5 Inner Product Spaces

An inner product on a vector space V is a function that associates with each (ordered) pair of vectors u and v in V a scalar ($u, v\rangle$ such that
(i) $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$;
(ii) $\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle$;
(iii) $\langle c \mathbf{u}, \mathbf{v}\rangle=c\langle\mathbf{u}, \mathbf{v}\rangle$;
(iv) $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0 ;\langle\mathbf{u}, \mathbf{u}\rangle=0$ if and only if $\mathbf{u}=\mathbf{0}$.

An inner product space is a vector space V together with a specified inner product $\langle\mathbf{u}, \mathbf{v}\rangle$ on V.

The Euclidean inner product-that is, the dot product $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \mathbf{v}$-is only one example of an inner product on the vector space \mathbf{R}^{n} of n-tuples of real numbers. To see how other inner products on \mathbf{R}^{n} can be defined, let A be a fixed $n \times n$ matrix. Given (column) vectors \mathbf{u} and \mathbf{v} in $\mathbb{R}^{\prime \prime}$, let us define the "product" $\left.\mathbf{u}, \mathbf{v}\right\rangle$ of these two vectors to be

$$
\begin{equation*}
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{T} A \mathbf{v} . \tag{1}
\end{equation*}
$$

Note that $\langle\mathbf{u}, \mathbf{v}\rangle$ is a 1×1 matrix-that is, $\langle\mathbf{u}, \mathbf{v}\rangle$ is a scalar. Then

$$
\begin{aligned}
\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle & =\mathbf{u}^{T} A(\mathbf{v}+\mathbf{w}) \\
& =\mathbf{u}^{T} A \mathbf{v}+\mathbf{u}^{T} A \mathbf{w} \\
& =\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\langle c \mathbf{u}, \mathbf{v}\rangle & =\left(c \mathbf{u}^{T}\right) A \mathbf{v} \\
& =c \mathbf{u}^{T} A \mathbf{v}=c\langle\mathbf{u}, \mathbf{v}\rangle,
\end{aligned}
$$

so we see immediately that $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{T} A \mathbf{v}$ satisfies properties (ii) and (inner product.

In order to verily propertics (i) and (iv) we must impose appropriate er on the matrix A. Suppose first that A is symmetric: $A=A^{T}$. Because u real number, it follows that $\left(\mathbf{u}^{T} A \mathbf{v}\right)^{T}=\mathbf{u}^{T} A \mathbf{v}$. Consequently

$$
\begin{aligned}
\langle\mathbf{u}, \mathbf{v}\rangle & =\mathbf{u}^{T} A \mathbf{v}=\left(\mathbf{u}^{T} A \mathbf{v}\right)^{T} \\
& =\mathbf{v}^{T} A^{T} u=\mathbf{v}^{T} A \mathbf{u}=\langle\mathbf{v}, \mathbf{u}\rangle
\end{aligned}
$$

Thus the inner product $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{T} A \mathbf{v}$ satisfies property (i) provided that th A is symmetric.

The symmetric $n \times n$ matrix A is said to be positive definite if $\mathbf{u}^{7} A u$ every nonzero n-vector \mathbf{u}, in which case $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{T} A \mathbf{v}$ satisfics property (imnerproduct. Then our discussion shows that if the $n \times n$ matrix A is symme positive definite, then

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{T} A \mathbf{v}
$$

defines an inner product on $\mathbf{R}^{\prime \prime}$. The familiar dot product $\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{7} \mathbf{v}=$ simply the special case in which $A=l$, the $n \times n$ identity matrix.

Later we will state criteria for determining whether a given symmetri matrix A is positive definite, and hence whether $\langle\mathbf{u}, \boldsymbol{v}\rangle=\mathbf{u}^{T} A \mathbf{v}$ defines a product on $\mathbf{R}^{\prime \prime}$. In the case of a symmetric 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

this question can be answered by a simple technique of completing the squar Example 1 of this section. Note that if $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)$ then

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{T} A \mathbf{v}=\left|u_{1} \quad u_{2}\right|\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right],
$$

so that

$$
\langle\mathbf{u}, \mathbf{v}\rangle=a u_{1} v_{1}+b u_{1} v_{2}+b u_{2} v_{1}+c u_{2} v_{2} .
$$

