Partial Differential Equations 3150

Midterm Exam 2

Exam Date: Wednesday, 9 April 2014
Instructions: This exam is timed for 50 mimutes. Up to 60 minutes is possible. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

Fourier Series

Problem 1. 100
A (a) [20\%] State the Fourier Convergence Theorem for a function $f(x)$ defined on $-L \leq x \leq L$.
Graded Details: (1) Hypotheses, (2) Conclusion, (3) Series formula, (4) Coeffiefent formulas.
(b) [20\%] True or False. Each part earns $5 / 20$ if answered correctly and $2 / 20$ if answered incorrectly.
T- True or False. Assume $f(x)$ is periodic of period 5 and continuously differentiable on $-\infty<x<\infty$. Let $F(x)$ be the formal Fourier series of $f(x)$ on $|x| \leq L, L=5 / 2$. Then $f(11.2)=F(1.2)$.
F. True or False. Gibb's overshoot could fail to happen at a jump discontinuity, but when it happens the overshoot is about 9%.
T• True or False. The function $f(x)=\sin (2 x)+\sin (\pi x)$ is odd but not periodic of any period.

- True or False. The even periodic extension of $f(x)=x$ on $0 \leq x \leq 1$ of period 2 equals $|x-6|$ on the interval $5 \leq x \leq 7$.
A (c) $[60 \%]$ Let $f(x)$ be the even extension to $|x| \leq \pi$ of the function $\sin (2 x)$ on $0<x<\pi$. Then f has a formal Fourier cosine series $F(x)$ on $0 \leq x \leq \pi$, which is an even 2π-periodic extension of $f(x)$ to $-\infty<x<\infty$.

Make a graph of $f(x)$ on $-\pi \leq x \leq \pi$.
Make a graph of $F(x)$ over three periods.

- Write the series formula for $F(x)$ and the Fourier cosine coefficient formula.
- Find an integral formula, or the exact value, of the first nonzero term in the Fourier cosine series expansion $F(x)$.

Problem 1
a) $\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2}=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right)+B_{n} \sin \left(\frac{n \pi x}{L}\right)$

If $f(x)$ has is piecewise irons, then $\frac{f\left(x^{\circ}\right)+f\left(x^{*}\right)}{2}=f(x)$

$$
\begin{gathered}
A_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x \quad A_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
B_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{gathered}
$$

3) True $1.2+5+5=11.2$

- False Gibbs always at overshoot
- True
- True
C) $f(x)$

$$
F(x)
$$

(continue on bact i) \rightarrow

$$
\begin{aligned}
& F(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{\pi}\right) \quad L=\pi \\
&=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n x) \quad \\
& A_{0}=\frac{1}{\pi} \int_{0}^{\pi} \sin (2 x) d x \\
& A_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin (2 x) \cos (n x) d x \\
& A_{1}=\frac{2}{\pi} \int_{0}^{\pi} \sin (2 x) \cos (x) d x \quad \text { = First non } \\
& \text { zero term. }
\end{aligned}
$$

Wave Equation: The Finite String
100
Problem 2.
A(a) [50\%] Display the series formula, complete with derivation details, for the separation of variables solution $u(x, t)$ of the finite string problem

$$
\begin{aligned}
& \left\{\begin{array}{lll}
c_{t t}(x, t)=1 & { }^{2} u_{x x}(x, t), & 0<x<1, \\
& t>0 \\
u(0, t) & =0, & \\
u(1, t) & =0, & \\
u(x, 0)=f(x), & 0<x<1, & t>0 \\
u(x) & =g(x), & 0<x<1
\end{array}\right. \\
& \begin{array}{lll}
u_{t}(x, 0)=0
\end{array}
\end{aligned}
$$

Expected in the formula for $u(x, t)$ are constants times product solutions (the normal modes).
Graded Details: (1) Separation of variables, (2) Product solution boundary value problem, (3) Product solution formulas,(4) Superposition details, (5) Series formula.

A (b) [20\%] Display Fourier coefficient formulas for the solution of part (a).
A (c) $[30 \%]$ Evaluate the Fourier coefficient formulas when $f(x)=0$ on $0 \leq x \leq 1$ and $g(x)=50$ on $0 \leq x \leq \frac{1}{2}, g(x)=0$ otherwise.
a) $u_{t t}(x, t)=\left(c^{2}\right) u_{x x}(x, t) \longrightarrow u(x, t)=X(x) T(t)$

$$
\dot{X}^{\stackrel{L}{\prime}} T^{\prime \prime}=c^{2} X^{\prime \prime} T=-\lambda
$$

