
Differential Equations 2280
Sample Midterm Exam 3 with Solutions

Exam Date: Friday 22 April 2016 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is
expected. Details count 3/4, answers count 1/4. Problems below cover the possibilities, but the exam day
content will be much less, as was the case for Exams 1, 2.

Chapter 3

1. (Linear Constant Equations of Order n)

(a) Find by variation of parameters a particular solution yp for the equation y′′ = 1−x. Show all steps
in variation of parameters. Check the answer by quadrature.

(b) A particular solution of the equation mx′′+ cx′+ kx = F0 cos(2t) happens to be x(t) = 11 cos 2t+
e−t sin

√
11t −

√
11 sin 2t. Assume m, c, k all positive. Find the unique periodic steady-state solution

xss.

(c) A fourth order linear homogeneous differential equation with constant coefficients has two particular
solutions 2e3x + 4x and xe3x. Write a formula for the general solution.

(d) Find the Beats solution for the forced undamped spring-mass problem

x′′ + 64x = 40 cos(4t), x(0) = x′(0) = 0.

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save
time, don’t convert to phase-amplitude form.

(e) Write the solution x(t) of

x′′(t) + 25x(t) = 180 sin(4t), x(0) = x′(0) = 0,

as the sum of two harmonic oscillations of different natural frequencies.
To save time, don’t convert to phase-amplitude form.

(f) Find the steady-state periodic solution for the forced spring-mass system x′′ + 2x′ + 2x = 5 sin(t).

(g) Given 5x′′(t) + 2x′(t) + 4x(t) = 0, which represents a damped spring-mass system with m = 5,
c = 2, k = 4, determine if the equation is over-damped , critically damped or under-damped.
To save time, do not solve for x(t)!

(h) Determine the practical resonance frequency ω for the electric current equation

2I ′′ + 7I ′ + 50I = 100ω cos(ωt).

(i) Given the forced spring-mass system x′′ + 2x′ + 17x = 82 sin(5t), find the steady-state periodic
solution.

(j) Let f(x) = x3e1.2x +x2e−x sin(x). Find the characteristic polynomial of a constant-coefficient linear
homogeneous differential equation of least order which has f(x) as a solution. To save time, do not
expand the polynomial and do not find the differential equation.



Answers and Solution Details:

Part (a) Answer: yp =
x2

2
− x3

6
.

Variation of Parameters.
Solve y′′ = 0 to get yh = c1y1 + c2y2, y1 = 1, y2 = x. Compute the Wronskian W = y1y

′
2 − y′1y2 = 1.

Then for f(t) = 1− x,

yp = y1

∫
y2
−f
W

dx+ y2

∫
y1
f

W
dx,

yp = 1

∫
−x(1− x)dx+ x

∫
1(1− x)dx,

yp = −1(x2/2− x3/3) + x(x− x2/2),
yp = x2/2− x3/6.
This answer is checked by quadrature, applied twice to y′′ = 1− x with initial conditions zero.

Part (b) It has to be the terms left over after striking out the transient terms, those terms with limit
zero at infinity. Then xss(t) = 11 cos 2t−

√
11 sin 2t.

Part (c) In order for xe3x to be a solution, the general solution must have Euler atoms e3x, xe3x. Then
the first solution 2e3x + 4x minus 2 times the Euler atom e3x must be a solution, therefore x is a solution,
resulting in Euler atoms 1, x. The general solution is then a linear combination of the four Euler atoms:
y = c1(1) + c2(x) + c3

(
e3x
)

+ c4
(
xe3x

)
.

Part (d) Use undetermined coefficients trial solution x = d1 cos 4t + d2 sin 4t. Then d1 = 5/6, d2 = 0,
and finally xp(t) = (5/6) cos(4t). The characteristic equation r2 + 64 = 0 has roots ±8i with correspond-
ing Euler solution atoms cos(8t), sin(8t). Then xh(t) = c1 cos(8t) + c2 sin(8t). The general solution is
x = xh + xp. Now use x(0) = x′(0) = 0 to determine c1 = −5/6, c2 = 0, which implies the particular
solution x(t) = −5

6 cos(8t) + 5
6 cos(4t).

