$$
\begin{gathered}
3150 \quad 52014 \\
\text { Sample Exam } 2 \\
\text { SOLUTIONS }
\end{gathered}
$$

Fount r \quad is (Periodic Functions)
series
problem l
(a) $[30 \%]$ Find the period of $f(x)=\sin (x) \cos (2 x)+\sin (2 x) \cos (x)$.
(b) $[40 \%]$ Let $p=5$. If $f(x)$ is the odd $2 p$-periodic extension to $(-\infty, \infty)$ of the function $f_{0}(x)=100 x e^{10 x}$ on $0 \leq x \leq p$, then find $f(11.3)$. The answer is not to be simplified or evaluated to a decimal.
(c) $[30 \%]$ Mark the expressions which are periodic with letter \mathbf{P}, those odd with O and those even with \mathbf{E}.

$$
\sin (\cos (2 x)) \ln |2+\sin (x)| \quad \sin (2 x) \cos (x) \frac{1+\sin (x)}{2+\cos (x)}
$$

Answer:
(a) $f(x)=\sin (x+2 x)$ by a trig identity. Then period $=2 \pi / 3$.
(b) $f(11.3)=f(11.3-p-p)=f(1.3)=f_{0}(1.3)=130 e^{13}$.
(c) All are periodic of period 2π, satisfying $f(x+2 \pi)=f(x)$. The first is even and the third is odd.

Blackboard photos week 13, 4 April

2 (Fourier Scrics)
Let $f_{0}(x)=x$ on the interval $0<x<2, f_{0}(x)=-x$ on $-2<x<0, f_{0}(x)=0$ for $x=0$, $f_{0}(x)=2$ at $x= \pm 2$. Let $f(x)$ be the periodic extension of f_{0} to the whole real line, of period 4.
(a) $[80 \%]$ Compute the Fowrier coefficients for the terms $\sin (67 \pi x)$ and $\cos (2 \pi x)$. Leave tedious integrations in integral form, but evaluate the easy ones like the integral of the square of sine or cosine.
(b) [20\%] Which valucs of x in $|x|<12$ might exhibit Gibb's phenomenon?

Answer:
(a) Because $f_{0}(x)$ is even, then $f(x)$ is even. Then the coefficient of $\sin (67 \pi x)$ is zero, without computation, because all sine terms in the Fourier series of f have zero coefficient. The coefficient of $\cos (n \pi x / 2)$ for $n>0$ is given by the formula

$$
a_{n}=\frac{1}{2} \int_{-2}^{2} f_{0}(x) \cos (n \pi x / 2) d x=\int_{0}^{2} x \cos (n \pi x / 2) d x .
$$

For $\cos (2 \pi x)$, we select $n \pi x / 2=2 \pi x$, or index $n=4$.
(b) There are no jump discontinuities, f is continous, so no Gibbs overshoot.

3 (Cosine and Sine Series)

Find the first nonzero term in the sine series expansion of $f(x)$, formed as the odd 2π periodic extension of the function $\sin (x) \cos (x)$ on $0<x<\pi$. Leave the Fourier coefficient in integral form, unevaluated, unless you can compute the value in a minute or two.

Answer:
Because $\sin (x) \cos (x)=(1 / 2) \sin (2 x)$ is odd and 2π-periodic, this is the Fourier series of f. This term is for coefficient b_{2}, so $b_{2}=1 / 2$ is the first nonzero Fourier coefficient. The first nonzero term is $(1 / 2) \sin (2 x)$.

4 (Convergence of Fourier Series)

(a) $[30 \%]$ Dirichlet's kernel formula can be used to evaluate the sum $\cos (2 x)+\cos (4 x)+$ $\cos (6 x)+\cos (8 x)$. Report its value according to that formula.
(b) [40\%] The Fourier Convergence Theorem for piecewise smooth functions applies to continuously differentiable functions of period $2 p$. State the theorem for this special case, by translating the results when f is smooth and the interval $-\pi \leq x \leq \pi$ is replaced by $-p \leq x \leq p$.
(c) [30\%] Give an example of a function $f(x)$ periodic of period 2 that has a Gibb's overshoot at the integers $x=0, \pm 2, \pm 4, \ldots,($ all $\pm 2 n)$ and nowhere else.

