$.
(b) [25\%] Solve for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{s+1}{s^{2}(s+2)}$.
(c) $[20 \%]$ Solve for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{s-1}{s^{2}+2 s+5}$.
(d) [10\%] Solve for $f(t)$ in the relation

$$
\mathcal{L}(f)=\frac{d}{d s} \mathcal{L}\left(t^{2} \sin 3 t\right)
$$

(e) $[10 \%]$ Solve for $f(t)$ in the relation

$$
\mathcal{L}(f)=\left.\left(\mathcal{L}\left(t^{3} e^{9 t} \cos 8 t\right)\right)\right|_{s \rightarrow s+3}
$$

Chapter 9: Fourier Series and Partial Differential Equations

21. (ch9)
(b) State Fourier's convergence theorem.
(c) State the results for term-by-term integration and differentiation of Fourier series.
22. (ch9)
(c) Solve $u_{t}=u_{x x}, u(0, t)=u(\pi, t)=0, u(x, 0)=80 \sin ^{3} x$ on $0 \leq x \leq \pi, t \geq 0$.

23. (Vibration of a Finite String)

The normal modes for the string equation $u_{t t}=c^{2} u_{x x}$ are given by the functions

$$
\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right), \quad \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right) .
$$

It is known that each normal mode is a solution of the string equation and that the problem below has solution $u(x, t)$ equal to an infinite series of constants times normal modes.

Solve the finite string vibration problem on $0 \leq x \leq 2, t>0$,

$$
\begin{array}{ll}
u_{t t} & =c^{2} u_{x x} \\
u(0, t) & =0 \\
u(2, t) & =0 \\
u(x, 0) & =0 \\
u_{t}(x, 0) & =-11 \sin (5 \pi x)
\end{array}
$$

24. (Periodic Functions)

(c) [30\%] Mark the expressions which are periodic with letter \mathbf{P}, those odd with \mathbf{O} and those even with \mathbf{E}.

$$
\sin (\cos (2 x)) \quad \ln |2+\sin (x)| \quad \sin (2 x) \cos (x) \quad \frac{1+\sin (x)}{2+\cos (x)}
$$

25. (Fourier Series)

Let $f_{0}(x)=x$ on the interval $0<x<2, f_{0}(x)=-x$ on $-2<x<0, f_{0}(x)=0$ for $x=0, f_{0}(x)=2$ at $x= \pm 2$. Let $f(x)$ be the periodic extension of f_{0} to the whole real line, of period 4.
(a) [80\%] Compute the Fourier coefficients of $f(x)$ (defined above) for the terms $\sin (67 \pi x)$ and $\cos (2 \pi x)$. Leave tedious integrations in integral form, but evaluate the easy ones like the integral of the square of sine or cosine.
(b) [20\%] Which values of x in $|x|<12$ might exhibit Gibb's over-shoot?

27. (Convergence of Fourier Series)

(c) [30\%] Give an example of a function $f(x)$ periodic of period 2 that has a Gibb's over-shoot at the integers $x=0, \pm 2, \pm 4, \ldots,($ all $\pm 2 n)$ and nowhere else.

