Week 4 Examples

Example 1: Solve the system or explain why it cannot be solved.

$$\begin{cases} x + 2y &= 1 \\ x - y &= -2 \end{cases} \qquad \begin{cases} x + 2y &= 1 \\ x + 2y &= 2 \end{cases} \qquad \begin{cases} x + 2y &= 1 \\ 0 &= 0 \end{cases}$$

Answers. Unique solution x = -1, y = 1; No solution, parallel lines; Infinitely many solutions, parametric equation of the line: $x = 1 - 2t_1, y = t_1$.

Example 2: Consider y'' - 121y = 0, y(0) = 44, y'(0) = 22. The supplied general solution is $y = Ae^{11x} + Be^{-11x}$. Substitute y into relations y(0) = 44, y'(0) = 22 to obtain a 2 × 2 system for unknowns A, B. Solve it for the unique solution A = 23, B = 21.

Example 3: Determine the lead and free variables. Solve the echelon system.

$$\begin{cases} x_1 - 2x_2 + 3x_3 + 2x_4 + x_5 = 10, \\ x_3 + 2x_5 = -3, \\ x_4 - 4x_5 = 7 \end{cases}$$

Answer: Lead = x_1, x_3, x_4 ; Free = x_2, x_5 . Solution $x_1 = 5 + 2t_1 - 3t_2, x_2 = t_1, x_3 = -3 - 2t_2, x_4 = 7 + 4t_2, x_5 = t_2$. Method: Assign invented symbols t_1, t_2 to the free variables. Then back-substitute. Best method: Find the reduced echelon system (the *Last Frame*) by Toolkit combo applied to the variable list in reverse order. Then apply the *Last Frame Algorithm*: Assign invented symbols to the free variables, isolate the lead variables, then back-substitute. Report for each variable an equation in terms of the invented symbols (the scalar general solution).

Example 4: The unique solution case.

$$\begin{cases} x + 2y + z = 1\\ x + 3y + z = 2\\ x + y + 2z = 3 \end{cases}$$

(1) Find the scalar form of the unique solution.(2) Why are there only lead variables in the last frame?(3) Why are there no free variables?

Example 5: The no solution case.

$$\begin{cases} x + 2y + z = 1\\ x + 3y + z = 2\\ 2x + 5y + 2z = 4 \end{cases}$$

Use the Toolkit combo, swap, mult to find a frame with a signal equation.

Example 6: The infinitely many solution case.

(6a)
$$\begin{cases} x + 2y + z = 1 \\ x + 3y + z = 2 \\ 2x + 5y + 2z = 3 \end{cases}$$
 (6b)
$$\begin{cases} x + 2y + z = 1 \\ 3x + 6y + 3z = 3 \\ 0 = 0 \end{cases}$$
 (6c)
$$\begin{cases} 0 = 0 \\ 0 = 0 \\ 0 = 0 \end{cases}$$

(1) Find the last frame or RREF. (2) How many free variables? (3) Apply the last frame algorithm to find the solution.

Example 7: Determine for each value of symbol k the possibility: (1) Unique solution, (2) No solution, (3) Infinitely many solutions.

(7a)
$$\begin{cases} x + ky = 2, \\ (2-k)x + y = 3. \end{cases}$$
 (7b)
$$\begin{cases} 3x + 2y = 0, \\ 6x + ky = 0. \end{cases}$$

Example 8: Verify the conversions from scalar equations to augmented matrix, or conversely.

$$(8a) \begin{cases} x + 3y = 2 \\ -x + y = 3 \end{cases} \longrightarrow \begin{pmatrix} 1 & 3 & 2 \\ -1 & 1 & 3 \end{pmatrix} (8b) \begin{pmatrix} 7 & 5 & 1 \\ -2 & 8 & -1 \end{pmatrix} \longrightarrow \begin{cases} 7x + 5y = 1 \\ -2x + 8y = -1 \end{cases}$$

Example 9: Classify as: diagonal, scalar, upper triangular, lower triangular, identity, zero, none of these. More than one classification is possible.

$$(\mathbf{9a}) \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad (\mathbf{9b}) \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \qquad (\mathbf{9c}) \quad \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad (\mathbf{9d}) \quad \begin{pmatrix} \pi & 0 & 0 \\ 0 & 0 & 0 \\ 0 & e & 1 \end{pmatrix}$$

Example 10: Define $\vec{a} = 2\vec{i} + 3\vec{j}$, $\vec{b} = -3\vec{i} + 2\vec{j}$. Compute the dot product $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2$, using the definitions $\vec{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Because of identity $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta)$, the answer $\vec{a} \cdot \vec{b} = 0$ means the vectors are orthogonal ($\theta = 90$ degrees).

Example 11: Multiply.

$$(\mathbf{11a}) \quad \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \qquad (\mathbf{11b}) \quad \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 \\ 2 & -1 \end{pmatrix} \qquad (\mathbf{11c}) \quad \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \\ 2 & -1 \end{pmatrix}$$

Example 12: Let $A = \begin{pmatrix} 7 & 5 \\ -2 & 8 \end{pmatrix}$, $B = \begin{pmatrix} 7 & 5 \\ -2 & 8 \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Compute C = 2AB + 3B - 5A + 4I.

Example 13: Write in matrix multiply form $A\vec{x} = \vec{b}$.

$$\begin{cases} 7x + 5y = 1\\ -2x + 8y = -1 \end{cases}$$
 Answer: $\begin{pmatrix} 7 & 5\\ -2 & 8 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 1\\ -1 \end{pmatrix}$, $A = \begin{pmatrix} 7 & 5\\ -2 & 8 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1\\ -1 \end{pmatrix}$
Test the answer with **equality of matrices**: two matrices are equal if and only if they have

matching entries.

Example 14: An $m \times n$ matrix A is always the coefficient matrix of a homogeneous system $A\vec{x} = \vec{0}$, which represents a scalar system of m equations in n unknowns (the components of \vec{x}). The **rank** of A is the number of leading variables. The **nullity** of A is the number of free variables. Always, **rank** + **nullity** = number of variables. Find the rank and nullity.

$$\begin{pmatrix} 7 \ 5 \\ -2 \ 8 \end{pmatrix}, \quad \begin{pmatrix} 7 \ 5 \\ 14 \ 10 \end{pmatrix}, \quad \begin{pmatrix} 1 \ 0 \\ 0 \ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 \ 0 \\ 0 \ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 \ 7 \ 5 \\ 0 \ -2 \ 8 \end{pmatrix}, \quad \begin{pmatrix} 1 \ 2 \ 3 \ 3 \ 5 \\ 0 \ 0 \ 0 \ 0 \\ 0 \ 1 \ 0 \ 1 \end{pmatrix}, \quad \begin{pmatrix} 1 \ 2 \\ 0 \ 0 \\ 1 \ 1 \\ 0 \ 1 \end{pmatrix}$$