Week 4 Examples

Example 1: Solve the system or explain why it cannot be solved.
$\left\{\begin{array}{l}x+2 y=1 \\ x-y=-2\end{array} \quad\left\{\begin{array}{l}x+2 y=1 \\ x+2 y=2\end{array} \quad\left\{\begin{array}{l}x+2 y=1 \\ 0\end{array}\right.\right.\right.$
Answers. Unique solution $x=-1, y=1$; No solution, parallel lines; Infinitely many solutions, parametric equation of the line: $x=1-2 t_{1}, y=t_{1}$.
Example 2: Consider $y^{\prime \prime}-121 y=0, y(0)=44, y^{\prime}(0)=22$. The supplied general solution is $y=A e^{11 x}+B e^{-11 x}$. Substitute y into relations $y(0)=44, y^{\prime}(0)=22$ to obtain a 2×2 system for unknowns A, B. Solve it for the unique solution $A=23, B=21$.
Example 3: Determine the lead and free variables. Solve the echelon system.

$$
\left\{\begin{aligned}
x_{1}-2 x_{2}+3 x_{3}+2 x_{4} & +x_{5}=10, \\
x_{3} & +2 x_{5}= \\
x_{4} & -4 x_{5}=
\end{aligned}\right.
$$

Answer: Lead $=x_{1}, x_{3}, x_{4}$; Free $=x_{2}, x_{5}$. Solution $x_{1}=5+2 t_{1}-3 t_{2}, x_{2}=t_{1}, x_{3}=-3-2 t_{2}, x_{4}=$ $7+4 t_{2}, x_{5}=t_{2}$. Method: Assign invented symbols t_{1}, t_{2} to the free variables. Then backsubstitute. Best method: Find the reduced echelon system (the Last Frame) by Toolkit combo applied to the variable list in reverse order. Then apply the Last Frame Algorithm: Assign invented symbols to the free variables, isolate the lead variables, then back-substitute. Report for each variable an equation in terms of the invented symbols (the scalar general solution).
Example 4: The unique solution case.

$$
\left\{\begin{array}{r}
x+2 y+z=1 \\
x+3 y+z=2 \\
x+y+2 z=3
\end{array}\right.
$$

(1) Find the scalar form of the unique solution. (2) Why are there only lead variables in the last frame? (3) Why are there no free variables?
Example 5: The no solution case.

$$
\left\{\begin{aligned}
x+2 y+z & =1 \\
x+3 y+z & =2 \\
2 x+5 y+2 z & =4
\end{aligned}\right.
$$

Use the Toolkit combo, swap, mult to find a frame with a signal equation.
Example 6: The infinitely many solution case.

$$
\text { (6a) }\left\{\begin{array} { r }
{ x + 2 y + z = 1 } \\
{ x + 3 y + z = 2 } \\
{ 2 x + 5 y + 2 z = 3 }
\end{array} \quad \text { (6b) } \left\{\begin{array} { r }
{ x + 2 y + z = 1 } \\
{ 3 x + 6 y + 3 z = 3 } \\
{ 0 = 0 }
\end{array} \quad \text { (6c) } \left\{\begin{array}{l}
0=0 \\
0=0 \\
0=0
\end{array}\right.\right.\right.
$$

(1) Find the last frame or RREF. (2) How many free variables? (3) Apply the last frame algorithm to find the solution.
Example 7: Determine for each value of symbol k the possibility: (1) Unique solution, (2) No solution, (3) Infinitely many solutions.

$$
\text { (7a) }\left\{\begin{array} { r l }
{ x + k y } & { = 2 , } \\
{ (2 - k) x + y } & { = 3 }
\end{array} \quad (\mathbf { 7 b }) \left\{\begin{array}{l}
3 x+2 y=0 \\
6 x+k y=0
\end{array}\right.\right.
$$

Example 8: Verify the conversions from scalar equations to augmented matrix, or conversely.
(8a) $\left\{\begin{aligned} x+3 y & =2 \\ -x+y & =3\end{aligned} \longrightarrow\left(\begin{array}{rr|r}1 & 3 & 2 \\ -1 & 1 & 3\end{array}\right)\right.$

$$
\left(\begin{array}{rr|r}
7 & 5 & 1 \tag{8b}\\
-2 & 8 & -1
\end{array}\right) \quad \longrightarrow\left\{\begin{aligned}
7 x+5 y & =1 \\
-2 x+8 y & =-1
\end{aligned}\right.
$$

Example 9: Classify as: diagonal, scalar, upper triangular, lower triangular, identity, zero, none of these. More than one classification is possible.
(9a) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$(\mathbf{9 b})\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3\end{array}\right)$
$(\mathbf{9 c})\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
(9d) $\left(\begin{array}{ccc}\pi & 0 & 0 \\ 0 & 0 & 0 \\ 0 & e & 1\end{array}\right)$

Example 10: Define $\vec{a}=2 \vec{\imath}+3 \vec{\jmath} \vec{b}=-3 \vec{\imath}+2 \vec{\jmath}$. Compute the dot product $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}$, using the definitions $\vec{\imath}=\binom{1}{0}, \vec{\jmath}=\binom{0}{1}$. Because of identity $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos (\theta)$, the answer $\vec{a} \cdot \vec{b}=0$ means the vectors are orthogonal ($\theta=90$ degrees) .
Example 11: Multiply.
$(11 \mathbf{a})\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right)\left(\begin{array}{r}1 \\ -1 \\ 2\end{array}\right) \quad(\mathbf{1 1 b})\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right)\left(\begin{array}{rr}1 & 2 \\ -1 & 1 \\ 2 & -1\end{array}\right) \quad(\mathbf{1 1 c})\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{rr}1 & 2 \\ 0 & 3 \\ 2 & -1\end{array}\right)$
Example 12: Let $A=\left(\begin{array}{rr}7 & 5 \\ -2 & 8\end{array}\right), B=\left(\begin{array}{rr}7 & 5 \\ -2 & 8\end{array}\right), I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Compute $C=2 A B+3 B-5 A+4 I$.
Example 13: Write in matrix multiply form $A \vec{x}=\vec{b}$.
$\left\{\begin{array}{r}7 x+5 y=1 \\ -2 x+8 y=-1\end{array} \quad\right.$ Answer: $\left(\begin{array}{rr}7 & 5 \\ -2 & 8\end{array}\right)\binom{x}{y}=\binom{1}{-1}, A=\left(\begin{array}{rr}7 & 5 \\ -2 & 8\end{array}\right), \vec{b}=\binom{1}{-1}$
Test the answer with equality of matrices: two matrices are equal if and only if they have matching entries.
Example 14: An $m \times n$ matrix A is always the coefficient matrix of a homogeneous system $A \vec{x}=\overrightarrow{0}$, which represents a scalar system of m equations in n unknowns (the components of $\vec{x})$. The rank of A is the number of leading variables. The nullity of A is the number of free variables. Always, rank + nullity $=$ number of variables. Find the rank and nullity.

