An inner product on a vector space V is a function that associales with each (or-
dered) pair of vectors u and v in V a scalar {u, v) such that

(1) (u,v) = (v, u);

(i) (u,v+w) = (u,v) - (o, w);

(iif) {(cu,v) = clu, v);

(iv) {(u,u) > 0: (u,u) = 0ilfandonly if u = 0.

An inner product space is a vector space V together with a specified inner product
(u,vionV.

The Euclidean inner product—that is, the dot product {u, v) = u - v—is only
one example of an inner product on the vector space R of n-tuples of real numbers.
To see how other inner products on R” can be defined, let A be a fixed 12 x i matrix.
Given (column) veclors u and v in R”, let us define the “product” (u, v) of these two
vectors to be

{u,v) = u’ Av. ()
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Note that (u, v) isa I x 1 matrix—that is, (u, v} is a scalar. Then

wv+w =u A+ W)
=u'Av +ul Aw
= {u,v)+ (u, w)

and

{cu, v) = ((-ur}Av

=cu’ Av = c{u, v),

S0 we see immediately that (u, v) = u” Av satisfies propertics (ii) and (
inner product.

Inorder to verily propertics (i) and iv) we must impose appropriate
on the matrix A. Suppose first that A is symmetric: A = A", Because u
real number, it follows that (u” Av)” = u” Av. Consequently

(w,v) =u'"Av = (u’ Av)”

=v'ATy = v Au = (v, u).

Thus the inner product (u, v) = u” Av satisfies property (i) provided that th
A is symmelric.

The symmetric n x n matrix A is said to be positive definite if u’ Au
Cvery nonzero s-vector u, in which case (u, v) = u” Av satisfics property (i
innerproduct. Then our discussion shows that if the n x n marriv A iy Syimne
positive definite, then

(w,v) =u’ Av
defines an inner product on R". The familiar dot productu - v = 'y =
simply the special case in which A = I, the n x n identity matrix.
Later we will state criteria for determining whether a given symmelri

matrix A is positive definite, and hence whether (u, v) = u” Av defines a
product on R". In the casc of a symmelric 2 x 2 matrix

y a b
= L ¢

this question can be answered by asimple technique of compleling the squar
Example 1 of this section. Note that Hu=(u,uy) and v = {vy, v3) then

T a b Uy
(u.v) =u' Av =y, ug]{b C}[b’z:]’

so that

(W, v) = auyv; + buv, + buyvy + ciipv,.
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Consider the symmetric 2 X 2 matrix

Then
{u,v) = ul Av = 3u v, + 2uyvs + 2un0p + diavs

automatically satisfies properties (i)~(iii) of an inner product on R2. Ifu = (x,
then (3) gives

1~

(w,u) =u’ Au= 3x7 4 dxy + 4y* = (x + 2y)° 247

It is therefore clear thatu’ An > O and thatu” Av = Oifandonly il x +2y = 0 =
that is. if and only if x = y = 0. Thus the symmetric matrix A is positive defin
and so {u, v) = u’ Av delines an inner product on RZ. Nole that ifu = (3, 1)
v =(1,4), thenu.v =7, whereas

3 2 1
{u,v) = |3 l[[2 4”:4:\:51.

Thus the inner product (g, v) = u’ Av is quite different from the Euclidean in
product on R?.

Esscntially everything that has heen done with the Euclidean inner produc
R in the first two sections of this chapter can be done with an arbitrary inner proc
space V (with an occasional proviso that the vector space V be finite-dimension
Given an arbitrary inner product {u, ¥) on a vector space V the length (or norm
the vector u (with respect Lo this inner product) is defined 1o be

flal = /{u, u}.

