
jinner ft?FsLes!_.
An Inner product on a vector space V is a function that associales with each (or
deatd) pair of vectors u and v in V a scalar Cu, v) such that

(I) (u,v)=(v,u);
(II) (u,v+w)=(u,v)+(u,w);

(III) (cu,v)=c(u,v);
(Iv) (u,u)O:(u,u)=Oifandonlyifu=O.

An Inner product space is a vector space V together with a specified inner product
(u, v) on V.

The Euclidean inner product—that is, the dot product (u, v) = u v—is only
one example of an inner product on the vector spaceR” of n-tuples of real numbers.
lb see how other inner products on R” can be defined, let A be a fixed n x n matiix.
Given (column) vectors u andy in R”, let us define the “product” (u, v) of these two
vectorstobe

(u,v)=uTAv. (I)
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Note that (ii, v) is a I x I matrix—thai is, (u, v) is a scalar. Then

(u. v + w) = uTA(v + w)

=u’Av+u’Aw

= (u, v) + (u, w)

and

(eu. v) = (cuT)/lv

= (LI7 Av = (u. v).

so we see immediately that (u, v) = ,i Av satislies properties (ii) andinner product.
In order to verify properties ( ) and (iv) we must impose appropriate C(on the matrix A. Suppose first that A is swn,netrie: A A ‘ Because ixreal number, it follows that (u1 As’)” = U1 A v. Consequently

(u, v) ta1Av (u1 Av)’

= v’A’i, = V1AU (v, u)

Thus the inner product (ii, v) = u7 Av satisfies property (i) provided that thA is symmetric.
The symmetric ii x n matrix A is said to he positive definite if u’Auevery nonzero u-vector u, in which ease (u. v) uTAv satisfies property (iinnerproduct. Then our discussion shows that i[the n x ii ;narrix A is s’,’mmcposit/Pc definite, the,,

(u, v) = uTAv

de,hnes tni inner product oii R’. The familiar dot product u ‘ v = v =simply the special case in which A = I. the ii x ii identity matrix.
Later we will state criteria for determining whether a given symmetrimatrix A is positive delinite. and hence whether (u, v) = u A v defines uproduct on R. In the case ol’ a symmetric 2 x 2 matrix

He I,
Al

[l C’

this question can be answered by a simple technique of completing the squalExample 1 of’ this section. Note that if ii = (n,, “2) and v = (v1 . , ) then

T i i r(ii. V) = u Av = ti’ 1121 [ , j [/7 C V’

so that

(u, v) = au v1 + ha v2 + hn2v1 + Cl(2V2.
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Consider the symmetric 2 x 2 matrix

A=[ ].
Then

(u. v) = u1 Av = 3u v1 + 2u v2 + 2u,v1 + 40202

automatically satisfies properties (i)—(iii) of an inner product on R2. If u = (s,

then (3) ives

(u, u) utAu = 3x ± 4xy + 4v2 = (x ± 2)2 + 2.v2,

It is therefore clear that ut Au > 0 and that u1 Av = 0 if and only ifs+2v = 0 =

that is, if and only ifs = v = 0. Thus the symmetric matrix A is positive dcliii

and so (u. v) = LJ A V defines an inner product on R2. Note that if u = (3. 1

V = (1.4), then u v 7, whereas

(u.V)=13 ]E]=5l.

Thus the inner product (u, v) = u’ Av is quite dilTerent from the Euclidean in

product on

Essentially everything that has heen done with the Euclidean inner produc

R in the first two sections of this chapter can he done with an arbitrary inner plor

space V (with an occasional proviso that the vector space V be linite—dirnensior

Given an arbitrary inner product (u, v) on a vector space V (lie length (or norm

he vector 11 (with respect to this inner prodLict) is defined to be

Au fi, u.

For instance, the length of u (3, I) with respect to the inner product of Exan

I is given hy

IjuA2 13 II [ ] [ ] =43.

Thus Au = /43, whereas the Euclidean length of u = (3, I) is uI =

The proof of Theorem translates (see Problem 19) into a proof of the Cam

Schwarz inequality

(u,v)I S IluAlIvIl

for an arbitrary inner product on any vector space V. It follows that the ang

between the nonzero vectors u and v can be defined in this way:

(u,v)
cos& =

uI Iv?!
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Consequently we say that the vectors u and v are orthogonal provided that (u,
0. The triangle inequality

1111 + vii huh + ilvhl

for an arbitrary inner product space lollows From the Cauchy-Sehwarz inequ
And it follows that any finite set of mutually orthogonal vectors in an inner pr
space is a linearly independent set.

