Name _

Partial Differential Equations 3150 Midterm Exam 1 Exam Date: Tuesday, 27 October 2009

Instructions: This exam is timed for 50 minutes. You will be given double time to complete the exam. No calculators, notes, tables or books. Problems use only chapters 1 and 2 of the textbook. No answer check is expected. Details count 3/4, answers count 1/4.

1. (Vibration of a Finite String)

Some normal modes for the string equation $u_{tt} = c^2 u_{xx}$ are given by the equation

$$u(x,t) = \sin\left(\frac{n\pi x}{L}\right)\sin\left(\frac{n\pi ct}{L}\right).$$

(a) [15%] Let c > 0 be given and L = 1. Give an example of a finite linear combination of two normal modes.

(b) [25%] Explain why the example given in (a) is a solution of $u_{tt} = c^2 u_{xx}$. You may cite textbook results to simplify the explanation.

(c) [60%] Solve the finite string vibration problem on $0 \le x \le 1, t > 0$,

$$u_{tt} = c^2 u_{xx},$$

$$u(0,t) = 0,$$

$$u(1,t) = 0,$$

$$u(x,0) = 0,$$

$$u_t(x,0) = 7\sin(\pi x) + 4\sin(5\pi x) + 3\sin(11\pi x)$$

2. (Periodic Functions)

(a) [25%] Find the fundamental period of $f(x) = \sin 2x + \cos 3x$.

(b) [25%] Give an example of a piecewise smooth function on $-1 \le x \le 2$ that has discontinuities at x = 0 and x = 1.

(c) [25%] Find all values of constant k such that $f(x) = \cos(2x + k)$ is an even periodic function.

(d) [25%] The odd function $f(x) = \sin \pi x$ is positive on 0 < x < 1. It can be rectified to an even periodic function g(x) on -1 < x < 1. Write a formula for g(x).

3. (Fourier Series)

Let f(x) = -2 on the interval $0 < x < 2\pi$, f(x) = 2 on $-2\pi < x < 0$, f(x left undefined for the moment at $x = 0, 2\pi, -2\pi$. There are many 4π -periodic extensions of f to the whole real line. Let g(x) denote any one such extension, obtained by some appropriate definition of f(x) at $x = 0, 2\pi, -2\pi$.

(a) [25%] Does g(x) have to be even or odd? Explain your answer.

(b) [25%] Display the formulas for the Fourier coefficients of f.

(c) [25%] Compute the Fourier coefficient for the term $\sin(10x)$.

(d) [25%] Assume g(x) equals the Fourier series of f for every x in $-\infty < x < \infty$. Find the values of g(x) at $x = 0, 2\pi, -2\pi$.

Name. _____

4. (Cosine and Sine Series)

Find the first eight terms in the sine series expansion of the sine wave g(x), formed as the odd periodic extension of the base function $\sin 2x + 2\sin 6x$ on $0 < x < \pi$.

5. (Convergence of Fourier Series)

(a) [25%] State the Fourier Convergence Theorem for piecewise smooth functions.

(b) [75%] Fourier convergence may not be uniform, and the commonly referenced term to describe this problem is Gibb's phenomenon. Explain what it is, via the example f(x) = -1 on -1 < x < 0, f(x) = 2 on 0 < x < 2, and its 3-periodic extension g(x) to $-\infty < x < \infty$.