Example Consider the symmetric 2×2 matrix

$$
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 4
\end{array}\right]
$$

Then

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{T} A \mathbf{v}=3 u_{1} v_{1}+2 u_{1} v_{2}+2 u_{2} v_{1}+4 u_{2} v_{2}
$$

automatically satisfies properties (i)-(iii) of an inner product on \mathbf{R}^{2}. If $\mathbf{u}=(x$, then (3) gives

$$
\langle\mathbf{u}, \mathbf{u}\rangle=\mathbf{u}^{T} A \mathbf{u}=3 x^{2}+4 x y+4 y^{2}=(x+2 y)^{2}+2 x^{2}
$$

It is therefore clear that $\mathbf{u}^{T} A \mathbf{u} \geq 0$ and that $\mathbf{u}^{T} A \mathbf{v}=0$ if and only if $x+2 y=0=$ that is, if and only if $x=y=0$. Thus the symmetric matrix A is positive defin and so $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{T} A \mathbf{v}$ defines an inner product on \mathbf{R}^{2}. Note that il $\mathbf{u}=(3,1)$: $\mathbf{v}=(1,4)$, then $\mathbf{u} \cdot \mathbf{v}=7$, whereas

$$
\langle\mathbf{u}, \mathbf{v}\rangle=13 \quad 11\left[\begin{array}{ll}
3 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
4
\end{array}\right]=51
$$

Thus the inner product $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{T} A \mathbf{v}$ is quite different from the Euclidean in product on \mathbb{R}^{2}.

Essentially everything that has been done with the Euclidean inner produe \mathbf{R}^{n} in the first two sections of this chapter can be done with an arbitrary inner proc space V (with an occasional proviso that the vector space V be finite-dimension Given an arbitrary inner product $\langle\mathbf{u}, \mathbf{v}$) on a vector space V the length (or norm the vector \mathbf{u} (with respect to this inner product) is delined to be

$$
\|\mathbf{u}\|=\sqrt{(\mathbf{u}, \mathbf{u}\rangle}
$$

For instance, the length of $\mathbf{u}=(3,1)$ with respeet to the inner product of Exan 1 is given by

$$
\|u\|^{2}=\left[\begin{array}{ll}
3 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=43
$$

Thus $\|\mathbf{u}\|=\sqrt{43}$, whereas the Euclidean length of $\mathbf{u}=(3,1)$ is $|\mathbf{u}|=\sqrt{\mathbf{u} \cdot 1}$ $\sqrt{10}$.

The proof of Theorem translates (see Problem 19) into a proof of the Cau Schwarz inequality

$$
|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\|\|\mathbf{v}\|
$$

for an arbitrary inner product on any vector space V. It follows that the ang between the nonzero vectors \mathbf{u} and \mathbf{v} can be defined in this way:

$$
\cos \theta=\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\|\mathbf{u}\|\|\mathbf{v}\|}
$$

Consequently we say that the vectors \mathbf{u} and \mathbf{v} are orthogonal provided that $\langle\mathbf{u}$, 0 . The triangle inequality

$$
\|u+v\| \leq\|u\|+\|v\|
$$

for an arbitrary inner product space follows from the Cauchy-Schwarz inequ And it follows that any finite set of mutually orthogonal vectors in an inner pr space is a linearly independent set.

The techniques of Section 4.9 are of special interest in the more genera ting of inner product spaces. The Gram-Schmidt orthogonalization algorithm e used to convert a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ for a finite-dimensional inner product V into an orthogonal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$. The analogues for this purpose (formulas in Equations (12) and (13) in Section 4.9 are

$$
\mathbf{u}_{1}=\mathbf{v}_{1}
$$

and

$$
\begin{aligned}
\mathbf{u}_{k+1}= & \mathbf{v}_{k+1}-\frac{\left\langle\mathbf{u}_{1}, \mathbf{v}_{k+1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1} \\
& -\frac{\left\langle\mathbf{u}_{2}, \mathbf{v}_{k+1}\right\rangle}{\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle} \mathbf{u}_{2}-\cdots-\frac{\left\langle\mathbf{u}_{k}, \mathbf{v}_{k+1}\right\rangle}{\left\langle\mathbf{u}_{k}, \mathbf{u}_{k}\right\rangle} \mathbf{u}_{k}
\end{aligned}
$$

for $k=1,2, \ldots, n-1$ in turn. Thus \mathbf{u}_{k+1} is obtained by subtracting from \mathbf{v}_{k+1} of its components parallel (with respect to the given inner product) to the previ constructed orthogonal vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$.