Part (e) The answer is x(t) = −16 sin(5t) + 20 sin(4t) by the method of undetermined coefficients.
Rule I: x = d1 cos(4t)+d2 sin(4t). Rule II does not apply due to natural frequency

√
25 = 5 not equal to the

frequency of the trial solution (no conflict). Substitute the trial solution into x′′(t) + 25x(t) = 180 sin(4t)
to get 9d1 cos(4t) + 9d2 sin(4t) = 180 sin(4t). Match coefficients, to arrive at the equations 9d1 = 0,
9d2 = 180. Then d1 = 0, d2 = 20 and xp(t) = 20 sin(4t). Lastly, add the homogeneous solution to obtain
x(t) = xh + xp = c1 cos(5t) + c2 sin(5t) + 20 sin(4t). Use the initial condition relations x(0) = 0, x′(0) = 0
to obtain the equations cos(0)c1 + sin(0)c2 + 20 sin(0) = 0, −5 sin(0)c1 + 5 cos(0)c2 + 80 cos(0) = 0. Solve
for the coefficients c1 = 0, c2 = −16

Part (f) The answer is x = sin t− 2 cos t by the method of undetermined coefficients.
Rule I: the trial solution x(t) is a linear combination of the Euler atoms found in f(x) = 5 sin(t). Then
x(t) = d1 cos(t) + d2 sin(t). Rule II does not apply, because solutions of the homogeneous problem contain
negative exponential factors (no conflict). Substitute the trial solution into x′′ + 2x′ + 2x = 5 sin(t) to
get (−2d1 + d2) sin(t) + (d1 + 2d2) cos(t) = 5 sin(t). Match coefficients to find the system of equations
(−2d1 + d2) = 5, (d1 + 2d2) = 0. Solve for the coefficients d1 = −2, d2 = 1.

Part (g) Use the quadratic formula to decide. The number under the radical sign in the formula, called
the discriminant, is b2 − 4ac = 22 − 4(5)(4) = (19)(−4), therefore there are two complex conjugate roots
and the equation is under-damped. Alternatively, factor 5r2 + 2r+ 4 to obtain roots (−1±

√
19i)/5 and

then classify as under-damped.

Part (h) The resonant frequency is ω = 1/
√
LC = 1/

√
2/50 =

√
25 = 5. The solution uses the theory

in the textbook, section 3.7, which says that electrical resonance occurs for ω = 1/
√
LC.



Part (i) The answer is x(t) = −5 cos(5t)− 4 sin(5t) by undetermined coefficients.
Rule I: The trial solution is xp(t) = A cos(5t) + B sin(5t). Rule II: because the homogeneous solution
xh(t) has limit zero at t = ∞, then Rule II does not apply (no conflict). Substitute the trial solution
into the differential equation. Then −8A cos(5t) − 8B sin(5t) − 10A sin(5t) + 10B cos(5t) = 82 sin(5t).
Matching coefficients of sine and cosine gives the equations −8A + 10B = 0, −10A − 8B = 82. Solving,
A = −5, B = −4. Then xp(t) = −5 cos(5t)− 4 sin(5t) is the unique periodic steady-state solution.

Part (j) The characteristic polynomial is the expansion (r − 1.2)4((r + 1)2 + 1)3. Because x3eax is an
Euler solution atom for the differential equation if and only if eax, xeax, x2eax, x3eax are Euler solution atoms,
then the characteristic equation must have roots 1.2, 1.2, 1.2, 1.2, listing according to multiplicity. Similarly,
x2e−x sin(x) is an Euler solution atom for the differential equation if and only if −1±i,−1±i,−1±i are roots
of the characteristic equation. There is a total of 10 roots with product of the factors (r− 1)4((r+ 1)2 + 1)3

equal to the 10th degree characteristic polynomial.