For instance, the tength ol uw = (3, 1) with respect to the inner product of Exan

] !S gi\]C“ by
uii - 1 y ] 4‘\;‘

Thus |jul] = +/43, whereas the Euclidean length of u = (3, 1) is |u| = Ju -1
10.
The proof of Theorem translates (see Problem 19) into a prool of the Cauw
Schwarz inequality

v < fuallfivi

for an arbitrary inner product on any vector space V. It {ollows that the ang
belween the nonzero vectors u and v can be defined in this way:

,V
cost = —E——J——

vl
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Consequently we say that the vectors u and v are orthogonal provided that (u,
0. The triangle inequality

u+vil < flull +livil

for an arbitrary inner product space follows [rom the Cauchy-Schwarz inequ
And it follows that any finile sct of mutually orthogonal veclors in an inner pr
space is a linearly independent set.

The techniques of Section 4.9 are of special interest in the more genera
ting of inner product spaces. The Gram-Schmid( orthogonalization algorithm ¢
uscd to converl a basis {vy, v2, ... . v,} for a finite-dimensional inner product :
V into an orthogonal basis {u;, us, ... , w,}. The analogues for this purpose ¢
formulas in Equations {12) and (13) in Section 4.9 are

Uy = V¥,
and

{ug, vy o)
Wegp = Vjp — ———— U

(uy, uy)
(12, Vipq) (U, Vegr) u
S bt M Vel 7
{(uz, uy) (U, uy)

fork=1,2,...,n—1intm. Thus ., is obtained by sublracting {rom v,
of its components parallel (with respect to the given inner product) to the previ
constructed orthogonal vectors uy, up, ..., 1.

Now let {u}, ug, ..., u,} be an orthogonal basis for the (finite-dimensi
subspace W of the inner product space V. Given any vector b in V, we defit
analogy with the formula in Equation (6) of Scction 4.9) the orthogoenal proje
p of b into the subspace W to be

ab + s
p= (uy )ux+ (up b>ng+~-+ (u, b)u”.
(ul * u‘) (ub ul) <ulh ul?)

It is readily verified (see Problem 20) thatq = b — p is orthogonal to
vector in W, and it follows that p and g are the unique veclors parallel W
orthogonal Lo W (respectively) such that b = p + q. Finally, the triangle ineq
can be used (as in Theorem 1 of Sectlion 4.8) to show thal the orthogonal proje
p of b inlo W is the point of the subspace W, closest to b. Il b itsell is a vec
W then p = b, and the right-hand side in (10) expresses b as a lincar combir
of the orthogonal basis vectors u;, ta, ... , u,.

Some of the most interesting and imporlant applications involving orthogonal
and projections are to vector spaces of functions. We've introduced the v
space F of all real-valued functions on the real line R as well as various in{
dimensional subspaces of F, including the space P of all polynomials and the
of all continuous functions on R,

* The remainder of this section is for those readers who have studied elementary calculus.
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Here we want Lo discuss the infinite-dimensional vector space C {a, b] consi
ing of all continuous functions defined on the closed interval [a, b], with the ust
vector space operations

(f +2)(x) = fx)+gx) and (cf)x)=cf(x).

When it is unnecessary to refer explicitly to the interval [a, b}, we will simply wi
C =Cla,b].
To provide the vector space Cla, b] with an inner product, we define

b
(figy=[ [flogly)dx ¢
4]
for any two lunctions f and g in Cla, b]. The fact that {f, g} satisfies propert
(i)=(iii) of an inner product follows from familiar elementary facts about integr:
For instance,

h
(fig+hy=| flo{gx)+ )y

o
I i

= [{x)g(x)dx + Jlxyh(x) dx
o a

= (/g +{fih).

It is also true (though perhaps not so obvious) that if f is a continuous function st
that

1]
o f) = f (f)) 2y = 0,

then it follows that f(x) = 0 on [a, b]; that is, f is the zero function in C {a,
Therefore, (£, g) as defined in (11) also satisfies Property (iv) and hence is an in
product on C {a, b}.