$$
\begin{aligned}
& \frac{T^{\prime \prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=\lambda \rightarrow\left\{\begin{array}{l}
X^{\prime \prime}+\lambda X=0 \rightarrow \\
X(0)=X(L)=0
\end{array} \quad \begin{array}{l}
\lambda>0 \\
X=\sin (\sqrt{1} x) \\
6, \sqrt{L L}=n \pi
\end{array}\right. \\
& T^{\prime \prime}+c^{2} \pi=0 \ll \\
& T \neq 0 \quad \longrightarrow T=\cos \left(\frac{n \pi c t}{L}\right)
\end{aligned}
$$

$$
=\sin \left(\frac{n \pi c t}{2}\right)
$$

super position:

$$
\begin{gathered}
u(x, t)=\sum_{n=1}^{\infty}\left(a_{n} \sin \left(\frac{n \pi s}{L}\right) \cos \left(\frac{n \pi t}{L}\right)+b_{n} \sin \left(\frac{n \pi t}{L}\right) \sin \left(\frac{n \pi c t}{L}\right)\right. \\
\text { where } L=1
\end{gathered}
$$

b)

$$
\begin{aligned}
& u(x, 0)= f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{L}\right) \\
& \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right)^{d x}=a_{n} \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x=a_{n} \int_{-L}^{L} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x \\
& a_{n}=\frac{2}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \quad \text { where } L=1 \\
& u_{*}(x, t)= \sum_{n=1}^{\infty}\left(-a_{n} \frac{n \pi c}{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right)+b_{n} \frac{n \pi c}{L} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi_{c} t}{L}\right)\right) \\
& U_{*}(x, 0)= g(x)=\sum_{n=1}^{\infty} b_{n} \frac{n \pi_{c}}{L} \sin \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

by same process:

$$
b_{m} \frac{m \pi c}{L}=\frac{2}{L} \int_{L}^{L} g(x) \sin \left(\frac{m \pi x}{L}\right) d x \text { where } L=1
$$

$$
\sum_{n=1}^{n} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c}{L}\right)+b_{n} \sin \left(\frac{n \pi 7}{L}\right) \sin \left(\frac{n \pi c x}{L}\right)
$$

C)

$$
\begin{array}{ll}
f(x)=0 & 0 \leq x \leq 1 \\
g(x)=50 & 0 \leq x \leq \frac{1}{2}, g(x)=0 \text { otherwise }
\end{array}
$$

$b / c f(x)=0$ and $a_{n}=\frac{2}{L} \int_{-i}^{i} f(x) \sin \left(\frac{\cos x}{L}\right) d x$

$$
a_{1}=0
$$

$$
\begin{aligned}
& b_{m}=\frac{2}{m \pi c} \int_{-L}^{L}\left\{\begin{array}{ll}
50 & 0 \leq x \leq \frac{1}{2} \\
0 & \quad 2 \leq x \leq 1
\end{array}\right\} \sin \left(\frac{\pi x}{L}\right) d x \\
& b_{m}=\frac{2}{m \pi} \int_{0}^{\frac{1}{2}} 50 \sin \left(\frac{\pi x}{L}\right) d x \\
& b_{m}=\frac{100}{m \pi}\left(\frac{L}{m \pi}\right)\left[-\cos \left(\frac{m \pi x}{L}\right)\right]_{x=0}^{x=\frac{1}{2}} \quad L=1 \\
& b_{m}=\frac{100}{(m \pi)^{2}}\left[-\cos \left(\frac{m \pi}{2}\right)+1\right] \quad o k
\end{aligned}
$$

$$
b_{m}=\frac{100}{(m \pi)^{2}}\left[-\cos \left(\frac{n \pi}{2}\right)+1\right] \text { for } m=\text { evennewien }
$$

Fourier Transform

Problem 3.
A (a) [10\%] Define Haberman's Fourier transform pair.
Afb) $[30 \%]$ Assume $f(x)=2$ on $-1 \leq x \leq 0$ and $f(x)=0$ otherwise. Compute the Fourier transform $F(w)$ of $f(x)$.
Graded Details: (1) Transform formula, (2) Integration details, (3) Answer.
$A(c)[60 \%]$ The heat kernel $g(x)$ and the error function $\operatorname{erf}(x)$ are defined by the equations

$$
g(x)=\sqrt{\frac{\pi}{k t}} e^{-\frac{x^{2}}{4 k t}}, \quad \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z
$$

Solve the infinite rod heat conduction problem

$$
\left\{\begin{array}{rll}
u_{t}(x, t) & =\frac{1}{16} u_{x x}(x, t), & -\infty<x<\infty, \quad t>0 \\
u(x, 0) & =f(x), & -\infty<x<\infty \\
f(x) & = \begin{cases}50 & 0<x<1 \\
0 & \text { otherwise }\end{cases} &
\end{array}\right.
$$

