Partial Differential Equations 3150 Sample Midterm Exam 2 Exam Date: Wednesday, 9 April 2014

Instructions: This exam is timed for 50 minutes. Up to 60 minutes is possible. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

The actual exam will have three (3) problems, one selected from each main topic below. A problem may have several parts.

Fourier Series

1. (Periodic Functions)

(a) [30%] Find the period of $f(x) = \sin(x)\cos(2x) + \sin(2x)\cos(x)$.

(b) [40%] Let p = 5. If f(x) is the odd 2*p*-periodic extension to $(-\infty, \infty)$ of the function $f_0(x) = 100x e^{10x}$ on $0 \le x \le p$, then find f(11.3). The answer is not to be simplified or evaluated to a decimal.

(c) [30%] Mark the expressions which are periodic with letter \mathbf{P} , those odd with \mathbf{O} and those even with \mathbf{E} .

$$\sin(\cos(2x))$$
 $\ln|2 + \sin(x)|$ $\sin(2x)\cos(x)$ $\frac{1 + \sin(x)}{2 + \cos(x)}$

2. (Fourier Series)

Let $f_0(x) = x$ on the interval 0 < x < 2, $f_0(x) = -x$ on -2 < x < 0, $f_0(x) = 0$ for x = 0, $f_0(x) = 2$ at $x = \pm 2$. Let f(x) be the periodic extension of f_0 to the whole real line, of period 4.

(a) [80%] Compute the Fourier coefficients for the terms $\sin(67\pi x)$ and $\cos(2\pi x)$. Leave tedious integrations in integral form, but evaluate the easy ones like the integral of the square of sine or cosine.

(b) [20%] Which values of x in |x| < 12 might exhibit Gibb's phenomenon?

3. (Cosine and Sine Series)

Find the first nonzero term in the sine series expansion of f(x), formed as the odd 2π periodic extension of the function $\sin(x)\cos(x)$ on $0 < x < \pi$. Leave the Fourier coefficient in integral form, unevaluated, unless you can compute the value in a minute or two.

4. (Convergence of Fourier Series)

(a) [30%] Dirichlet's kernel formula can be used to evaluate the sum $\cos(2x) + \cos(4x) + \cos(6x) + \cos(8x)$. Report its value according to that formula.

(b) [40%] The Fourier Convergence Theorem for piecewise smooth functions applies to continuously differentiable functions of period p. State the theorem for this special case, by translating the results when f is smooth and the interval $-\pi \leq x \leq \pi$ is replaced by $-p \leq x \leq p$.

(c) [30%] Give an example of a function f(x) periodic of period 2 that has a Gibb's overshoot at the integers $x = 0, \pm 2, \pm 4, \ldots$, (all $\pm 2n$) and nowhere else.

5. (Fourier Series)

(a) [30%] Find and display the nonzero terms in the Fourier series expansion of f(x), formed as the even 2π -periodic extension of the function $f_0(x) = \sin^2(x) + 4\cos(2x)$ on $0 < x < \pi$.

(b) [50%] Compute the Fourier sine series coefficients b_n for the function g(x), defined as the period 2 odd extension of the function $g_0(x) = 1$ on $0 \le x \le 1$. Draw a representative graph for the partial Fourier sum for five terms of the infinite series.

(c) [20%] Define $h_0(x) = \begin{cases} \sin(2x) & 0 \le x < \pi, \\ x - \pi & \pi \le x \le 2\pi, \end{cases}$ and let h(x) be the 4π odd periodic extension of $h_0(x)$ to the whole real line. Compute the sum $h(-5.25\pi) + h(1.5\pi)$.

Wave Equation: Finite String, Membrane

1. (Vibration of a Finite String)

The normal modes for the string equation $u_{tt} = c^2 u_{xx}$ are given by the functions

$$\sin\left(\frac{n\pi x}{L}\right)\cos\left(\frac{n\pi ct}{L}\right), \quad \sin\left(\frac{n\pi x}{L}\right)\sin\left(\frac{n\pi ct}{L}\right)$$

It is known that each normal mode is a solution of the string equation and that the problem below has solution u(x,t) equal to an infinite series of constants times normal modes.

