\qquad

Math 3150 Problems
Haberman Chapter H10, Fourier Transform

Due Date: Problems are collected on Wednesday.

Chapter H10: 10.2, 10.3, 10.4 Fourier Transform

EXERCISES H10.2

Problem H^{*} 10.2-1. (Heat Equation on $-\infty<x<\infty$, Coefficient Identities)
Determine complex $c(w)$ so that

$$
u(x, t)=\int_{-\infty}^{\infty} c(w) e^{-i w x} e^{-k w^{2} t} d w
$$

is equivalent to

$$
\left.u(x, t)=\int_{0}^{\infty}(A(w) \cos (w x)+B(w) \sin (w x)) e^{-k w^{2} t}\right) d w
$$

with real $A(w)$ and $B(w)$. Then show that $c(-w)=\bar{c}(w), w>0$, where the over-bar denotes the complex conjugate.

Problem H10.2-2. (Heat Equation, Complex Integrand)

If $c(-w)=\bar{c}(w)$ (see the preceding exercise), then show that $u(x, t)$ is real, where

$$
u(x, t)=\int_{-\infty}^{\infty} c(w) e^{-i w x} e^{-k w^{2} t} d w
$$

EXERCISES H10.3

Problem H10.3-1. (Linearity of the Fourier Transform)

Show that the Fourier transform is a linear operator; that is, show that
(a) $F T\left[c_{1} f(x)+c_{2} g(x)\right]=c_{1} F T[f(x)]+c_{2} F T[g(x)]$
(b) $F T[f(x) g(x)] \neq F T[f(x)] F T[g(x)]$

Problem H10.3-2. (Linearity of the Inverse Fourier Transform)
Show that the inverse Fourier transform is a linear operator; that is, show that
(a) $F T^{1}\left[c_{1} F T[f(x)]+c_{2} F T[g(x)]\right]=c_{1} f(x)+c_{2} g(x)$
(b) $F T^{-1}[F(w) G(w)] \neq f(x) g(x)$

Problem H10.3-3. (Complex Conjugate and Fourier Transform)

Let $F(w)$ be the Fourier transform of $f(x)$. Show that if $f(x)$ is real, then $F^{*}(w)=F(-w)$, where $*$ denotes the complex conjugate.

Problem XC-H10.3-4. (Transforms of Functions Depending on a Parameter α)
Show that $F T\left[\int f(x ; \alpha) d \alpha\right]=\int F(w, \alpha) d \alpha$.
Problem H10.3-5. (Shift and the Fourier Transform)
If $F(w)$ is the Fourier transform of $f(x)$, show that the inverse Fourier transform of $e^{i w \beta} F(w)$ is $f(x-\beta)$. This result is known as the shift theorem for Fourier transforms.

Problem H^{*} 10.3-6. (Transform of the Unit Pulse: Sinc Function, Rect Pulse)

If $f(x)=\left\{\begin{array}{ll}0 & |x|>a, \\ 1 & |x|<a,\end{array}\right.$ then determine the Fourier transform of $f(x)$.
Answer: $\frac{1}{\pi} \frac{\sin (a w)}{w}$, or $\frac{a}{\pi} \operatorname{sinc}(a w)$. The sinc function is a widely research function in numerical analysis, defined by $\operatorname{sinc}(u)=\frac{\sin (u)}{u}$.
Remark. A standard transform table may contain instead the function rect, a rectangular pulse of width 1 with value $\frac{1}{2}$ at $x= \pm \frac{1}{2}$.
[The answer is given in the table of Fourier transforms in H10, Section 4.4.]

Problem H^{*} 10.3-7. (Transform Table, Exponential Transform)

If $F(w)=e^{-|w| \alpha}, \alpha>0$, then determine the inverse Fourier transform of $F(w)$.
Answer: $f(x)=F T^{-1}(F(w))=\frac{2 \alpha}{x^{2}+\alpha^{2}}$.
[The answer is given in the table of Fourier transforms in H10, Section 4.4.]
Problem XC-H10.3-8. (Multiply by x and Differentiation of $F(w)$)
If $F(w)$ is the Fourier transform of $f(x)$, show that $-i d F / d w$ is the Fourier transform of $x f(x)$.

Problem XC-H10.3-9. (Textbook Details)

(a) Multiply (10.3.6) (assuming that $\gamma=1$) by $e^{-i w x}$ and integrate from $-L$ to L to show that

$$
\begin{equation*}
\int_{-L}^{L} F(w) e^{-i w x} d w=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(u) \frac{2 \sin (L(u-x))}{u-x} d u . \tag{10.3.13}
\end{equation*}
$$

(b) Derive (10.3.7). For simplicity, assume that $f(x)$ is continuous. [Hints: Let $f(u)=f(x)+f(u)-f(x)$. Use the sine integral, $\int_{0}^{\infty} \frac{\sin s}{s} d s=\frac{\pi}{2}$ Integrate (10.3.13) by parts and then take the limit as $L \rightarrow \infty$.

Problem XC-H10.3-11. (Scaling)

(a) If $f(x)$ is a function with unit area, $\int_{-\infty}^{\infty} f(x) d x=1$, show that the scaled and stretched function $(1 / \alpha) f(x / \alpha)$ also has unit area.
(b) If $F(w)$ is the Fourier transform of $f(x)$, show that $F(\alpha w)$ is the Fourier transform of $(\alpha) f(x / \alpha)$.
(c) Show that part (b) implies that broadly spread functions have sharply peaked Fourier transforms near $w=0$, and vice versa.

Problem XC-H10.3-13. (Cosine)

Evaluate $\int_{0}^{\infty} e^{-k w^{2} t} \cos (w x) d w$ in the following way. Determine $\partial I / \partial x$, and then integrate by parts.

Problem H10.3-14. (Gamma Function)

The gamma function $\mathrm{r}(\mathrm{x})$ is defined as follows:

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

Show that
(a) $\Gamma(1)=1$
(b) $\Gamma(x+1)=\Gamma(x)$
(c) $\Gamma(n+1)=n$!
(d) $\Gamma(1 / 2)=2 \int_{0}^{\infty} e^{-t^{2}} d t=\sqrt{\pi}$
(e) What is $\Gamma(3 / 2)$?

Problem XC-H10.3-15. (Gamma Function Properties)

(a) Using the definition of the gamma function in the previous Exercise, show that

$$
\Gamma(x)=2 \int_{0}^{\infty} u^{2 x-1} e^{-u^{2}} d u
$$

(b) Using double integrals in polar coordinates, show that

$$
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin (\pi z)}
$$

[Hint: It is known from complex variables that $2 \int_{0}^{\pi / 2}(\tan \theta)^{2 x-1} d \theta=\frac{\pi}{\sin (\pi z)}$.]
Problem XC-H*10.3-16. (Gamma Function Identity)
Evaluate $\int_{0}^{\infty} y^{p} e^{-k y^{n}} d y$ in terms of the gamma function (see Exercise 10.3.14).