Now let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ be an orthogonal basis for the (finite-dimensi subspace W of the inner product space V. Given any vector b in V, we defin analogy with the formula in Equation (6) of Section 4.9) the orthogonal proje pof binto the subspace W to be

$$
\mathbf{p}=\frac{\left\langle\mathbf{u}_{1}, \mathbf{b}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}+\frac{\left\langle\mathbf{u}_{2}, \mathbf{b}\right\rangle}{\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle} \mathbf{u}_{2}+\cdots+\frac{\left\langle\mathbf{u}_{n}, \mathbf{b}\right\rangle}{\left\langle\mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle} \mathbf{u}_{n} .
$$

It is readily verified (see Problem 20) that $\mathbf{q}=\mathbf{b}-\mathbf{p}$ is orthogonal to vector in W, and it follows that \mathbf{p} and \mathbf{q} are the unique vectors parallel 4 orthogonal to W (respectively) such that $\mathbf{b}=\mathbf{p}+\mathbf{q}$. Finally, the triangle ineq can be used (as in Theorem 1 of Section 4.8) to show that the orthogonal proje \mathbf{p} of b into W is the point of the subspace W, closest to \mathbf{b}. If \mathbf{b} itself is a vec W then $\mathbf{p}=\mathbf{b}$, and the right-hand side in (10) expresses \mathbf{b} as a linear combir of the orthogonal basis vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$.

INNER PRODUCTS AND PUNCTION SPACES**

Some of the most interesting and important applications involving orthogonal and projections are to vector spaces of functions. We've introduced the v space \mathcal{F} of all real-valued functions on the real line \mathbf{R} as well as various ind dimensional subspaces of \mathcal{F}, including the space \mathcal{P} of all polynomials and the of all continuous functions on \mathbf{R}.
*The remainder of this section is for those readers who have studied elementary calculus.

Here we want to discuss the infinite-dimensional vector space $\mathcal{C}[a, b]$ consi ing of all continuous functions defined on the closed interval $[a, b]$, with the usi vector space operations

$$
(f+g)(x)=f(x)+g(x) \quad \text { and } \quad(c f)(x)=c f(x)
$$

When it is unnecessary to refer explicitly to the interval $[a, b]$, we will simply wr $\mathcal{C}=\mathcal{C} \mid a, b]$.

To provide the vector space $\mathcal{C}|a, b|$ with an inner product, we define

$$
\langle f, g\rangle=\int_{a}^{h} f(x) g(x) d x
$$

for any two functions f and g in $\mathcal{C}[a, b]$. The fact that $\langle f, g\rangle$ satisfies propert (i)-(iii) of an inner product follows from familiar elementary facts about integra For instance,

$$
\begin{aligned}
\langle j, g+h\rangle & =\int_{a}^{b} f(x)\{g(x)+h(x)\} d x \\
& =\int_{a}^{h} f(x) g(x) d x+\int_{a}^{h} f(x) h(x) d x \\
& =\langle f, g\rangle+\langle f, h\rangle .
\end{aligned}
$$

It is also true (though perhaps not so obvious) that if f is a continuous function st that

$$
\langle f, f\rangle=\int_{a}^{b}\{f(x)\}^{2} d x=0
$$

then it follows that $f(x) \equiv 0$ on $[a, b]$; that is, f is the zero function in $\mathcal{C}[a$, Therefore, $(f, g\rangle$ as defined in (11) also satisfies Property (iv) and hence is an in product on $\mathcal{C}\{a, b]$.

The norm $\|f\|$ of the function f in \mathcal{C} is defined to be

$$
\|f\|=\sqrt{\langle f, f\rangle}=\left(\int_{a}^{l}\{f(x)\}^{2} d x\right)^{1 / 2}
$$

Then the Cauchy-Schwarz and triangle inequalities for $\mathcal{C}\{a, b]$ take the forms

$$
\left|\int_{a}^{b} f(x) g(x) d x\right| \leq\left(\int_{a}^{b}\{f(x)\}^{2} d x\right)^{1 / 2}\left(\int_{a}^{b}\{g(x)\}^{2} d x\right)^{1 / 2}
$$

and

$$
\left(\int_{a}^{b}\{f(x)+g(x)\}^{2} d x\right)^{1 / 2} \leq\left(\int_{a}^{b}\{f(x)\}^{2} d x\right)^{1 / 2}+\left(\int_{a}^{b}\{g(x)\}^{2} d x\right)^{1 / 2}
$$

respectively. It may surprise you to observe that these inequalities involving i grals follow immediately from the general inequalities in (5) and (7), which do explicitly involve definite integrals.