Answer:
(a) $\frac{1}{2}+\cos (x)+\cdots+\cos (n x)=\frac{\sin (n x+x / 2)}{2 \sin (x / 2)}$ is used with x replaced by $2 x$ and $n=4$
to obtain the answer $0.5 \sin (8 x+x) / \sin (x)-0.5$.
(b) Let f be a p-periodic smooth function on $(-\infty, \infty)$. Then for all values of x,

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \pi x / p)+b_{n} \sin (n \pi x / p)\right.
$$

where the Fourier coefficients a_{0}, a_{n}, b_{n} are given by the Euler formulas:
problom-4
Fourier Series=

$$
a_{0}=\frac{1}{2 p} \int_{-p}^{p} f(x) d x, \quad a_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \cos (n \pi x / p) d x
$$

$$
b_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \sin (n \pi x / p) d x
$$

(c) Any 2-periodic continuous function f will work, if we alter the values of f at the desired points to produce a jump discontinuity. For example, define $f(x)=\sin (\pi x)$ except at the points $\pm 2 n$, where $f(x)=2(f(2 n)=2$ for $n=0, \pm 1, \pm 2, \pm 3, \ldots)$.

From 5. (Fourier Series)
(a) $[30 \%]$ Find and display the nonzero terms in the Fourier series expansion of $f(x)$, formed as the even 2π-periodic extension of the function $f_{0}(x)=\sin ^{2}(x)+4 \cos (2 x)$ on $0<x<\pi$. (b) $[50 \%]$ Compute the Fourier sine series coefficients b_{n} for the function $g(x)$, defined as the period 2 odd extension of the function $g_{0}(x)=1$ on $0 \leq x \leq 1$. Draw a representative graph for the partial Fourier sum for five terms of the infinite series.
(c) [20\%] Define $h_{0}(x)=\left\{\begin{array}{cc}\sin (2 x) & 0 \leq x<\pi, \\ x-\pi & \pi \leq x \leq 2 \pi,\end{array}\right.$ and let $\frac{f}{f}(x)$ be the 4π odd periodic extension of $h_{0}(x)$ to the whole real line. Compute the sum $f(-5.25 \pi)+f(1.5 \pi)$.

5(a) $f(x)=\sin ^{2}(x)+4 \cos (2 x)=\frac{1-\cos 2 x}{2}+4 \cos (2 x)=\frac{1}{2}+\frac{7}{2} \cos (2 x)$ It is even, So equals its peivodic even extension.'.
Answer: $a_{0}=\frac{1}{2}, a_{2}=\frac{7}{2}$, all others art 3 era
5(b) Since a is ode, The ale $a_{n}=0$. Compute $b_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \operatorname{fin}\left(\frac{n \pi x}{1}\right) d x$ $b_{n}=\frac{4}{n \pi}$ in node, others zero.

5(c) $\quad f(-5.25 \pi)=f(4 \pi-5.25 \pi)$
$=f(-1.25 \pi)$
$=f(1.25 \pi) \quad$ odd f
$=1.25 \pi-T \quad$ by $h_{0}(x)$ Definition
$=1.5 \pi-\pi t$
$f(1,5 \pi)=1.5 \pi-7$
Sam $=0.75 \pi-2 \pi=\pi / 4$

1. (Vibration of a Finite String)

The normal modes for the string equation $u_{t t}=c^{2} u_{x x}$ are given by the functions

$$
\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right), \quad \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right) .
$$

It is known that each normal mode is a solution of the string equation and that the problem below has solution $u(x, t)$ equal to an infinite series of constants times normal modes.
Solve the finite string vibration problem on $0 \leq x \leq 2, t>0$,

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x} \\
& u(0, t)=0 \\
& u(2, t)=0 \\
& u(x, 0)=0 \\
& u_{t}(x, 0)=-11 \sin (5 \pi x)
\end{aligned}
$$

Answer:
Because the wave initial shape is zero, then the only normal modes are sine times sine. The initial wave velocity is already a Fourier series, using orthogonal set $\{\sin (n \pi x / 2)\}_{n=1}^{\infty}$. The 1 -term Fourier series $-11 \sin (5 \pi x$) can be modified into a solution by inserting the missing sine factor present in the corresponding normal mode. Then $u(x, t)=$ $-11 \sin (5 \pi x) \sin (5 \pi c t) /(5 \pi)$. We check it is a solution.

$$
\text { Blackboard photos we ac 13, } 4 \text { April }
$$

Partial Differential Equations 3150
Midterm Exam 2
Exam Date: Monday, 22 April 2013