The norm || f|| of the function f in C is defined to be

b 1/2
Il = <flf)=( f {f(x)}zdx) | (

Then the Cauchy-Schwarz and triangle inequalities for Cla, b] take the forms

h /2 b /2
< ( [ d.v) ( [ ey dx) (
and
2 172 h 12 b 12
(/ [f(x) + gx))? dl‘) = (/ {f(ff)}z(l.\') 4 (/ {g(0)}? dx) (

{

b
i f floyga)dx

respectively. It may surprise you to observe that these inequalilies involving i
grals follow immediately from the general inequalities in (5) and (7), which do
explicitly involve definite integrals.
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Let P, denote the subspace of ¢] — 1, 1] consisting of all polynomials of di
most . P, is an (n + 1)-dimensional vector space, with basis clements
H

golx) = Lgi(x) = x, qa(x) = .\*2, e guly) = X"

We want o apply the Gram-Schmidt algorithm (o convert N T
orthogonal basis {pg, pr, ..., p,) for P,. According Lo (8) and (9), we begi

Polx) = golx) =1,

and first calculate

1

{Po, po) :/ - Tdy =2,
=
/l

(Po.q1) = l-xdx =0.
.
Then
{(Po,q1) 0
Pr=q;— Po=yq; ~— 3P0 =4,
{Po, po) 2
50
Prix) = x.
Nexl,
I , )
(PP = {po.q2) = / X dy = 3
y
and
1
{(prs g2} :/ xdy =0,
,;-l
50
{Po. q2) (P1. a2}
P2 =gy — )y — —— )
{po, po) (P, pi)

0 1

2
3 )
=dr— S Po— 5P =g — 5 P,
2 z 3
3
and hence

] 2
pale) =" — 2= (37 - ).
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To go one step further, we compute the integrals

i
{(P0:43) :f Wy =0,
|

! 2
(p1.q3) = /‘.\‘”‘d.\' =
i , ]
(P2, q43) = / X (.\‘“ - —) dx =0,
| 3
and
| 2 ,
</72» 172> = f (-Yz - “") dy = -
;
Then
pr=gq {Po. 43) p (Pi gy » (P2, 43 }
y=dy 0 1 2
{Po. po) (pi. ) (P2, P2)
0 z 0 3
=3 5170 ‘_3—191 //// :{[73 = (3 gp;,
3 i
SO

; 3 I L
palx) =x" ~ E.\' = E(S.\' — 3x).

The orthogonal polynomials in (15)~(18) are constant multiples of the [a
Legendre polynomials. The first six Legendre polynomials are

() = 1,
Pilx) =ux,
Py(x) = -?:(3.\'2 - 1),
Pyx) = ~(55° - 3
) = 5 Jx X},
I )
Py(x) = g(35x4 —30x7 4+ 3),
1
Ps(x) = §(63.\'5 — 70x* + 15x).

For reasons that need not concern us here, the constant multipliers are cho
that

Py =P(1)y=P(l)=---= 1.

Given a function f in C |—1, 1], the orthogonal projection p of f intc
given (see the formula in (10)) in terms of Legendre polynomials by

{(Po. /) {Pi, f) (P )

Pol) + P+ I p
By oy L0 Ty MO P py )

plx) =
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Then p(x) is the nth degree least squares polynomial approximaltion io f
[—1, I]. Itis the nth degree polynomial thal minimizes the mean square errt

1
If=pl*= / {f(x) = p(x)Ydx.
]

Let Ty denote the subspace of C{—m, m] that consists of all “trigonometric pr
mials™ of the form

N
ag + E (a, cosnx + b, sinnx).

N
Then Ty is spanned by the 2N 4 1 functions
1,cosx,sinx, cos2x, sin2x, ... ,cos Nx, sin Nx.