Example 2 Let \mathcal{P}_{n} denote the subspace of $\mathcal{C}-1,11$ consisting of all polynomials of d most n. \mathcal{P}_{n} is an $(n+1)$-dimensional vector space, with basis elements

$$
q_{0}(x)=1, q_{1}(x)=x, q_{2}(x)=x^{2}, \ldots, q_{n}(x)=x^{\prime \prime} .
$$

We want to apply the Gram-Schmidt algorithm to convert $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$ orthogonal basis $\left\{p_{0}, p_{1}, \ldots, p_{n}\right\}$ for \mathcal{P}_{n}. According to (8) and (9), we begi

$$
p_{0}(x)=q_{0}(x)=1,
$$

and first calculate

$$
\begin{aligned}
& \left\langle p_{0}, p_{0}\right\rangle=\int_{-1}^{1} 1 \cdot 1 d x=2 \\
& \left\langle p_{0}, q_{1}\right\rangle=\int_{-1}^{1} 1 \cdot x d x=0 .
\end{aligned}
$$

Then

$$
p_{1}=q_{1}-\frac{\left\langle p_{0}, q_{1}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}=q_{1}-\frac{0}{2} p_{0}=q_{1} .
$$

so

$$
p_{1}(x)=x .
$$

Next,

$$
\left\langle p_{1}, p_{1}\right\rangle=\left\langle p_{0}, q_{2}\right\rangle=\int_{-1}^{1} x^{2} d x=\frac{2}{3}
$$

and

$$
\left\langle p_{1}, q_{2}\right\rangle=\int_{-1}^{1} x^{3} d x=0
$$

SO

$$
\begin{aligned}
p_{2} & =q_{2}-\frac{\left\langle p_{0}, q_{2}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}-\frac{\left\langle p_{1}, q_{2}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1} \\
& =q_{2}-\frac{\frac{2}{3}}{2} p_{0}-\frac{0}{\frac{2}{3}} p_{1}=q_{2}-\frac{1}{3} p_{0},
\end{aligned}
$$

and hence

$$
p_{2}(x)=x^{2}-\frac{1}{3}=\frac{1}{3}\left(3 x^{2}-1\right)
$$

To go one step further, we compute the integrals

$$
\begin{aligned}
& \left\langle p_{0}, q_{3}\right\rangle=\int_{-1}^{1} x^{3} d x=0 \\
& \left\langle p_{1}, q_{3}\right\rangle=\int_{-1}^{1} x^{4} d x=\frac{2}{5} \\
& \left\langle p_{2}, q_{3}\right\rangle=\int_{-1}^{1} x^{3}\left(x^{2}-\frac{1}{3}\right) d x=0
\end{aligned}
$$

and

$$
\left\langle p_{2}, p_{2}\right\rangle=\int_{1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x=\frac{8}{45} .
$$

Then

$$
\begin{aligned}
p_{3} & =q_{3}-\frac{\left\langle p_{0}, q_{3}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}-\frac{\left\langle p_{1}, q_{3}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}-\frac{\left(p_{2}, q_{3}\right\rangle}{\left\langle p_{2}, p_{2}\right\rangle} p_{2} \\
& =q_{3}-\frac{0}{2} p_{0}-\frac{\frac{2}{5}}{\frac{5}{3}} p_{1}-\frac{0}{\frac{8}{45}} p_{2}=q_{3}-\frac{3}{5} p_{1},
\end{aligned}
$$

so

$$
p_{3}(x)=x^{3}-\frac{3}{5} x=\frac{1}{5}\left(5 x^{3}-3 x\right)
$$

The orthogonal polynomials in (15)-(18) are constant multiples of the fa Legendre polynomials. The first six Legendre polynomials are

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)
\end{aligned}
$$

For reasons that need not concern us here, the constant multipliers are cho that

$$
P_{0}(1)=P_{1}(1)=P_{2}(1)=\cdots=1
$$

Given a function f in $\mathcal{C}[-1,1]$, the orthogonal projection p of f intc given (see the formula in (10)) in terms of Legendre polynomials by

$$
p(x)=\frac{\left\langle P_{0}, f\right\rangle}{\left\langle P_{0}, p_{0}\right\rangle} P_{0}(x)+\frac{\left\langle P_{1}, f\right\rangle}{\left\langle P_{1}, P_{1}\right\rangle} P_{1}(x)+\cdots+\frac{\left\langle P_{n}, f\right\rangle}{\left\langle P_{n}, P_{n}\right\rangle} P_{n}(x) .
$$