The techniques of Section 4.9 are of special interest in the more genera
ting of inner product spaces. The Gram—Schmidt orthogonalization algorithm c
used to convert a basis {v1 , v2 v,, } for a finite—dimensional inner product
V into an orthogonal basis (u , u2 u0}. The analogues for this purpose
formulas in Equations (12) and (13) in Section 4.9 are

UI = V1

and

(u1, Vk
11k+I = V/f I Ui

(lii, L1

(112, VkH) (ut, V)
Uk

(112, 117) (Uk, Uk)

fork = 1, 2, . . . , a — fin turn. Thus u is obtained by subtracting from Vkfi
of its components parallel (with respect to the given inner product) to the previ

constructed orthogonal vectors u , U2

Now let (Ui, U U,,) he an orthogonal basis 11w the (linite—dimensi
subspace W of the inner product space V. Given any vector b in V, we defi
analogy with the formula in Equation (6) of Section 4.9) the orthogonal proje
p of b into the suhspace W to be

(u1 , b) (112, b) (u11, b)
U,,.

(Ui, UI) (u2. U,) (u,,, u)

It is readily verified (see Problem 20) that q = b
—

p is orthogonal to
vector in W, and it follows that p and q are the unique vectors parallel 0

orthogonal to W (respectively) such that b = p + q. Finally, the triangle ineqi
can be used (as in Theorem I of’ Section 4.8) to show that the orthogonal proj
p of’ h into W is the point of the suhspace W, closest to b. If’ b itself’ is a vec
W then p = b, and the right-hand side in (10) expresses b as a linear combir
of’ the orthogonal basis vectors u1. U2, .. , u,,.

Some of the most interesting and important applications involving orthogonal
and projections are to vector spaces of functions. Weve introduced the v
space F of all real-valued functions on the real line R as well as various ml
dimensional subspaces of F, including the space P of all polynomials and the
of all continuous functions on R.

The remainder of this section is for those readers who have studied elementary calculus,
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Here we want to discuss the infinite—dimensional vector space C a, hi consi

ing of all continuous functions dell ned on the closed interval [(1, h[, with the usi

vector space operations

(f ± g)(x) = j(x) ± g(.v) and (cf)(x) = cf(x).

When it is unnecessary to refer explicitly to the interval [a, hI, we will simply w

C = Cia, hj.
To provide the vector space CIa, hi with an inner product, we deline

(.1’ g)
= f ,f(x)g(x) dx

k)r any two lunctions / and g in Cia, hi. The fact that (f. g) satisfies propert

(i )—(iii) of an inner product Ibllows from familiar elementary facts ahout integr

For instance.

(J. g +11)
= f f(x) {g(x) +11 (xfldx

= f I (x)gL )dx + f f(x)Ii(x) dx
a a

=(f,g +U.h).

It is also true (though perhaps not so ohvious ) that if I is a continuous function s

that

(/,f)
= f (f(v)}2dv =0,

then it Ibllows that [C) 0 on [a, h); that is, f is the zero function in C [a,

Therefore, (f g) as defined in (II) also satisfies Property (iv) and hence is an in

product on C [a, hj.
The norm Ii f [I of the lunction [ in C is defined to he

/2

if ii = .f)
= (f {f(x)}dx)

Then the Cauchy—Schwarz and triangle inequalities for C[a. /)1 take the forms

f f(x)g(x)dx (f’jxi2 1x)’2 (f)’{g(x)}2 dx)

and

I/i /(fb(f()
± g(x))2 dx)

(fh{f(x)12c1x)
- + (f”{g(x)2 i)

respectively. It may surprise you to observe that these inequalities involving i

grals follow immediately from the general inequalities in (5) and (7), which do

explicitly involve definite integrals.
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Let P,, denote the suhspace of Cj — 1. 11 consisting of all polynomials of di
most ii. P is an (n —I— 1)—dimensional vector space. with basis elements

q(x) = 1. q (x) x, q2(x) .v2,.... qCv) x”.

We want to apply the Gram—Schmidt algorithm to convert {qo, q
orthogonal basis { p, p

,..,
p,, } br P,, According to (8) and (9), we hegi

po(.v) = qoCv) =

and Ii rst calculate

(pa. p)
= f I I (/.V = 2.

(p q)
=

1 •s (Lv = 0.

Then

(J)o, (.11) 0
P1 = — Pa ( Po = c/i

(Pa. P0) 2

SO

= .1.

Next.

(p. P) = (po. cj2)
= f 1

2 clx =

and

(pi. q2)
= f x clx = 0,

so

(Pa. cJ2) (i’. q)
P2 = cj2 Pa — P1

(/.10, Pa) (pi. i’)

0
= t12 Pa — Pi = cJ2 —

and hence

p2(x) —

= (32 I).
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To go one stej Iurther, we compute the integrals

(pa, q)
= f x3dx = 0,

(p q)
= f 1

= 2

(p2. q
=

.v (2

—

=

and

(p:. p:i
= f (x2

-

)2i.v =

The 1

(pa. q3) (pt, (J3) (p2. (J)
Th Pa P1 P2

(Pa. Pa) (p. P1) (p2. P2)

0 0 3
= Pa T PI T Pi.

