Math 3150 Problems Haberman Chapter H10, Fourier Transform

Due Date: Problems are collected on Wednesday.

Chapter H10: 10.2, 10.3, 10.4 Fourier Transform

EXERCISES H10.2

Problem H*10.2-1. (Heat Equation on $-\infty < x < \infty$, Coefficient Identities)

Determine complex c(w) so that

$$u(x,t) = \int_{-\infty}^{\infty} c(w) e^{-iwx} e^{-kw^2 t} dw$$

is equivalent to

$$u(x,t) = \int_0^\infty \left(A(w)\cos(wx) + B(w)\sin(wx))e^{-kw^2t} \right) dw$$

with real A(w) and B(w). Then show that $c(-w) = \overline{c}(w), w > 0$, where the over-bar denotes the complex conjugate.

Problem H10.2-2. (Heat Equation, Complex Integrand)

If $c(-w) = \bar{c}(w)$ (see the preceding exercise), then show that u(x,t) is real, where

$$u(x,t) = \int_{-\infty}^{\infty} c(w)e^{-iwx}e^{-kw^2t}dw$$

EXERCISES H10.3

Problem H10.3-1. (Linearity of the Fourier Transform)

Show that the Fourier transform is a linear operator; that is, show that (a) $FT[c_1f(x) + c_2g(x)] = c_1FT[f(x)] + c_2FT[g(x)]$ (b) $FT[f(x)g(x)] \neq FT[f(x)]FT[g(x)]$

Problem H10.3-2. (Linearity of the Inverse Fourier Transform)

Show that the inverse Fourier transform is a linear operator; that is, show that (a) $FT^1[c_1FT[f(x)] + c_2FT[g(x)]] = c_1f(x) + c_2g(x)$

(b) $FT^{-1}[F(w)G(w)] \neq f(x)g(x)$

Problem H10.3-3. (Complex Conjugate and Fourier Transform)

Let F(w) be the Fourier transform of f(x). Show that if f(x) is real, then $F^*(w) = F(-w)$, where * denotes the complex conjugate.

Problem XC-H10.3-4. (Transforms of Functions Depending on a Parameter α) Show that $FT\left[\int f(x;\alpha)d\alpha\right] = \int F(w,\alpha)d\alpha$.

Problem H10.3-5. (Shift and the Fourier Transform)

If F(w) is the Fourier transform of f(x), show that the inverse Fourier transform of $e^{iw\beta}F(w)$ is $f(x-\beta)$. This result is known as the **shift theorem** for Fourier transforms.

Problem H*10.3-6. (Transform of the Unit Pulse: Sinc Function, Rect Pulse)

If $f(x) = \begin{cases} 0 & |x| > a, \\ & & \text{then determine the Fourier transform of } f(x). \\ 1 & |x| < a, \end{cases}$

Answer: $\frac{1}{\pi} \frac{\sin(aw)}{w}$, or $\frac{a}{\pi} \operatorname{sinc}(aw)$. The sinc function is a widely research function in numerical analysis, defined by $\operatorname{sinc}(u) = \frac{\sin(u)}{u}$.

Remark. A standard transform table may contain instead the function **rect**, a rectangular pulse of width 1 with value $\frac{1}{2}$ at $x = \pm \frac{1}{2}$.

[The answer is given in the table of Fourier transforms in H10, Section 4.4.]

Problem H*10.3-7. (Transform Table, Exponential Transform)

If $F(w) = e^{-|w|\alpha}$, $\alpha > 0$, then determine the inverse Fourier transform of F(w).

Answer: $f(x) = FT^{-1}(F(w)) = \frac{2\alpha}{x^2 + \alpha^2}$.

[The answer is given in the table of Fourier transforms in H10, Section 4.4.]

Problem XC-H10.3-8. (Multiply by x and Differentiation of F(w))

If F(w) is the Fourier transform of f(x), show that -i dF/dw is the Fourier transform of xf(x).

Problem XC-H10.3-9. (Textbook Details)

(a) Multiply (10.3.6) (assuming that $\gamma = 1$) by e^{-iwx} and integrate from -L to L to show that

$$\int_{-L}^{L} F(w)e^{-iwx}dw = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(u)\frac{2\sin(L(u-x))}{u-x}du.$$
 (10.3.13)

(b) Derive (10.3.7). For simplicity, assume that f(x) is continuous. [Hints: Let f(u) = f(x) + f(u) - f(x). Use the sine integral, $\int_0^\infty \frac{\sin s}{s} ds = \frac{\pi}{2}$ Integrate (10.3.13) by parts and then take the limit as $L \to \infty$.

Problem XC-H10.3-11. (Scaling)

(a) If f(x) is a function with unit area, $\int_{-\infty}^{\infty} f(x)dx = 1$, show that the scaled and stretched function $(1/\alpha)f(x/\alpha)$ also has unit area.

(b) If F(w) is the Fourier transform of f(x), show that $F(\alpha w)$ is the Fourier transform of $(\alpha)f(x/\alpha)$.

(c) Show that part (b) implies that broadly spread functions have sharply peaked Fourier transforms near w = 0, and vice versa.

Problem XC-H10.3-13. (Cosine)

Evaluate $\int_0^\infty e^{-kw^2t} \cos(wx) dw$ in the following way. Determine $\partial I/\partial x$, and then integrate by parts.

Problem H10.3-14. (Gamma Function)

The gamma function r(x) is defined as follows:

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Show that

(a)
$$\Gamma(1) = 1$$
 (b) $\Gamma(x+1) = \Gamma(x)$
(c) $\Gamma(n+1) = n!$ (d) $\Gamma(1/2) = 2 \int_0^\infty e^{-t^2} dt = \sqrt{\pi}$
(e) What is $\Gamma(3/2)$?

Problem XC-H10.3-15. (Gamma Function Properties)

(a) Using the definition of the gamma function in the previous Exercise, show that

$$\Gamma(x) = 2 \int_0^\infty u^{2x-1} e^{-u^2} du.$$

(b) Using double integrals in polar coordinates, show that

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}.$$

[Hint: It is known from complex variables that $2\int_0^{\pi/2} (\tan \theta)^{2x-1} d\theta = \frac{\pi}{\sin(\pi z)}$.]

Problem XC-H*10.3-16. (Gamma Function Identity)

Evaluate $\int_0^\infty y^p e^{-ky^n} dy$ in terms of the gamma function (see Exercise 10.3.14).