By standard techniques of integral calculus we find that

b4

{1,cosnx) = f cosnx dx =,
=
w

{1, sinny) = f sinnx dx =0,
3T

g
cosmxysiniax dy =0

{cosmx, sinnx) = /

s

for all positive integers m and n, and that

T
{sinmx, sinn.x) :/ sinmx sinny dx =0,
7T

T

{cosmx, cosnx) = / cosmxcosnx dx =0
-1

il m # n. Thus the 2N + 1 nonzero functions in (21) arc mutually orths

and hence are linearly independent. It follows that Ty is a (2N + 1)-dimer

subspace ol T[ — s, 7] with the functions in (21) constituting an orthogonal
To {ind the norms of these basis functions, we calculate the integrals

T
(1, l):/ ldx =2m,

-0
i
2
{cosnx, Cosnx) :/ cos® ny dx
=1

™1
:f 5(1 4+ cos2nx) dx

e

...] ] 1 ‘),ﬂﬁ —_
——~2— x+5-;sm“n,x H,,~ﬂ

and, similarly,

bia
{sinnx, sinnx) = / sin® nx dx = 7.

-



Thus

for all n.
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i = V27 and Tcosnx} = || sinnx}| = Jr

3

Now suppose that f(x) is an arbitrary continuous function in C[ — 7, ]. .
cording to the formula in (10), the orthogonal projection p(x) of f(x) inlo
subspace 7y is the sum of the 2N + 1 orthogonal projections of f(x) onto

orthogonal basis elements in (21). These orthogonal projections are given by

where

where

and

(f(), 1)

— =y

(I 1)

RCACO NN RPN
ag = TR _”f(-\)d-\,
{f(x), cosnx)

COS X = 1, COS NX
{cos nx, cosnx)

{f(x), cosnx)

] Ha
a4y = ——————————— = — / fx)cosnx dx;
} N

{cosnx, cosnx

- - sinnx = b, sinnx
{sinnx, sinnx)

{f(x),sinnx)

{sinnx, sinnx

} w
by = ———————— = ~/ Jix)sinnx dx.
) T Jox

Consequently the orthogonal projection p(x) of the function f(x) into 7

given by

N
plx) =ap+ Z (a, cosnx + b, sinnx),

n=l

where the coefficients are given by the formulas in Equations (23)—-(25). These -

stants ag, ay, by, az, by, ...

are called the Fourier coefficients of the {unclion ,

on |—m, 7. The fact that the orthogonal projection p is the element of 7y cl¢

to f means that the Fourier coefficients of fminimize the mean square error

This is the sense in which the trigonometric polynomial p(x) is the “best

-7 n=l1

2

T N
If—pl*= f Flx) —ap — Z (a, cosnx + b, sinnx) { dx.

squares approximation” (in Zy) to the given continuous function f(x).
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Finally, we remark that p(x) in (26) is a (finite) partial sum of the
series

X
ag + E (ay cosnx + b, sinnx).

n=l

With the coefficients given in (23)—(25), this infinite series is known as the |
series of f on [~ ]

Given f(x) = x on|~m, |, lind the orthogonal projection p ol f into 7;.

The formula in (23) yields

1 T 171,71
g = 5— Ydy = — [a—x“] ={).

r o, 2

To find a, and b, forn > 0 we need the integral formulas
/u cosu du = cosy +usiny + C
and
/u sinie du = siny — ucosu + C.

Then the formula in (24) yields

I n i nx
ty = — / xeosny dy = —— weosu du (i = nx)
T oy v 12 B
l . nir
= — [C()S t =+ usin u] =(
1= T

for all positive integers . And the formula in (25) yields

} bid i
by = —«/ xXsinny dy = - usinu du (4= nx)
T Jow wrw J .
1 o 2 2
= [sinu—wcosu]” =—Zcosnm = Z(—1y"t!
n-mw nmw i n

for all positive integers n. Substituting these values for 1 < 4in {206), we ¢
desired orthogonal projection

1 | I
plx)y=2 (sin X — 5 $in 2x + 3 sin 3x — 7 sin 4x) .