3 45

So

3 I
pv) = v’ = (5x3 3x),

The orthogonal polynomials in (I 5 )——( I ) are constant multiples of the fa

Legendre polynomials. The Iirst six l.egendre polynomials are

= I.

P (v) =

P2(x) = (312 1).

—(5x3 — 3x),

P4(x) = (35.v — 3012 ± 3),

P5(x) = —(635 — 70.1 + 15x).

For reasons that need not concern us here. the constant multipliers are cho

that

Pa(l) = P:I) = P2(1) = ... = 1.

Given a function f in C I —1, 1], the orthogonal projection p ol .1 int(

gilen (see the formula in (1 0)) in terms of Legendre polynomials by

i, (x)
= (P0.

P0 (.1) ± P1 (x) + . +
‘‘ P, (x).

(Po. Pa) (P. P) (P,,. P,,)
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Then p(x) is the ,ith degree least squares polynomial approximation to f
1—1, Ii. It is the oth degree polynomial that minimizes the mean square err

If — p112
=

{f(x) — p(x)}2dx.

Let denote the subspace of C[—ir, 7rJ that consists of all “trigonometric p
niials” of the form

00 + cosox + b,, sin ox).
U I

Then TN is spanned by the 2N + I functions

cosx, sins, cos2x, sin 2s ,..,cos Nx, sin Nx.

By standard techniques of integral calculus we find that

Jr

(I, cos ox)
= j cos ox dx = 0,

Jr

I, sin ox)
= j sin nx dx = 0,

JT

(cos ins, sin ox)
= f cos mx sin ox dx 0

for all positive integers m and n, and that

(sin ins, sin ox)
= j sin ins sin ox dx = 0,

ç’r

(cos lox, COS ox)
= j cos ins cos ox dx = 0

Jr

if in n. Thus the 2N + I nonzero functions in (21) are mutually orthi

and hence are linearly independent. It l’ollows that TN is a (2N + 1 )—dimer
subspace of TI ir, in with the functions in (21) constituting an orthogonal

To (md the norms of these basis functions, we calculate the integrals

(ll)=J ldx=2ir,

(cosnx, cosox)
= f cos2ii dx

= f (I ±cos2nx) dx
2

ir i
=[x+—sin2nxj =ir

and, similarly,

(sin iix, sin ox)
=

sin2 ox dx = in.
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Thus

II = and II cos nx = sin nx = (

for all a.
Now suppose that .1’ (x) is an arbitrary continuous function in Cl — r, ir I.

cording 10 the formula in (10), the orthogonal projection p(x) of f() into

subspacc 7 is the sum of the 2N + I orthogonal projections of f(x) onto

orthogonal basis elements in (21). These orthogonal pmjections are given by

(f(x), 1)
= (10

(1, 1)

where

(f(x), I) I r
a0 = =

— j j(x) dx;
(1.1) 2ff

(f(x), cosnx)
cos ax = a cos ax

(cos nx, cos ax)

where

(f(x),cosnx) I [‘
(1,, = = I J(x)cosnx dx;

(cosnx, cosnx) r

and

(J(x). sin ax)
sin ax = b sin ax

(sin nx, sin ax)

where

(fc),sinax) I
b, = •. . =

—
J(x) sin ax dx.

(sin ax, sin ax) ir

Consequently the orthogonal piojcctioi p(x) of the function f(x) into 7

given by

= a0 + (a,, cosii.t + b,, sin ax),

where the cod flcients arc given by the formulas in Equations (23)—(25), These
stants a0. a, b , a2, b2, . . . are called the Fourier coefficients of the function
on L—ff, iT]. The l’act that the orthogonal projection is the element of ‘TN ck
to f means that the Fourier coefficients of fminiinize the mean square error

— pi
fF

{f(x) 00

—

(a,, cosnx + h sin ax)}2dx.

This is the sense in which the trigonometric polynomial plx) is the “best
squares approximation” (in 7v) to the given continuous function f(x).
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Finally, we remark that p() in (26) is a (finite) partial sum ol the
series

a0 ± (a,, COS lix + b sin ax).

With the coefficients given in (23)—(25). this infinite series is known as the I
series of f on I —yr, r

Given f(x) = x on I —. f. find the orthogonal projection p of f into 14.

The formula in (23) yields

I I Fl
(l — I .v dx = — I —x I = 0.

2rrJT 2rL2 J

To find a,, and b,, for a > 1) we need the integral fbrmulas

/ UCOSU dii = cosii + a sinu + C

and

ii sin a dii = sin ii — a cos a + C.

