\qquad

Math 3150 Problems
Haberman Chapter H2

Due Date: Problems are collected on Wednesday.

Chapter H2: 2.5 Laplace's Equation, Maximum Principle

Problem H2.5-1. (Laplace's Equation on a Rectangle, Temperature and Insulation Conditions)

Solve Laplace's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$ on the rectangle $0<x<L, 0<y<H$ subject to the following boundary conditions.
(a) $u_{x}(x, y)=0$ for $x=0$ and $x=L, u(x, y)=0$ for $y=0, u(x, y)=f(x)$ for $y=H$
(b) $u_{x}(x, y)=0$ for $x=0, u(x, y)=g(y)$ for $x=L, u(x, y)=0$ for $y=0$ and $y=H$
(c) $u(x, y)=0$ for $x=0$ and $x=L, u(x, y)-u_{y}(x, y)=0$ for $y=0, u(x, y)=f(x)$ for $y=H$

Reference. Haberman H2.5. See Exercises 1(a), 1(c), 1(e), which have answers.

Problem H2.5-2. (Laplace's Equation on a Rectangle, Insulated Boundary)

Consider $u(x, y)$ satisfying Laplace's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$ on the rectangle $0<x<L, 0<y<H$ subject to the insulated boundary conditions

$$
u_{x}(0, y)=u_{x}(L, y)=0, u_{y}(x, 0)=0, u_{y}(x, H)=f(x)
$$

(a) The conditions describe the heat flux normal to the boundary. For example, along boundary segment $x=0$ the outer normal is $\vec{n}=-\vec{\imath}+0 \vec{\jmath}$ and the normal component of the temperature $\operatorname{gradient} \operatorname{grad}(u)=u_{x} \vec{\imath}+u_{y} \vec{\jmath}$ is $\operatorname{grad}(u) \cdot \vec{n}=-u_{x}$. The net heat flow along the segment is then $\int_{0}^{H}-u_{x}(0, y) d y$. Compute the net heat flow, summed across all four boundary segments.
(b) The temperature $U(x, y, t)$ at equilibrium $t=\infty$ becomes $u(x, y)$, independent of time. The net heat flow of $u(x, y)$ across the rectangle boundary must be zero. Otherwise, there is heat transfer and temperature change in time. Apply part (a) to write net heat flow zero as a condition for solvability of the problem.
(c) Assume the extra condition found in part (b). Solve for $u(x, y)$ by the method of separation of variables.

Remark. See (61) in H2.5, for zero net heat flow. The solution will contain an unresolved constant C, which is determined by the time-dependent initial condition $U(x, y, 0)=g(x, y)$. Don't bother to find C.

Problem H2.5-3. (Laplace's Equation Outside a Disk)

Solve Laplace's equation outside a circular disk $(r>a)$ subject to the boundary condition
(a) $u(a, \theta)=\ln (2)+4 \cos (3 \theta)$
(b) $u(a, \theta)=f(\theta)$

References. Assume that $u(r, \theta)$ remains finite at $r=$ infinity to obtain Haberman's answer

$$
u(r, \theta)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right) r^{-n}
$$

Part (a) is fast because $u(a, \theta)$ is a linear combination of eigenfunctions.
Part (b) uses orthogonality of the eigenfunctions to write Fourier coefficient formulas for A_{0}, A_{n}, B_{n} in terms of $f(\theta)$.

Problem H2.5-4. (Poisson's Integral Formula)

For Laplace's equation inside a circular disk $(r<a)$, the series solution formula can be re-arranged into Poisson's integral formula

$$
\begin{aligned}
& u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\phi) K(r, \theta, \phi) d \phi, \quad \text { where } \\
& K(r, \theta, \phi)=\frac{a^{2}-r^{2}}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}}=\text { Poisson's Kernel. }
\end{aligned}
$$

(a) In the figure, s is the distance from (r, θ) to (a, ϕ). Derive $s^{2}=a^{2}-2 a r \cos (\theta-\phi)+r^{2}$ from the law of cosines and polar coordinates, then conclude that the Poisson Kernel is the formula $K=\frac{a^{2}-r^{2}}{s^{2}}$. This also justifies $K>0$.

(b) Use the complex exponential identity $\cos (w)=\frac{e^{i w}+e^{-i w}}{2}$ and the geometric series formula $\sum_{j=0}^{\infty} z^{j}=\frac{1}{1-z}$ to derive the identity

$$
K(r, \theta, \phi)=-1+2 \sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} \cos (n(\theta-\phi))
$$

(c) Use $f(\theta)=1$ and solution $u(r, \theta)=1$ to derive from Poisson's formula the identity

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} K(r, \theta, \phi) d \phi=1
$$

The identity can also be derived by integrating the part (b) formula, because $\int_{0}^{2 \pi} \cos (n(\theta-\phi)) d \phi=0$.
(d) Poisson's formula says that $u(r, \theta)$ is a weighted average of the boundary data $f(\theta)$ on the circle, with weight function K. Understand this by showing that $u(r, \theta)$ at $r=0$ is the average value of f on the circle (Mean Value Theorem), using $u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} K f d \phi$.

Problem H2.5-5a. (Laplace's Equation on a Quarter Circle)

Solve Laplace's equation inside the quarter-circle of radius $1,0<\theta<\pi / 2,0<r<1$, subject to the boundary conditions $\frac{\partial u}{\partial \theta}(r, 0)=0, u(r, \pi / 2)=0, u(1,0)=f(\theta)$.

Problem H2.5-5b. (Laplace's Equation on a Disk: Graphics)

Laplace's equation $u_{x x}+u_{y y}=0$ on a disk of radius 1 is to be solved with initial data $u(1, \theta)=\cos (10 \theta),|\theta|<\pi$. The solution is $u(r, \theta)=r^{10} \cos (10 \theta)$.
(a) Explain why the answer is so simple, and how it was obtained.
(b) Make a technology plot of the solution, which is temperature u in the z-axis direction, with x, y restricted to the disk $x^{2}+y^{2} \leq 1$. Clip the negative temperatures. Show good detail near the edge of the disk, because r^{10} makes $u=0$ near $r=0$ (the $z=0$ plane) and most of the way out to the edge of the disk. Color plots which can be shown on your laptop are appreciated.

Problem XC-H2.5-8a. (Laplace's Equation inside a Circular Annulus)

Solve Laplace's equation inside a circular annulus $(a<r<b)$ subject to the boundary conditions $u(a, \theta)=f(\theta)$, $u(b, \theta)=g(\theta)$.

