\qquad

Math 3150 Midterm 1
 Sample Exam

Problem 1. (Heat Conduction in a Rod, Ends at Different Temperatures)

Consider the heat conduction problem in a laterally insulated bar of length 1 with one end at zero Celsius and the other end at 100 Celsius. The initial temperature along the bar is given by function $f(x)$.

$$
\left\{\begin{array}{llll}
u_{t} & =c^{2} u_{x x}, & 0<x<1, & t>0 \\
u(0, t) & =0, & & t>0 \\
u(1, t) & =100, & & t>0 \\
u(x, 0)=f(x), & 0<x<1 . &
\end{array}\right.
$$

(a) $[25 \%]$ Find the steady-state temperature $u_{1}(x)$.
(b) [50\%] Solve the bar problem with zero Celsius temperatures at both ends, but $f(x)$ replaced by $f(x)-u_{1}(x)$. Call the answer $u_{2}(x, t)$. Besides the series answer for $u_{2}(x, t)$, which is a superposition of product solutions, please display the Fourier coefficient formula in integral form, unevaluated.
(c) $[25 \%]$ Explain why the bar temperature is $u(x, t)=u_{1}(x)+u_{2}(x, t)$.

Problem 2. (Total Thermal Energy in a Rod)

If the temperature $u(x, t)$ is known, then give an expression for the time-dependent (because energy escapes at the ends) total thermal energy $\int_{0}^{L} e(x, t) A(x) d x$ contained in a rod $x=0$ to $x=L$, with cross-sectional area $A(x)$. Symbol $e(x, t)$ is the thermal energy per unit volume at location x and time t, known to equal the specific heat times the mass density per unit volume times the temperature.
Validate the answer using a uniform rod of length L and constant cross-sectional area A, held at steady-state temperature $u=u_{0}$.

Problem 3. (Steady-State Heat Conduction on a Rectangular Plate)

Solve Laplace's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$ on the rectangle $0<x<L, 0<y<H$ subject to the boundary conditions. $u_{x}(x, y)=0$ for $x=0$ and $x=L, u(x, y)=0$ for $y=0, u(x, y)=f(x)$ for $y=H$.

Problem 4. (Poisson's Formula, Mean Value Theorem and the Maximum Principle)

For Laplace's equation inside a circular disk $(r<a)$, the series solution formula can be re-arranged into Poisson's integral formula

$$
\begin{aligned}
& u(r, \theta)=\int_{0}^{2 \pi} f(\phi) K(r, \theta, \phi) d \phi, \quad \text { where } \\
& K(r, \theta, \phi)=\frac{1}{2 \pi} \frac{a^{2}-r^{2}}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}}=\text { Poisson's Kernel. }
\end{aligned}
$$

Poisson's formula says that $u(r, \theta)$ is a weighted average of the boundary data $f(\theta)$ on the circle, with weight function K, the Poisson kernel.
(a) [50\%] Compute K at $r=0$, then show that $u(r, \theta)$ at $r=0$ is the average value of f on the circle (Mean Value Theorem).
(b) [25\%] Explain why solution $u=100$ for $f(\theta)=100$ does not contradict the Maximum Principle.
(c) $[25 \%]$ Explain why K must have integral 1 over $0 \leq \phi \leq 2 \pi$.

Problem 5. (Steady-State Heat Conduction on a Disk)

Consider the problem

$$
\left\{\begin{array}{l}
u_{r r}(r, \theta)+\frac{1}{r} u_{r}(r, \theta)+\frac{1}{r^{2}} u_{\theta \theta}(r, \theta)=0, \quad 0<r<a, \quad 0<\theta<2 \pi \\
u(a, \theta)=f(\theta), \quad 0<\theta<2 \pi
\end{array}\right.
$$

Solve for $u(r, \theta)$ when $a=1$ and $f(\theta)=100$ on $0 \leq \theta<\pi, f(\theta)=0$ on $\pi \leq \theta<2 \pi$.