Solve the finite string vibration problem on $0 \le x \le 2, t > 0$,

$$u_{tt} = c^2 u_{xx}, u(0,t) = 0, u(2,t) = 0, u(x,0) = 0, u_t(x,0) = -11 \sin(5\pi x).$$

2. (Finite String: Fourier Series Solution)

(a) [75%] Display the series formula without derivation details for the finite string problem

$$\begin{cases} u_{tt}(x,t) &= c^2 u_{xx}(x,t), \quad 0 < x < L, \quad t > 0, \\ u(0,t) &= 0, & t > 0, \\ u(L,t) &= 0, & t > 0, \\ u(x,0) &= f(x), & 0 < x < L, \\ u_t(x,0) &= g(x), & 0 < x < L. \end{cases}$$

Symbols f and g should not appear explicitly in the series for u(x,t). Expected in the formula for u(x,t) are product solutions times constants.

(b) [25%] Display explicit formulas for the Fourier coefficients, containing the symbols L, f(x), g(x).

3. (Rectangular Membrane)

Consider the general membrane problem

$$\begin{cases} u_{tt}(x,y,t) &= c^2 \left(u_{xx}(x,y,t) + u_{yy}(x,y,t) \right), & 0 < x < a, \quad 0 < y < b, \quad t > 0, \\ u(x,y,t) &= 0 & \text{on the boundary,} \\ u(x,y,0) &= f(x,y), & 0 < x < a, \quad 0 < y < b, \\ u_t(x,y,0) &= g(x,y), & 0 < x < a, \quad 0 < y < b. \end{cases}$$

Solve the problem for a = b = c = 1, f(x, y) = 1, g(x, y) = 0. Expected are displays for the **normal modes**, a **superposition** formula for u(x, y, t), and **explicit numerical values** for the generalized Fourier coefficients.

4. (Finite String: Fourier Series Solution)

(a) [50%] Display the series formula, complete with derivation details, for the solution u(x,t) of the finite string problem

$$\begin{cases} u_{tt}(x,t) &= \frac{1}{4}u_{xx}(x,t), \quad 0 < x < 2, \quad t > 0, \\ u(0,t) &= 0, \quad t > 0, \\ u(2,t) &= 0, \quad t > 0, \\ u(x,0) &= f(x), \quad 0 < x < 2, \\ u_t(x,0) &= g(x), \quad 0 < x < 2. \end{cases}$$

Symbols f and g should not appear explicitly in the series for u(x,t). Expected in the formula for u(x,t) are product solutions times constants.

(b) [25%] Display explicit formulas for the Fourier coefficients which contains the symbols f(x), g(x).

(c) [25%] Evaluate the Fourier coefficients when f(x) = 100 and g(x) = 0.

Fourier Transform

1. (Fourier Transform Theory)

(a) [40%] Define Haberman's Fourier transform pair. Give an example of f(x) and F(w) which satisfy these equations.

(b) [60%] The heat equation on the line $-\infty < x < \infty$ can be solved by Fourier transform methods. Outline the method, called Fourier's Method, for the example

$$u_t = 4u_{xx}, \quad -\infty < x < \infty, \quad t > 0, \quad u(x,0) = f(x).$$

2. (Fourier's Method)

Use the Heat kernel, the convolution theorem and the shift theorem to solve the diffusionconvection equation

$$u_t(x,t) = ku_{xx}(x,t) + cu_x(x,t), \quad t > 0, \quad -\infty < x < \infty, \quad u(x,0) = f(x).$$

Answer: $u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} f(v) e^{\frac{-(x+ct-v)^2}{4kt}} dv$

3. (Heat Equation and Gauss' Heat Kernel)

Solve the insulated rod heat conduction problem

$$\begin{cases} u_t(x,t) &= \frac{1}{4}u_{xx}(x,t), & -\infty < x < \infty, \quad t > 0, \\ u(x,0) &= f(x), & -\infty < x < \infty, \\ f(x) &= \begin{cases} 50 & 0 < x < 1, \\ 100 & -1 < x < 0 \\ 0 & \text{otherwise} \end{cases}$$

Hint: Use the heat kernel $g_t(x, v) = \frac{1}{\sqrt{kt}} e^{-\frac{(x-v)^2}{4kt}}$, the error function $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$, and Fourier transform theory definitions to solve the problem. The answer is expressed in terms of the error function.