This is the “trigonometric polynomial of degree 47 that (in the least squares
best approximates f(x) = x on the interval [—m, 7]
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For each 2 x 2 matrix A given in Problems 1-6, show that
{(u,v) = u" Av iy an inner product on R>. Given u = (x, v),
write u' Au as a sum of squares us in Example 1.

1'2()
1o o3
M I:{
2.
103
T2 =2
3, ]
-2 3
13
4.
3 10}
F4 6
5.
) II}
T9 -3
61 5

In eacl of Problems 7-10, apply the Gram-Schmidt algorithm
to the vectors ey = (1,0) and e> = (0, 1) to obtain vectors u,
and us thar are orthogonal with respect to the inner product
{u,vi =u' Av.

7. A is the matrix of Problem 3.
8. A is the matrix of Problem 4.
9, A is the matrix of Problem 5.
18. A is the matrix of Problem 6.

Foreach 3x3 matriv A given in Problems T and 12, show that
(u, v} = u’ Av is an inner product on R, Givenu = (x. y, 2),
write u' Au as a sum of squares.

201
11. 2 0
[0
2 2 0]
2252
02 4

In Problems 13 and 14, apply the Gram-Schmidt algorithin to
the vectors e¢; = (1,0,0), e2 = (0, 1.0), and e5 = (0,0, 1)

to obtain vectors uy, Wy, and uy that are mutually orthogonal
with respect to the inner product (u, v) = u’ Av.

13. A is the matrix of Problem 11.
14. A is the matrix of Problem 12.
15. Show that

(p.q) = pOq@) + p(hHg(h) + p)g(2)

defines an inner product on the space P, of polynomials
of degree at most 2.

16. Apply the Gram-Schmidt algorithm to the basis {1, x, &%}
for P, to construct a basis {pg, py, p2} that is orthogonal
with respect to the inner product of Problem 15.

17.

18.

19.

20.

21

22.

[
=

24.

25
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Show that the symmetric 2 x 2 matrix

a b
A ==
[ b ¢ :‘
is positive definite if both ¢ > 0 and ac — b* > Q.
gestion: Write ax? + 2bxy 4 ¢y as a sum of squares i
form a(x + ay)” + By
I the nonzero vectors vy, va, ... ., Vv, inan inner pro
space V are mutually orthogonal, prove that they are
carly independent.
Translate the proof of Theorem 1 in Section 5.1 ir
proof of the Cauchy-Schwarz inequality for an arbi
inner product space.
Let p be the orthogonal projection (defined in Equs
(10)) of b into the subspace W spanned by the orthog
veclors Uy, 4a, ... , U,. Show that q = b —p is orthog
o W.
Let W be the subspace of C10, 1] consisting of all
tions of the form f{x) = a + be'. Apply the G
Schmidt algorithm (o the basis {1, ¢']} o obtain th
thogonal basis {py, pa}, where
pily=1 and plx)y=¢" —e+ I
Show that the orthogonal projection of the fum
f{x) = x into the subspace W of Problem 21 is

i

l >
PO ==+ 7‘—:—] ~ (0.5820)¢" — 0.5000.

This is the best (least squares) approximation to f(x)
by a function on [0, 1] of the form a + be*. Sugges
The antiderivative of xe* is (x — D)e* + C.
Continue the computations in Example 2 to derive the
stant multiple

) = (354 =304 + 3

jos)
L

of the Legendre polynomial of degree 4.

The orthogonal projection of f(x) = x% into Py i
function f ilself. Use this fact Lo express & as a |
combination of the Legendre polynomials Py(x), P
Pa(x), and Py(x) listed in (19).

This problem deals with orthogonal polynomials
{0, 1] rather than C [~1. 1]. Apply the Gram-Schmic
gorithm to transform the basis {1, x, x*} for P, int
orthogonal basis { Py, Py, P,} where

I
poxy =1, pilx) = 5Qx =1,
and

[
p3lx) = 6(6x’ —6x + 1).



