\qquad

Math 3150 Problems
Haberman Chapter H3

Due Date: Problems are collected on Wednesday.

Chapter H3: 3.2 Fourier Series, Statement of the Convergence Theorem

Problem H3.2-1. (Sketching a Fourier Series)

For the following functions, sketch the Fourier series of $f(x)$ (on the interval $-L<x<L$), without computing Fourier coefficients. Compare $f(x)$ to its Fourier series. Submit starred problems only.
(a) $f(x)=1$
*(b) $f(x)=x^{2}$
(c) $f(x)=1+x$
*(d) $f(x)=e^{x}$
(e) $f(x)=x$ for $x<0$ and $f(x)=2 x$ for $x>0$
*(f) $f(x)=1+x$ for $x>0$ and zero otherwise
(g) $f(x)=x$ for $x<L / 2$ and zero otherwise

Problem H3.2-2. (Fourier Series Coefficients)

For the following functions, sketch the Fourier series of $f(x)$ (on the interval $-L<x<L$) and determine the Fourier coefficients. Submit starred problems only.
*(a) $f(x)=x$
(b) $f(x)=e^{-x}$
*(c) $f(x)=\sin (\pi x / L)$
(d) $f(x)=x$ for $x>0$ and zero otherwise
(e) $f(x)=1$ for $|x|<L / 2$ and zero otherwise
*(f) $f(x)=1$ for $x>0$ and zero otherwise
(g) $f(x)=1$ for $x<0$ and $f(x)=2$ for $x>0$

Problem H3.2-3. (Fourier Series Operation is Linear)

Show that the Fourier series operation is linear: that is, show that the Fourier series of $c_{1} f(x)+c_{2} g(x)$ is the sum of c_{1} times the Fourier series of $f(x)$ and c_{2} times the Fourier series of $g(x)$.

Problem H3.2-4. (Fourier Series $F(x)$ Endpoint Values at $x= \pm L$)
Suppose that $f(x)$ is piecewise smooth. What value does the Fourier series of $f(x)$ converge to at the endpoint $x=-L$? at $x=L$?