Use this page to start your solution.
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Chapters 4 and 5

2. (Systems of Differential Equations)

Background. Let A be a real 3×3 matrix with eigenpairs (λ1,v1), (λ2,v2), (λ3,v3). The eigenanalysis
method says that the 3× 3 system x′ = Ax has general solution

x(t) = c1v1e
λ1t + c2v2e

λ2t + c3v3e
λ3t.

Background. Let A be an n × n real matrix. The method called Cayley-Hamilton-Ziebur is
based upon the result

The components of solution x of x′(t) = Ax(t) are linear combinations of Euler solution atoms
obtained from the roots of the characteristic equation |A− λI| = 0.

Background. Let A be an n×n real matrix. An augmented matrix Φ(t) of n independent solutions of
x′(t) = Ax(t) is called a fundamental matrix. It is known that the general solution is x(t) = Φ(t)c,
where c is a column vector of arbitrary constants c1, . . . , cn. An alternate and widely used definition of
fundamental matrix is Φ′(t) = AΦ(t), |Φ(0)| 6= 0.

(a) Display eigenanalysis details for the 3× 3 matrix

A =

 4 1 1
1 4 1
0 0 4

 ,
then display the general solution x(t) of x′(t) = Ax(t).

(b) The 3× 3 triangular matrix

A =

 3 1 1
0 4 1
0 0 5

 ,
represents a linear cascade, such as found in brine tank models. Using the linear integrating factor
method, starting with component x3(t), find the vector general solution x(t) of x′(t) = Ax(t).

(c) The exponential matrix eAt is defined to be a fundamental matrix Ψ(t) selected such that Ψ(0) = I,
the n×n identity matrix. Justify the formula eAt = Φ(t)Φ(0)−1, valid for any fundamental matrix Φ(t).

(d) Let A denote a 2 × 2 matrix. Assume x′(t) = Ax(t) has scalar general solution x1 = c1e
t + c2e

2t,
x2 = (c1 − c2)et + 2c1 + c2)e

2t, where c1, c2 are arbitrary constants. Find a fundamental matrix Φ(t)
and then go on to find eAt from the formula in part (c) above.

(e) Let A denote a 2 × 2 matrix and consider the system x′(t) = Ax(t). Assume fundamental matrix

Φ(t) =

(
et e2t

2et −e2t

)
. Find the 2× 2 matrix A.

(f) The Cayley-Hamilton-Ziebur shortcut applies especially to the system

x′ = 3x+ y, y′ = −x+ 3y,

which has complex eigenvalues λ = 3 ± i. Show the details of the method, then go on to report a
fundamental matrix Φ(t).
Remark. The vector general solution is x(t) = Φ(t)c, which contains no complex numbers. Reference:
4.1, Examples 6,7,8.



Answers and Solution Details:

Part (a) The details should solve the equation |A − λI| = 0 for the three eigenvalues λ = 5, 4, 3.
Then solve the three systems (A− λI)~v = ~0 for eigenvector ~v, for λ = 5, 4, 3.
The eigenpairs are

5,

 1
1
0

 ; 4,

 −1
−1

1

 ; 3,

 1
−1

0

 .
The eigenanalysis method implies

x(t) = c1e
5t

 1
1
0

+ c2e
4t

 −1
−1

1

+ c3e
3t

 1
−1

0

 .

Part (b) Write the system in scalar form

x′ = 3x+ y + z,
y′ = 4y + z,
z′ = 5z.

