Partial Differential Equations 3150
 Sample Midterm Exam 2
 Exam Date: Wednesday, 9 April 2014

Instructions: This exam is timed for 50 minutes. Up to 60 minutes is possible. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

The actual exam will have three (3) problems, one selected from each main topic below. A problem may have several parts.

Fourier Series

1. (Periodic Functions)

(a) $[30 \%]$ Find the period of $f(x)=\sin (x) \cos (2 x)+\sin (2 x) \cos (x)$.
(b) [40\%] Let $p=5$. If $f(x)$ is the odd $2 p$-periodic extension to $(-\infty, \infty)$ of the function $f_{0}(x)=100 x e^{10 x}$ on $0 \leq x \leq p$, then find $f(11.3)$. The answer is not to be simplified or evaluated to a decimal.
(c) $[30 \%]$ Mark the expressions which are periodic with letter \mathbf{P}, those odd with \mathbf{O} and those even with \mathbf{E}.

$$
\sin (\cos (2 x)) \quad \ln |2+\sin (x)| \quad \sin (2 x) \cos (x) \quad \frac{1+\sin (x)}{2+\cos (x)}
$$

2. (Fourier Series)

Let $f_{0}(x)=x$ on the interval $0<x<2, f_{0}(x)=-x$ on $-2<x<0, f_{0}(x)=0$ for $x=0$, $f_{0}(x)=2$ at $x= \pm 2$. Let $f(x)$ be the periodic extension of f_{0} to the whole real line, of period 4.
(a) $[80 \%]$ Compute the Fourier coefficients for the terms $\sin (67 \pi x)$ and $\cos (2 \pi x)$. Leave tedious integrations in integral form, but evaluate the easy ones like the integral of the square of sine or cosine.
(b) [20\%] Which values of x in $|x|<12$ might exhibit Gibb's phenomenon?

3. (Cosine and Sine Series)

Find the first nonzero term in the sine series expansion of $f(x)$, formed as the odd 2π periodic extension of the function $\sin (x) \cos (x)$ on $0<x<\pi$. Leave the Fourier coefficient in integral form, unevaluated, unless you can compute the value in a minute or two.

4. (Convergence of Fourier Series)

(a) $[30 \%]$ Dirichlet's kernel formula can be used to evaluate the sum $\cos (2 x)+\cos (4 x)+$ $\cos (6 x)+\cos (8 x)$. Report its value according to that formula.
(b) [40\%] The Fourier Convergence Theorem for piecewise smooth functions applies to continuously differentiable functions of period p. State the theorem for this special case, by translating the results when f is smooth and the interval $-\pi \leq x \leq \pi$ is replaced by $-p \leq x \leq p$.
(c) [30\%] Give an example of a function $f(x)$ periodic of period 2 that has a Gibb's overshoot at the integers $x=0, \pm 2, \pm 4, \ldots,($ all $\pm 2 n)$ and nowhere else.

5. (Fourier Series)

(a) [30\%] Find and display the nonzero terms in the Fourier series expansion of $f(x)$, formed as the even 2π-periodic extension of the function $f_{0}(x)=\sin ^{2}(x)+4 \cos (2 x)$ on $0<x<\pi$.
(b) $[50 \%]$ Compute the Fourier sine series coefficients b_{n} for the function $g(x)$, defined as the period 2 odd extension of the function $g_{0}(x)=1$ on $0 \leq x \leq 1$. Draw a representative graph for the partial Fourier sum for five terms of the infinite series.
(c) [20\%] Define $h_{0}(x)=\left\{\begin{array}{ll}\sin (2 x) & 0 \leq x<\pi, \\ x-\pi & \pi \leq x \leq 2 \pi,\end{array}\right.$ and let $h(x)$ be the 4π odd periodic extension of $h_{0}(x)$ to the whole real line. Compute the sum $h(-5.25 \pi)+h(1.5 \pi)$.