Instructions: This exam is timed for 50 minutes. You will be given extra time to complete the exam. No calculators, notes, tables or books. Problems use only chapters 1 to 4 of the textbook. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.
2. (CH3. Finite String: Fourier Series Solution)
(a) [75\%] Display the series formula without derivation details for the finite string problem

$$
\left\{\begin{array}{lll}
u_{t t}(x, t)=c^{2} u_{x x}(x, t), & 0<x<L, & t>0 \\
u(0, t)=0, & & t>0 \\
u(L, t)=0, & t>0, \\
u(x, 0)=f(x), & 0<x<L, & \\
u_{t}(x, 0)=g(x), & 0<x<L . &
\end{array}\right.
$$

Symbols f and g should not appear explicitly in the series for $u(x, t)$. Expected in the formula for $u(x, t)$ are product solutions times constants.
(b) [25\%] Display an explicit formula for the Fourier coefficients which contains the symbols $L, f(x), g(x)$.
(a) Normal modes: $\operatorname{Ain}(n \pi x / L) \cos (n \pi c t / L)$,

$$
\sin (n \pi x / L) \sin (n \pi c t / L)
$$

ans $1 \rightarrow U(x, t)=\operatorname{supen}_{\infty} \rightarrow \tilde{L}$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} a_{n} \sin (n \pi x / L) \cos (n \pi c t / L) \\
& \quad+\sum_{n=1}^{\infty} b_{n} \sin (n \pi x / L) \sin (n \pi c t / L)
\end{aligned}
$$

(b) $f(x)=u(x, 0)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x / L)$
ans $2 \rightarrow a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x \quad$ by \perp relations

$$
g(x)=u_{t}(x, 0)=\sum_{n=1}^{\infty} \frac{n \pi c}{L} b_{n} \sin (n \pi x / L)
$$

$\underline{a n r}^{3} \rightarrow b_{n}=\frac{L}{n \pi c} \frac{2}{L} \int_{0}^{L} g(x) \sin (n \pi x / L) d x$ by 1 relations
Use this page to start your solution. Attach extra pages as needed, then staple.
3. (CH4. Rectangular Membrane)

Consider the general membrane problem

$$
\left\{\begin{array}{lll}
u_{i i}(x, y, t)=c^{2}\left(u_{x I}(x, y, t)+u_{y y}(x, y, t)\right), & 0<x<a, 0<y<b, t>0, \quad \mid O \cup \\
u(x, y, t)=0 & \text { on the boundary, } \\
u(x, y, 0)=f(x, y), & 0<x<a, 0<y<b, \\
u_{t}(x, y, 0)=g(x, y), & 0<a<a, 0<y<b .
\end{array}\right.
$$

Solve the problem for $a=b=c=1, f(x, y)=1, g(x, y)=0$. Expected are displays for the normal modes, a superposition formula for $u(x, y, t)$, and explicit numerical values For the generalized Fourier coefficients.
The solution is a superposition of the hombre modes obtained from separation of vandables as:

$$
\begin{aligned}
& \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)\left[B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right)\right] \\
& \text { with } \lambda_{m n}=c \pi \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} \\
& n(x, y, t)=\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sin \left(\frac{\min \pi}{a}\right) \sin \left(\frac{n \pi y}{b}\right)\left[B_{m n} \cos \left(\lambda_{m i n} t\right)+B_{m n}^{*} \sin \left(\lambda_{\operatorname{man}} t\right)\right.
\end{aligned}
$$

Where the founder coefirieulls are:

$$
\begin{aligned}
B_{m n} & =4 \int_{0}^{b} \int_{0}^{a} f(x, y) \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) d x d y \\
\lambda_{\operatorname{man}} B_{m n}^{*} & =4 \int_{0}^{b} \int_{0}^{a} g(x, y) \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) d x d y
\end{aligned}
$$ on hex + page)

ioblem 3 continued
plugging in:

$$
a=b=c=1 \quad f(x, y)=1 \quad g(x, y)=0
$$

normal Modes:

$$
\begin{aligned}
& \sin (m \pi x) \sin (n \pi y)\left[B_{m n} \cos \left(\lambda_{m m n} t\right)+B_{m=1}^{*} \sin \left(\operatorname{man}_{m} t\right)\right] \\
& \lambda_{m n}=\pi \sqrt{m^{2}+n^{2}} \\
& U(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sin (m \pi x) \sin (n \pi y)\left[B_{m n} \cos \left(\lambda_{m a n t}\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right)\right.
\end{aligned}
$$

