Partial Differential Equations 3150
 Sample Midterm Exam 1
 Exam Date: Wednesday, 27 February

Instructions: This exam is timed for 50 minutes. Up to 60 minutes is possible. No calculators, notes, tables or books. Problems use only chapters 1 and 2 of the textbook. No answer check is expected. Details count 3/4, answers count $1 / 4$.

1. (Vibration of a Finite String)

The normal modes for the string equation $u_{t t}=c^{2} u_{x x}$ are given by the functions

$$
\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right), \quad \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right) .
$$

It is known that each normal mode is a solution of the string equation and that the problem below has solution $u(x, t)$ equal to an infinite series of constants times normal modes.

Solve the finite string vibration problem on $0 \leq x \leq 1, t>0$,

$$
\begin{array}{ll}
u_{t t} & =c^{2} u_{x x}, \\
u(0, t) & =0, \\
u(1, t) & =0, \\
u(x, 0) & =2 \sin (\pi x)-3 \sin (5 \pi x), \\
u_{t}(x, 0) & =0
\end{array}
$$

Answer:

Because the wave initial velocity is zero, then the only normal modes are sine times cosine. The initial wave shape can be modified to a solution by inserting the missing cosine factors present in the corresponding normal mode. Then $u(x, t)=2 \sin (\pi x) \cos (c \pi t)-$ $3 \sin (5 \pi x) \cos (5 c \pi t)$. We check it is a solution.

Use this page to start your solution. Attach extra pages as needed, then staple.

2. (Periodic Functions)

(a) [30\%] Find the period of $f(x)=\sin 2 x \cos 2 x$.
(b) $[40 \%]$ Let $T=2$. If $f(x)$ is the T-periodic extension of the function $f_{0}(x)=x(x-2)$ on $0 \leq x \leq 2$, then find $f(-3)$.
(c) $[30 \%]$ Is $f(x)=\cos (\sin (x))$ an even periodic function?

Answer:
(a) $f(x)=(1 / 2) \sin (4 x)$ by a trig identity. Then period $=2 \pi / 4$.
(b) $f(-3)=f(-3+T+T)=f(1)=f_{0}(1)=-1$.
(c) Yes. Details: $f(-x)=\cos (\sin (-x))=\cos (-\sin (x))=\cos (\sin (x))=f(x)$.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name. \qquad

3. (Fourier Series)

Let $f_{0}(x)=1$ on the interval $0<x<\pi, f_{0}(x)=-1$ on $-\pi<x<0, f_{0}(x)=0$ for $x=0, \pi,-\pi$. Let $f(x)$ be the 2π-periodic extension of f_{0} to the whole real line.
(a) $[80 \%]$ Compute the Fourier coefficients for the terms $\sin (5 x)$ and $\cos (4 x)$.
(b) [20\%] Which values of x in $|x|<3 \pi$ might exhibit Gibb's phenomenon?

Answer:

(a) Because $f_{0}(x)$ is odd, then $f(x)$ is odd. Then the coefficient of $\cos (4 x)$ is zero, without computation, because all cosine terms in the Fourier series of f have zero coefficient. The coefficient of $\sin (5 x)$ is given by the formula

$$
b_{5}=\frac{1}{\pi} \int_{-\pi}^{\pi} f_{0}(x) \sin (5 x) d x=\frac{2}{\pi} \int_{0}^{\pi} \sin (5 x) d x=\frac{4}{5 \pi} .
$$

(b) The jump discontinuities in $|x|<3 \pi$, which are at $0, \pm \pi, \pm 2 \pi$.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

4. (Cosine and Sine Series)

Find the second nonzero term in the cosine series expansion of $f(x)$, formed as the even 2π periodic extension of the base function $|\cos (2 x)|$ on $0<x<\pi$. Leave the Fourier coefficient in integral form, unevaluated, unless you need to compute the value.

Answer:

The first nonzero coefficient is a_{0}. The fifth coefficient a_{4} is the next nonzero coefficient:

$$
a_{4}=\frac{2}{\pi} \int_{0}^{\pi}|\cos (2 x)| \cos (4 x) d x=\frac{4}{3 \pi}
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

Name. \qquad
5. (Convergence of Fourier Series)
(a) [30\%] Display Dirichlet's kernel formula.
(b) $[40 \%]$ State the Fourier Convergence Theorem for piecewise smooth functions.
(c) [30\%] Give an example of a function $f(x)$ which does not have a Gibb's over-shoot.

Answer:
(a) $\frac{1}{2}+\cos (x)+\cdots+\cos (n x)=\frac{\sin (n x+x / 2)}{2 \sin (x / 2)}$
(b) Let f be a 2π-periodic piecewise smooth function on $(-\infty, \infty)$. Then for all values of x,

$$
\frac{f(x+)+f(x-)}{2}=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right),
$$

where the Fourier coefficients a_{0}, a_{n}, b_{n} are given by the Euler formulas:

$$
\begin{gathered}
a_{0}=\frac{1}{2 \pi} \int_{-p i}^{\pi} f(x) d x, \quad a_{n}=\frac{1}{\pi} \int_{-p i}^{\pi} f(x) \cos (n x) d x, \\
b_{n}=\frac{1}{\pi} \int_{-p i}^{\pi} f(x) \sin (n x) d x .
\end{gathered}
$$

(c) Any continuously differentiable function will work.

Use this page to start your solution. Attach extra pages as needed, then staple.