Then the formula in (24) yields

I 1 IT

a,, — .vcosit.v dx —— UCOS1( do (a = ax)

—s---— [cos a + a sin 0
1iJT

for all positive integers a. And the formula in (25) yields

I 1ir I 1”r

b, = — x sin ax dx —s--— a sin a do (a = ii.v)
JT ar

9 9
[sinu — acosii]” = ——cos,i =n2ir UT

for all positive integers a. Substituting these values for a 4 in (26), we
desired orthogonal projection

p() = 2 (sins 1 sin2x + sin3x — ! sin 4x)

This is the “trigonometric polynomial of degree 4” that (in the feast squares
best approximales f(s) x on the interval I —, in.
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For each 2 x 2 liultrix A given in Problems 1—6, chow that
(u, v) u1 Av is an i,ier product on R. Given u = (x, v).
write u’ Au as a saiii of squares as in Example 1.

r 2 (1
1. I

[ 0 3

2. F
L’ 3
r —

3. I
[ —2 3

4. [ I 3

L 10
r4 6

5. I
[6 II

r ‘) —3
6. I

L -3 2

In earls of Pmblem.s 7—10, oppls’ the Giain—Sclsisiidt algorithm
to the sectors e1 = (I. 0) and e = (0. I) to Obtain sectors u
and zi that are orihogo,uil with respect to the inner proc/act
(u, v) = ii’ Mi.

7. A is the mati’ix of Problem 3.
8. A is the matrix at Problem 4.
9. A is the matrix of Problem 5.

10. A is the main x of Problem 6.

For earls 3 x 3 inn/eLi A given in Problems II and / 2, show that
(u, v) = LI’ Av iran in/icr product on R5. (iiw.’n u (x, v, ),
write u’ Au as a sum of squares.

211

I 2 0

I 0 1

2 2 0

12. 2 5 2

0 2 4

In Prcblens.s /3 and 14, app/v the Gram-Sc/mnsidt algoritlun to
the s’eetorre1 = (1,0.0), e (0.1.0), ande5 = (0.0.1)
to obtain vectors u ,

U:, (1,1(1 l1 that rue nnitaallv ortbo’oiial

with respect to the inner pu i/i/ct (LI, v) = [Jf A v.

13. A is the matrix of Problem II.
14. A is the matrix of Problem 12.
15. Show that

(p. q) = 11(0)0(0) + p(l)q(l) + p(2)q(2)

defines an inner product on the space P2 of polynomials
of degree at most 2.

16. Apply the Gram—Schmidt algorithm to de basis (1, x, x2}
for 7 to construct a basis {po P a p:} that is orthogonal
with respect to the inner product of Problem 15.

17. Show that the symmetric 2 x 2 matrix

r
A=l

[Ii (‘

is positive definite if both a > 0 and or —

L2 > 0.
gestion: Write ax + 2hxv + cr as a sum of squares is

form a (x + a s)2 + fls’2
18. If the non.cero vectors v , v,, in an inner pro

space V are mutually orthogonal. prove that they arc
early independent.

19. Translate the proof of Theorem I in Section 5.1
proof of the Cauchy—Schwarí inequality fbr an arbi
inner product space.

20. Let p he the orthogonal prection (defined in Equs
(10)) of b into the suhspace W spanned by the orthof
vectors U5, U2 u,. Show that q = b — p is orthof
to W.

21. Let W he the suhspace of PlO. II consisting of all 1
tions of the lbrm f(x) = a + be’. Apply the G
Schmidt algorithm to the basis II . e’ } to obtain th
thogonal basis 1/) , m I’ where

p (.v) = I and P2 (.v) = e’ — c’ + I

22. Show that the orthogonal prqjection of the fun
fCc) x mto the subspace Vi” of Problem 21 is

/1Cc) —— + —
(0.5820)e’ — 0.500t).

T[us is the best (least squares) approximation to f(x)
by a function on [0, I[ (If the form a + be’. Sugge.s
The antiderivative ofxe’ is (x I )e’ + C.

23. Continue the computations in t-sxample 2 to derive the
stant multiple

= (35x — 30.r ± 3)

(If the Legendre polynomial of’ degree 1.
24. The orthogonal prqjeciion of f(x) .v into Th i

function f itself’. Use this tact to express x1 a.s a 1
combination (If the Legendre polynomials P55(x 1, F
P Cv), and P (x) listed in (19).

25. This problem deals with orthogonal polynomials

[0. II i’ather than C’ I I . II. Apply the Gram—Schmis
gorithm to transform the basis [I , .v ..v 2) for ‘P2 mt
orthogonal basis (P,5. P5. P2) where

and

m(x) = 1. p5(x) (2.v — I),

p(X) = (6.s2
— Ox + 1).