Graded Details: (1) Fourier Transform method, (2) Convolution, (3) Heat kernel use, (4) Error function methods, (5) Final answer, expressed in terms of the error function.
a)

$$
c v=\frac{1}{2 \pi} \text { and } s=1
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
(F(\omega)= \\
f(x)=
\end{array}\right. \\
& \int_{-\infty}^{\operatorname{cr}} \int(x) e^{i \omega x s} e^{-i \omega x s} d x \\
& \text { where } \\
& f(x)=\left\{\begin{array}{cc}
2 & -1 \leq x \leq 0 \\
0 & \text { else }
\end{array}\right. \\
& F(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\begin{array}{cc}
2 & -1 \leq x \leq 0 \\
0 & \text { else }
\end{array}\right\} e^{j \omega x} d x \\
& =\frac{1}{2 \pi} \int_{-1}^{0} 2 e^{i \omega x} d \lambda \\
& =\frac{1}{\pi}\left[\frac{e^{i \omega x}}{i \omega}\right]_{-1}^{0} \\
& F(\omega)=\frac{1}{\pi}\left(\frac{1-e^{-i \omega x}}{i \omega}\right)
\end{aligned}
$$

C)

$$
\begin{aligned}
& g(x)=\sqrt{\frac{\pi}{k t}} e^{-\frac{x^{2}}{4 h t}}, \text { eff }(7)=\frac{2}{\sqrt{\pi} \int_{0}^{x} e^{-z^{z}} d z} \\
& \begin{cases}u_{A}(x, x)=\frac{1}{16} u_{x x}(x, t) & -\infty<x<\infty, x>0 \\
u(x, 0)=f(x) & -\infty<x<\infty \\
f(x)=\left\{\begin{array}{cc}
50 & 0<x<1 \\
0 & \text { else }
\end{array}\right.\end{cases}
\end{aligned}
$$

\rightarrow assume $\frac{1}{16}=k$

$$
\begin{aligned}
F T\left[u_{*}\right] & =k F T\left[u_{a x}\right] \\
\frac{d}{d t} F T[u] & =k(i \omega)(i \omega) F T[u]=-k \omega^{2} F T[u]
\end{aligned}
$$

if $U=F+[u]$ then have $O D E$:

$$
\begin{aligned}
& \frac{d}{d t} U=-k \omega^{2} U \\
& G U=U_{0} e^{-k \omega^{2} t}
\end{aligned}
$$

solve for U_{0} :

$$
\begin{aligned}
& F T[u(x, *)]=U_{0} e^{-k \omega^{2} t} \\
& F T[u(x, 0)]=u_{0} e^{0} \\
& \left.F T[f(x)]=U_{0} \rightarrow U_{0}=F(\omega)\right) \\
& U=F(\omega) e^{-k \omega^{2} t} \\
& \forall \text { convolutionthearen }
\end{aligned}
$$

$$
F T[u]=F(\omega) G(\omega) \quad \text { so } \quad u=f * g=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(v) g(x-v) d v
$$

$$
u(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\begin{array}{cc}
50 & 0<x<1 \\
0 & \text { else }
\end{array}\right\} g(x-v) d x
$$

continued next page

$$
\begin{aligned}
& u(x, t)=\frac{1}{2 \pi} \int_{0}^{1} 50 g(x-v) d x \\
& u(x, t)=\frac{1}{2 \pi} \int_{0}^{1} 50 \sqrt{\frac{\pi}{h t}} e^{-\frac{(x-v)^{2}}{44 t}} d x
\end{aligned}
$$

charge variables: $z^{2}=\frac{(x \cdot v)^{2}}{46 t} \rightarrow z=\frac{v-x}{\sqrt{4 k x}}+d z=\frac{d v}{\sqrt{44 x}}$

$$
u(x, t)=\frac{1}{2 \pi} \int_{v_{1}}^{v_{2}} 50 \sqrt{\frac{\pi}{x *}} e^{-z^{2}} \sqrt{46 x} d z
$$

where $V_{1}=\frac{0-x}{\sqrt{14 x}}+V_{2}=\frac{1-x}{\sqrt{14 k}}$

$$
\begin{aligned}
u(x, x)= & 25 \frac{2}{\sqrt{\pi}}\left(\left.\right|_{0} ^{v_{2}}-\int_{0}^{v_{1}}\right) \\
u(x, t)= & 25\left(\operatorname{erf}\left(v_{2}\right)-\operatorname{cif}\left(v_{1}\right)\right) \\
& v_{2}=\frac{1-x}{\sqrt{4 u t}}, v_{1}=\frac{-x}{\sqrt{4 k t}}, \quad k=\frac{1}{16}
\end{aligned}
$$