Wave Equation: Finite String, Membrane

1. (Vibration of a Finite String)

The normal modes for the string equation $u_{t t}=c^{2} u_{x x}$ are given by the functions

$$
\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right), \quad \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right) .
$$

It is known that each normal mode is a solution of the string equation and that the problem below has solution $u(x, t)$ equal to an infinite series of constants times normal modes.
Solve the finite string vibration problem on $0 \leq x \leq 2, t>0$,

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x}, \\
& u(0, t)=0 \\
& u(2, t)=0 \\
& u(x, 0)=0 \\
& u_{t}(x, 0)=-11 \sin (5 \pi x)
\end{aligned}
$$

2. (Finite String: Fourier Series Solution)

(a) [75\%] Display the series formula without derivation details for the finite string problem

$$
\left\{\begin{array}{lll}
u_{t t}(x, t)=c^{2} u_{x x}(x, t), & 0<x<L, & t>0, \\
u(0, t)=0, & t>0, \\
u(L, t)=0, & t>0, \\
u(x, 0)=f(x), & 0<x<L, & \\
u_{t}(x, 0)=g(x), & 0<x<L . &
\end{array}\right.
$$

Symbols f and g should not appear explicitly in the series for $u(x, t)$. Expected in the formula for $u(x, t)$ are product solutions times constants.
(b) $[25 \%]$ Display explicit formulas for the Fourier coefficients, containing the symbols L, $f(x), g(x)$.

3. (Rectangular Membrane)

Consider the general membrane problem

$$
\left\{\begin{array}{lll}
u_{t t}(x, y, t)=c^{2}\left(u_{x x}(x, y, t)+u_{y y}(x, y, t)\right), & 0<x<a, 0<y<b, t>0, \\
u(x, y, t)=0 & \text { on the boundary }, \\
u(x, y, 0)=f(x, y), & 0<x<a, 0<y<b, \\
u_{t}(x, y, 0)=g(x, y), & 0<x<a, 0<y<b .
\end{array}\right.
$$

Solve the problem for $a=b=c=1, f(x, y)=1, g(x, y)=0$. Expected are displays for the normal modes, a superposition formula for $u(x, y, t)$, and explicit numerical values for the generalized Fourier coefficients.
4. (Finite String: Fourier Series Solution)
(a) [50\%] Display the series formula, complete with derivation details, for the solution $u(x, t)$ of the finite string problem

$$
\left\{\begin{array}{lll}
u_{t t}(x, t)=\frac{1}{4} u_{x x}(x, t), & 0<x<2, & t>0, \\
u(0, t)=0, & & t>0, \\
u(2, t)=0, & & t>0, \\
u(x, 0)=f(x), & 0<x<2, & \\
u_{t}(x, 0)=g(x), & 0<x<2 . &
\end{array}\right.
$$

Symbols f and g should not appear explicitly in the series for $u(x, t)$. Expected in the formula for $u(x, t)$ are product solutions times constants.
(b) [25\%] Display explicit formulas for the Fourier coefficients which contains the symbols $f(x), g(x)$.
(c) [25\%] Evaluate the Fourier coefficients when $f(x)=100$ and $g(x)=0$.

Fourier Transform

1. (Fourier Transform Theory)
(a) [40\%] Define Haberman's Fourier transform pair. Give an example of $f(x)$ and $F(w)$ which satisfy these equations.
(b) [60\%] The heat equation on the line $-\infty<x<\infty$ can be solved by Fourier transform methods. Outline the method, called Fourier's Method, for the example

$$
u_{t}=4 u_{x x}, \quad-\infty<x<\infty, \quad t>0, \quad u(x, 0)=f(x) .
$$

2. (Fourier's Method)

Use the Heat kernel, the convolution theorem and the shift theorem to solve the diffusionconvection equation

$$
u_{t}(x, t)=k u_{x x}(x, t)+c u_{x}(x, t), \quad t>0, \quad-\infty<x<\infty, \quad u(x, 0)=f(x) .
$$

Answer: $u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} f(v) e^{\frac{-(x+c t-v)^{2}}{4 k t}} d v$

3. (Heat Equation and Gauss' Heat Kernel)

Solve the insulated rod heat conduction problem

$$
\left\{\begin{array}{lll}
u_{t}(x, t) & =\frac{1}{4} u_{x x}(x, t), & -\infty<x<\infty, \quad t>0, \\
u(x, 0) & =f(x), & -\infty<x<\infty, \\
f(x) & = \begin{cases}50 & 0<x<1, \\
100 & -1<x<0 \\
0 & \text { otherwise }\end{cases} &
\end{array}\right.
$$

Hint: Use the heat kernel $g_{t}(x, v)=\frac{1}{\sqrt{k t}} e^{-\frac{(x-v)^{2}}{4 k t}}$, the error function $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$, and Fourier transform theory definitions to solve the problem. The answer is expressed in terms of the error function.

