\qquad

Math 3150 Problems
Haberman Chapter H2

Due Date: Problems are collected on Wednesday.

Chapter H2: 2.1-2.2 - Introduction, Linearity

Problem H2.2-2a. (Linear Operator)
Show that $L(u)=\frac{\partial}{\partial x}\left(K_{0}(x) \frac{\partial u}{\partial x}\right)$ is a linear operator.
Reference. Haberman H2.2.
Problem H2.2-4. (Superposition)
(a) Consider $L(u)=f$. If u_{p} is a particular solution, $L\left(u_{p}\right)=f$, and if u_{l} and u_{2} are homogeneous solutions, $L\left(u_{1}\right)=L\left(u_{2}\right)=0$, then show that $u=u_{p}+c_{1} u_{1}+c_{2} u_{2}$ is another particular solution, that is, show that $L(u)=f$.
(b) If $L\left(u_{1}\right)=f_{1}$ and $L\left(u_{2}\right)=f_{2}$, then what is a particular solution u for $L(u)=f_{1}+f_{2}$?

Problem XC-H2.2-5. (Generalized Superposition)

If L is a linear operator and $L\left(u_{1}\right)=L\left(u_{2}\right)=L\left(u_{3}\right)=0$, then show that $L\left(c_{1} u_{1}+c_{2} u_{2}+c_{3} u_{3}\right)=0$. Use this result to show that the principle of superposition may be extended to any finite number of homogeneous solutions.

Chapter H2: 2.3 - Separation of Variables Method

Problem H2.3-1. (Separated ODEs)

For the following partial differential equations, what ordinary differential equations are implied by the method of separation of variables?
(a) $\frac{\partial u}{\partial t}=\frac{k}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)$
(b) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
(c) $\frac{\partial u}{\partial t}=k \frac{\partial^{4} u}{\partial x^{4}}$
(d) $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$

Problem H2.3-2. (Eigenpairs)

Consider the differential equation $X^{\prime \prime}+\lambda X=0$.
Determine the eigenvalues λ and corresponding eigenfunctions if $X(x)$ satisfies the following boundary conditions. Analyze the three cases for lambda positive, zero and negative. You may assume that the eigenvalues are real.
(a) $X(0)=0, X^{\prime}(L)=0$
(b) $X(a)=0, X(b)=0$ assuming λ positive

Problem H2.3-3. (Rod Problem, Ice-pack Ends)

Consider the heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

subject to the boundary conditions

$$
u(0, t)=0 a n d u(L, t)=0 .
$$

Solve the initial value problem if the temperature is initially $u(x, 0)=2 \cos (3 \pi x / L)$. Leave difficult integrals unevaluated.

Problem H2.3-5. (Orthogonality, Sines)

Evaluate (be careful if $n=m$) the integral over $0<x<L$ of the product of $\sin (n \pi x / L)$ and $\sin (m \pi x / L)$ for $n>0, m>0$. Use the trigonometric identity $\sin (a) \sin (b)=(1 / 2)(\cos (a-b)-\cos (a+b))$, being careful if $a+b=0$ or $a-b=0$.

Problem H2.3-6. (Orthogonality, Cosines)

Evaluate the integral over $0<x<L$ of the product of $\cos (n \pi x / L)$ and $\cos (m \pi x / L)$ for $n>0, m>0$. Use the trigonometric identity $\cos (a) \cos (b)=(1 / 2)(\cos (a+b)+\cos (a-b))$, being careful if $a+b=0$ or $a-b=0$.

Problem H2.3-10. (CSB Inequality)

For two- and three-dimensional vectors, the fundamental property of dot products, $A \cdot B=|A||B| \cos (\theta)$, implies that

$$
|A \cdot B| \leq|A||B| .
$$

In this exercise we generalize this to n-dimensional vectors and functions, in which case $|A \cdot B| \leq|A||B|$ is known as Schwarz's inequality. [The names of Cauchy and Buniakovsky are also possible, the common name being the CSB inequality.]
(a) Show that $|A-\gamma B|^{2}>0$ implies $|A \cdot B| \leq|A||B|$, where $\gamma=A \cdot B / B \cdot B$.
(c) Generalize $|A \cdot B| \leq|A||B|$ to functions. [Hint: Let $A \cdot B$ mean the integral of $A(x) B(x)$ over $x=0$ to $x=L$.]