Solve the last equation as
z = constant

integrating factor = c3e
5t.

z = c3e
5t

The second equation is
y′ = 4y + c3e

5t

The linear integrating factor method applies.
y′ − 4y = c3e

−5t

(Wy)′

W
= c3e

5t, where W = e−4t,

(Wy)′ = c3We5t

(e−4ty)′ = c3e
−4te5t

e−4ty = c3e
t + c2.

y = c3e
5t + c2e

4t

Stuff these two expressions into the first differential equation:
x′ = 3x+ y + z = 3x+ 2c3e

5t + c2e
4t

Then solve with the linear integrating factor method.
x′ − 3x = 2c3e

5t + c2e
4t

(Wx)′

W
= 2c3e

5t + c2e
4t, where W = e−3t. Cross-multiply:

(e−3tx)′ = 2c3e
5te−3t + c2e

4te−3t, then integrate:
e−3tx = c3e

2t + c2e
t + c1

e−3tx = c3e
2t + c2e

t + c1, divide by e−3t:

x = c3e
5t + c2e

4t + c1e
3t

Part (c) The question reduces to showing that eAt and Φ(t)Φ(0)−1 have equal columns. This is done
by showing that the matching columns are solutions of ~u ′ = A~u with the same initial condition ~u(0), then
apply Picard’s theorem on uniqueness of initial value problems.

Part (d) Take partial derivatives on the symbols c1, c2 to find vector solutions ~v1(t), ~v2(t). Define Φ(t)
to be the augmented matrix of ~v1(t), ~v2(t). Compute Φ(0)−1, then multiply on the right of Φ(t) to obtain



eAt = Φ(t)Φ(0)−1. Check the answer in a computer algebra system or using Putzer’s formula.

Part (e) The equation Φ′(t) = AΦ(t) holds for every t. Choose t = 0 and then solve for A = Φ′(0)Φ(0)−1.

Part (f) By C-H-Z, x = c1e
3t cos(t)+c2e

3t sin(t). Isolate y from the first differential equation x′ = 3x+y,
obtaining the formula y = x′ − 3x = −c1e3t sin(t) + c2e

3t cos(t). A fundamental matrix is found by taking

partial derivatives on the symbols c1, c2. The answer is exactly the Jacobian matrix of

(
x
y

)
with respect

to variables c1, c2.

Φ(t) =

(
e3t cos(t) e3t sin(t)
−e3t sin(t) e3t cos(t)

)
.

Use this page to start your solution.
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Chapter 6

3. (Linear and Nonlinear Dynamical Systems)

(a) Determine whether the unique equilibrium ~u = ~0 is stable or unstable. Then classify the equilibrium
point ~u = ~0 as a saddle, center, spiral or node.

~u′ =

(
3 4
−2 −1

)
~u

(b) Determine whether the unique equilibrium ~u = ~0 is stable or unstable. Then classify the equilibrium
point ~u = ~0 as a saddle, center, spiral or node.

~u′ =

(
−3 2
−4 1

)
~u

(c) Consider the nonlinear dynamical system

x′ = x− 2y2 − y + 32,
y′ = 2x2 − 2xy.

An equilibrium point is x = 4, y = 4. Compute the Jacobian matrix A = J(4, 4) of the linearized system
at this equilibrium point.

(d) Consider the nonlinear dynamical system

x′ = −x− 2y2 − y + 32,
y′ = 2x2 + 2xy.

An equilibrium point is x = −4, y = 4. Compute the Jacobian matrix A = J(−4, 4) of the linearized
system at this equilibrium point.

(e) Consider the nonlinear dynamical system

{
x′ = −4x+ 4y + 9− x2,
y′ = 3x− 3y.

At equilibrium point x = 3, y = 3, the Jacobian matrix is A = J(3, 3) =

(
−10 4

3 −3

)
.

(1) Determine the stability at t = ∞ and the phase portrait classification saddle, center,
spiral or node at ~u = ~0 for the linear system d

dt~u = A~u.

(2) Apply the Pasting Theorem to classify x = 3, y = 3 as a saddle, center, spiral or node
for the nonlinear dynamical system. Discuss all details of the application of the theorem.
Details count 75%.

