Partial Differential Equations 3150
 Sample Final Exam
 Exam Date: Friday, April 25, 2014

Instructions: This exam is timed for 120 minutes. You may be given extra time to complete the exam (10-15 extra minutes). No calculators, notes, tables or books. Problems use topics from the required textbook which were covered in lectures. Details count $3 / 4$, answers count $1 / 4$.

1. (Chapters H1-H2. Heat Conduction in a Bar)

Considered is the heat conduction problem

$$
\left\{\begin{array}{lll}
u_{t} & =\frac{1}{4} u_{x x}, \quad 0<x<10, & t>0 \tag{1}\\
u(0, t) & =50, & t>0 \\
u(10, t) & =80, & t>0 \\
u(x, 0) & =f(x), \quad 0<x<10 &
\end{array}\right.
$$

It represents a laterally insulated uniform bar of length 10 with one end at 50 Celsius and the other end at 80 Celsius, and initial temperature $f(x)$.
$\mathbf{1}$ (a) $[30 \%]$ Show the details for finding the the steady-state temperature $u_{1}(x)=50+3 x$. $\mathbf{1}$ (b) $\left[40 \%\right.$] Show the details for the solution $u_{2}(x, t)=\sin (\pi x / 10) e^{-\pi^{2} t / 400}$ of the ice-pack ends bar problem

$$
\left\{\begin{array}{lll}
u_{t} & =\frac{1}{4} u_{x x}, & 0<x<10, \\
t>0 \\
u(0, t)=0, & t>0 \\
u(10, t)=0, & & t>0 \\
u(x, 0) & =\sin (\pi x / 10), & 0<x<10
\end{array}\right.
$$

$\mathbf{1}(\mathbf{c})[30 \%]$ Superposition implies $u(x, t)=u_{1}(x, t)+u_{2}(x, t)=50+3 x+\sin (\pi x / 10) e^{-\pi^{2} t / 400}$ is a solution of (1) with $f(x)=-50-3 x+\sin (\pi x / 10)$. Show the details of an answer check for this solution $u(x, t)$.

2. (Chapter H3. Fourier Series)

2(a) [20\%] Find and display the nonzero terms in the Fourier series expansion of $f(x)$, formed as the even 2π-periodic extension of the function $f_{0}(x)=\sin ^{2}(x)+4 \cos (2 x)$ on $0<x<\pi$.
2(b) [40\%] Let $g(x)$ be the Fourier sine series for the the period 2 odd extension of the function $g_{0}(x)=1$ on $0 \leq x \leq 1$. Complete the following.
(1) Graph of g_{0} with its odd extension on $|x|<1$.
(2) Graph of $g(x)$ over 4 periods.
(3) Fourier sine series coefficient formulas.
(4) Numerical values for the coefficients.
(5) Gibb's overshoot graphic on $|x|<2$.

2(c) [20\%] Define $h_{0}(x)=\left\{\begin{array}{ll}\sin (2 x) & 0 \leq x<\pi, \\ x-\pi & \pi \leq x \leq 2 \pi,\end{array}\right.$ and let $h(x)$ be the 4π odd periodic extension of $h_{0}(x)$ to the whole real line. Compute the sum $h(-5.25 \pi)+h(1.5 \pi)$.
2(d) [20\%] Compute the smallest period, for those functions which are periodic.
(1) $f_{1}(x)=2 \sin (x)+5 \cos (x)$
(2) $f_{2}(x)=\sin (x)+\cos (5 x)$
(3) $f_{3}(x)=\sin (x)+\cos (\pi x)$
(4) $f_{4}(x)=\sin (x)+\sin (x) \cos (x)$

3. (CH H4. Finite String: Fourier Series Solution)

3(a) [50\%] Complete the following for the finite string problem

$$
\left\{\begin{array}{lll}
u_{t t}(x, t)=\frac{1}{4} u_{x x}(x, t), & 0<x<2, & t>0, \\
u(0, t)=0, & & t>0, \\
u(2, t)=0, & & t>0, \\
u(x, 0)=f(x), & 0<x<2, & \\
u_{t}(x, 0)=g(x), & 0<x<2 .
\end{array}\right.
$$

(1) Separation of variables details.
(2) Product solutions and boundary conditions.
(3) The normal modes.
(4) Superposition.
(5) Series solution $u(x, t)$.

3(b) [25\%] Display explicit formulas for the generalized Fourier coefficients which contains the symbols $f(x), g(x)$.
3(c) [25\%] Evaluate the coefficients when $f(x)=100$ and $g(x)=0$.

4. (CH H4. Rectangular Membrane)

Complete the following for the general membrane problem

$$
\begin{cases}u_{t t}(x, y, t)=c^{2}\left(u_{x x}(x, y, t)+u_{y y}(x, y, t)\right), & 0<x<a, 0<y<b, \quad t>0, \\ u(x, y, t)=0 & \\ u(x, y, 0)=f(x, y), & 0<x<a, 0<y<b, \\ u_{t}(x, y, 0)=g(x, y), & 0<x<a, 0<y<b .\end{cases}
$$

under the assumptions $a=b=c=1, f(x, y)=1, g(x, y)=0$.
(1) Separation of variables.
(2) Product solution boundary value problems.
(3) Product solutions (the normal modes).
(4) Superposition for $u(x, y, t)$.
(5) Generalized Fourier coefficient formulas.
(6) Explicit numerical values for the coefficients.

5. (CH H5. Heat Equation and Gauss' Heat Kernel)

$5(a)[10 \%]$ Define a Fourier transform pair so as to include as many definitions as possible, in particular, Haberman's definition.

5(b) [20\%] Assume $f(x)=100$ on $-1 \leq x \leq 1$ and $f(x)=0$ otherwise. Compute the Fourier transform $F(w)$ of $f(x)$.
Graded Details: (1) Transform formula, (2) Integration details, (3) Answer.
$\mathbf{5}$ (c) [50\%] The heat kernel $g(x)$ and the error function $\operatorname{erf}(x)$ are defined by the equations

$$
g(x)=\sqrt{\frac{\pi}{k t}} e^{-\frac{x^{2}}{4 k t}}, \quad \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z
$$

Solve the infinite rod heat conduction problem

$$
\left\{\begin{aligned}
u_{t}(x, t) & =\frac{1}{16} u_{x x}(x, t), \\
u(x, 0) & =f(x), \\
f(x) & = \begin{cases}50 & 0<x<1, \\
100 & -1<x<0, \\
0 & \text { otherwise }\end{cases}
\end{aligned}\right.
$$

Graded Details: (1) Fourier Transform method, (2) Convolution, (3) Heat kernel use, (4) Error function methods, (5) Final answer, expressed in terms of the error function.
$5(\mathrm{~d})[10 \%]$ Compute the limits at x equal to infinity and minus infinity of $u(x, t)$.
$5(\mathrm{e})[10 \%]$ Compute the limit $u(x, 0+)$ for each x in $-\infty<x<\infty$.