Where the courser coefficient ate:

$$
\begin{aligned}
& B_{m n}=4 \int_{0}^{1} \int_{0}^{1} \sin (m \pi x) \sin (n \pi y) d x d y \\
& =4 \int_{0}^{1}-\left.\cos (m n x) \sin (n \pi y)\left(\frac{1}{m \pi}\right)\right|_{0} ^{1} d y \\
& =4 \int_{0}^{1}\left[-\cos (m \pi) \sin (n+1 y)\left(\frac{1}{m \pi}\right)-\sin (n \pi y) \frac{1}{m \pi} \pi\right] d y \\
& \left.=4\left[\cos (m \pi) \cos (n \pi y)\left(\frac{1}{m \pi^{2}}\right)+\cos (n \pi y) \frac{1}{\min \pi^{2}}\right)\right]\left.\right|_{0} ^{1} \\
& \operatorname{Bm} n=4\left[\cos (m \pi) \cos (n \pi)\left(\frac{1}{m n \pi^{2}}\right)+\cos (n \pi)\left(\frac{1}{m n \pi^{2}}\right)\right. \\
& \left.-\cos (m \pi)\left(\frac{1}{m n \pi^{2}}\right)-\left(\frac{1}{m n \pi^{2}}\right)\right] \\
& B_{m n}=\frac{4}{m n \pi^{2}}[\cos (m \pi) \cos (n \pi)+\cos (n \pi)-\cos (m \pi)-1]
\end{aligned}
$$ on next page)

$$
\begin{aligned}
& A_{m} B_{m}=4 \int_{0}^{1} \int_{0}^{1} O \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) d x d y \\
&=4 \int_{0}^{1} \int_{0}^{1} O d x d y=0 \\
& B_{m} x=0
\end{aligned}
$$

4. (Finite String: Fourier Series Solution)
(a) [50\%] Display the series formula, complete with derivation details, for the solution $u(x, t)$ of the finite string problem

$$
\left\{\begin{array}{lll}
u_{t t}(x, t)=\frac{1}{4} u_{x x}(x, t), & 0<x<2, & t>0 \\
u(0, t)=0, & t>0 \\
u(2, t)=0, & t>0 \\
u(x, 0)=f(x), & 0<x<2, & \\
u_{t}(x, 0)=g(x), & 0<x<2
\end{array}\right.
$$

Symbols f and g should not appear explicitly in the series for $u(x, t)$. Expected in the formula for $u(x, t)$ are product solutions times constants.
(b) [25\%] Display explicit formulas for the Fourier coefficients which contains the symbols $f(x), g(x)$.
(c) $[25 \%]$ Evaluate the Fourier coefficients when $f(x)=100$ and $g(x)=0$.

Duplicate of problem 2, but evaluate coefficients.
See 3150 final exam, 52013 , http: $/ 1$ mather utah, ede/ ~gustafro/s2013/

Fourier Transform

1. (Fourier Transform Theory)

Blackboard photo 4 Apr Wetter
(a) [40\%] Define Haberman's Fourier transform pair. Give an example of $f(x)$ and $F(w)$ which satisfy these equations.
(b) [60\%] The heat equation on the line $-\infty<x<\infty$ can be solved by Fourier transform methods. Outline the method, called Fourier's Method, for the example

$$
u_{t}=4 u_{x x}, \quad-\infty<x<\infty, \quad t>0, \quad u(x, 0)=f(x)
$$

2. (Fourier's Method)

Use the Heat kernel, the convolution theorem and the shift theorem to solve the diffusion7 Apr Weed 14

$$
u_{t}(x, t)=k \cdot u_{x x}(x, t)+c u_{x}(x, t), \quad t>0, \quad-\infty<x<\infty, \quad u(x, 0)=f(x)
$$

Answer: $u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} f(v) e^{\frac{-(x+c t-v)^{2}}{4 k t}} d v$
3. (Heat Equation and Gauss' Heat Kernel)

Solve the insulated rod heat conduction problem

Week 14

$$
\begin{cases}u_{t}(x, t) & =\frac{1}{4} u_{x x}(x, t), \\ u(x, 0) & =f(x), \\ f(x) & = \begin{cases}50 & 0<x<1, \\ 100 & -1<x<0 \\ 0 & \text { otherwise }\end{cases} \end{cases}
$$

Hint: Use the heat kernel $g_{t}(x, v)=\frac{\sqrt{\pi}}{\sqrt{k t}} e^{-\frac{(x-v)^{2}}{4 k t}}$, the error function $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$,

