Week 5 Examples

Example 1: Verify writing matrix product $A \vec{x}$ as a linear combination of the columns of A, by expansion of both sides, then compare the sides for equality of vectors.
$\left(\begin{array}{rr}7 & 5 \\ -2 & 8\end{array}\right)\binom{3}{9}=3\binom{7}{-2}+9\binom{5}{8} \quad$ (i.e., $A \vec{x}=x_{1}(\operatorname{Col} 1$ of $A)+x_{2}(\operatorname{Col} 2$ of $\left.A)\right)$
Example 2: Display the 3×3 elementary matrix E for the given Toolkit operation.
(2a) Multiply row 2 of I by m [mult ($2, \mathrm{~m}$)] (2b) Swap rows 1 and 3 of $I[\operatorname{swap}(1,3)]$
(2c) Add m times rows 1 of I to row 3 [combo ($1,3, \mathrm{~m}$)]
Example 3: Given elementary matrix E, find the unique Toolkit operation that created E from the identity I.
(3a) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & m \\ 0 & 0 & 1\end{array}\right)$
(3b) $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
(3c) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & m\end{array}\right)$
(3d) $\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ m & 0 & 1\end{array}\right)$
(3e) $\left(\begin{array}{rrr}m & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Answers: combo $(3,2, m), \operatorname{swap}(1,2), \operatorname{mult}(3, m), \operatorname{combo}(1,3, m), \operatorname{mult}(1, m)$
Example 4: Label the matrices of the previous example when $m=1$ as E_{1}, \ldots, E_{5}. Find the product $A=E_{1} E_{2} E_{3} E_{4} E_{5}$ without using matrix multiply. Answer: $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$, because $E_{5}=I$, then apply Toolkit operations combo $(1,3,1), \operatorname{mult}(3,1), \operatorname{swap}(1,2)$, combo $(3,2,1)$.
Example 5: Find the inverses of the elementary matrices in Example 3.
Answer: $\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & -m \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{m}\end{array}\right) \quad\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -m & 0 & 1\end{array}\right) \quad\left(\begin{array}{rll}\frac{1}{m} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Example 6: Find the inverse by methods 1 and 2 below: $\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right)\left(\begin{array}{r}-1 \\ 1\end{array} 1\right)\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$
Method 1. $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{\Delta}\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)$ where $\Delta=a d-b c$.
Method 2. Toolkit reduction of $C=<A \mid I>$ to $<I \mid B>$ where $B=A^{-1}$.
Answers: $\left(\begin{array}{rr}1 & -\frac{1}{2} \\ 0 & \frac{1}{2}\end{array}\right) \quad\left(\begin{array}{rr}\frac{1}{2} & 0 \\ -\frac{1}{4} & \frac{1}{2}\end{array}\right) \quad\left(\begin{array}{rr}-\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right) \quad\left(\begin{array}{rr}-1 & 1 \\ 2 & -1\end{array}\right)$
Example 7: Solve the equations $\left\{\begin{array}{c}-x_{1}+x_{2}=4, \\ 2 x_{1}-x_{2}=1,\end{array}\right.$ by converting to a matrix equation $A \vec{x}=\vec{b}$ and solving for $\vec{x}=A^{-1} \vec{b}$. Check the answer.
Example 8: Which of the following matrices have inverses? Answer without finding the inverse.
(8a) $\left(\begin{array}{rr}-1 & 1 \\ 2 & -3\end{array}\right)$
(8b) $\left(\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right)$
(8c) $\left(\begin{array}{rrr}-1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & 1\end{array}\right)$
(8d) $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2\end{array}\right)$
(8e) $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$

Example 9: Find the vector general solution in the form $\vec{x}=$ homogeneous + particular.
(9a) $\left\{\begin{aligned}-x_{1}+x_{2} & =4, \\ 2 x_{1}-x_{2} & =1,\end{aligned} \quad(\mathbf{9 b})\left\{\begin{aligned}-x_{1}+x_{2}+x_{3} & =4, \\ -5 x_{2}-3 x_{3} & =-15, \\ -3 x_{1}-2 x_{2} & =-3 .\end{aligned} \quad(\mathbf{9 c}) \quad\left\{\begin{aligned}-x_{1}+x_{2}+2 x_{3} & =4, \\ 2 x_{1}-x_{2} & =1, \\ 0 & =0 .\end{aligned}\right.\right.\right.$
Example 10: Evaluate determinants by Sarrus' 2×2 and 3×3 Rule.
Notation: Only determinants have vertical bars.
(10a) $\left|\begin{array}{rr}-1 & 1 \\ 2 & -3\end{array}\right| \quad$ (10b) $\left|\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right| \quad$ (10c) $\left|\begin{array}{rrr}-1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & 1\end{array}\right|$ (10d) $\left|\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2\end{array}\right| \quad$ (10e) $\left|\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|$