(f) Consider the nonlinear dynamical system

{
x′ = −4x− 4y + 9− x2,
y′ = 3x+ 3y.

At equilibrium point x = 3, y = −3, the Jacobian matrix is A = J(3,−3) =

(
−10 −4

3 3

)
.

Linearization. Determine the stability at t = ∞ and the phase portrait classification

saddle, center, spiral or node at ~u = ~0 for the linear dynamical system
d

dt
~u = A~u.

Nonlinear System. Apply the Pasting Theorem to classify x = 3, y = −3 as a saddle,
center, spiral or node for the nonlinear dynamical system. Discuss all details of the
application of the theorem. Details count 75%.



Answers and Solution Details:

Part (a) It is an unstable spiral. Details: The eigenvalues of A are roots of r2−2r+5 = (r−1)2 +4 = 0,
which are complex conjugate roots 1 ± 2i. Rotation eliminates the saddle and node. Finally, the atoms
et cos 2t, et sin 2t have limit zero at t = −∞, therefore the system is stable at t = −∞ and unstable at
t =∞. So it must be a spiral [centers have no exponentials]. Report: unstable spiral.

Part (b) It is a stable spiral. Details: The eigenvalues of A are roots of r2 + 2r + 5 = (r + 1)2 + 4 = 0,
which are complex conjugate roots −1 ± 2i. Rotation eliminates the saddle and node. Finally, the atoms
e−t cos 2t, e−t sin 2t have limit zero at t = ∞, therefore the system is stable at t = ∞ and unstable at
t = −∞. So it must be a spiral [centers have no exponentials]. Report: stable spiral.

Part (c) The Jacobian is J(x, y) =

(
1 −4y − 1

4x− 2y −2x

)
. Then A = J(4, 4) =

(
1 −17
8 −8

)
.

Part (d) The Jacobian is J(x, y) =

(
−1 −4y − 1

4x+ 2y 2x

)
. Then A = J(−4, 4) =

(
−1 −17
−8 −8

)
.

Part (e) (1) The Jacobian is J(x, y) =

(
−4− 2x 4

3 −3

)
. Then A = J(3, 3) =

(
−10 4

3 −3

)
. The

eigenvalues of A are found from r2+13r+18 = 0, giving distinct real negative roots −13
2 ±(12)

√
97. Because

there are no trig functions in the Euler solution atoms, then no rotation happens, and the classification must
be a saddle or node. The Euler solution atoms limit to zero at t =∞, therefore it is a node and we report a
stable node for the linear problem ~u′ = A~u at equilibrium ~u = ~0.
(2) Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system:
stable node at x = 3, y = 3. The exceptional case in Theorem 2 is a proper node, having characteristic
equation roots that are equal. Stability is always preserved for nodes.

Part (f)

Linearization. The Jacobian is J(x, y) =

(
−4− 2x −4

3 3

)
. Then A = J(3, 3) =

(
−10 −4

3 3

)
. The

eigenvalues of A are found from r2 + 7r− 18 = 0, giving distinct real roots 2,−9. Because there are no trig
functions in the Euler solution atoms e2t, e−9t, then no rotation happens, and the classification must be a
saddle or node. The Euler solution atoms do not limit to zero at t =∞ or t = −∞, therefore it is a saddle
and we report a unstable saddle for the linear problem ~u′ = A~u at equilibrium ~u = ~0.
Nonlinear System. Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for
the nonlinear system: unstable saddle at x = 3, y = 3−.

Use this page to start your solution.
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Final Exam Problems

Chapter 5. Solve a homogeneous system u′ = Au, u(0) =

(
1
2

)
, A =

(
2 3
0 4

)
using the matrix

exponential, Zeibur’s method, Laplace resolvent and eigenanalysis.

Chapter 5. Solve a non-homogeneous system u′ = Au+F (t), u(0) =

(
0
0

)
, A =

(
2 3
0 4

)
, F (t) =

(
3
1

)
using variation of parameters.