Then $p(x)$ is the nth degree least squares polynomial approximation to f $[-1,1]$. It is the nth degree polynomial that minimizes the mean square erre

$$
\|f-p\|^{2}=\int_{-1}^{1}\{f(x)-p(x)\}^{2} d x .
$$

Exomple 3 Let \mathcal{T}_{N} denote the subspace of $\mathcal{C}[-\pi, \pi]$ that consists of all "trigonometric p " mials" of the form

$$
a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

Then \mathcal{T}_{N} is spanned by the $2 N+1$ functions

$$
1, \cos x, \sin x, \cos 2 x, \sin 2 x, \ldots, \cos N x, \sin N x
$$

By standard techniques of integral calculus we find that

$$
\begin{aligned}
\langle 1, \cos n x\rangle & =\int_{-\pi}^{\pi} \cos n x d x=0 \\
\langle 1, \sin n x\rangle & =\int_{-\pi}^{\pi} \sin n x d x=0 \\
\langle\cos m x, \sin n x\rangle & =\int_{-\pi}^{\pi} \cos m x \sin n x d x=0
\end{aligned}
$$

for all positive integers m and n, and that

$$
\begin{aligned}
& \langle\sin m x, \sin n x\rangle=\int_{-\pi}^{\pi} \sin m x \sin n x d x=0 \\
& \langle\cos m x, \cos n x\rangle=\int_{-\pi}^{\pi} \cos m x \cos n x d x=0
\end{aligned}
$$

if $m \neq n$. Thus the $2 N+1$ nonzero functions in (21) are mutually orth and hence are tinearly independent. It follows that \mathcal{T}_{N} is a $(2 N+1)$-dimer subspace of $T[-\pi, \pi$] with the functions in (21) constituting an orthogonal To find the norms of these basis functions, we calculate the integrals

$$
\begin{aligned}
\langle 1,1\rangle & =\int_{-\pi}^{\pi} 1 d x=2 \pi \\
\langle\cos n x, \cos n x\rangle & =\int_{-\pi}^{\pi} \cos ^{2} n x d x \\
& =\int_{-\pi}^{\pi} \frac{1}{2}(1+\cos 2 n x) d x \\
& =\frac{1}{2}\left[x+\frac{1}{2 n} \sin 2 n x\right]_{-\pi}^{\pi}=\pi
\end{aligned}
$$

and, similarly,

$$
\langle\sin n x, \sin n x\rangle=\int_{-\pi}^{\pi} \sin ^{2} n x d x=\pi
$$

Thus

$$
\|1\|=\sqrt{2 \pi} \quad \text { and } \quad\|\cos n x\|=\|\sin n x\|=\sqrt{\pi}
$$

for all n.
Now suppose that $f(x)$ is an arbitrary continuous function in $\mathcal{C}[-\pi, \pi]$. cording to the formula in (10), the orthogonal projection $p(x)$ of $f(x)$ into subspace T_{N} is the sum of the $2 N+1$ orthogonal projections of $f(x)$ onto orthogonal basis elements in (21). These orthogonal projections are given by

$$
\frac{\langle f(x), 1\rangle}{\langle 1,1\rangle}=a_{0}
$$

where

$$
\begin{aligned}
a_{0}= & \frac{\langle f(x), 1\rangle}{\langle 1,1\rangle}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x ; \\
& \frac{\langle f(x), \cos n x\rangle}{\langle\cos n x, \cos n x\rangle} \cos n x=a_{n} \cos n x
\end{aligned}
$$

where

$$
a_{n}=\frac{\langle f(x), \cos n x\rangle}{\langle\cos n x, \cos n x\rangle}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x ;
$$

and

$$
\frac{\langle f(x), \sin n x\rangle}{\langle\sin n x, \sin n x\rangle} \sin n x=b_{n} \sin n x
$$

where

$$
b_{n}=\frac{\langle f(x), \sin n x\rangle}{(\sin n x, \sin n x\rangle}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x .
$$

Consequently the orthogonal projection $p(x)$ of the function $f(x)$ into 7 given by

$$
p(x)=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right),
$$

where the coefficients are given by the formulas in Equations (23)-(25). These stants $a_{0}, a_{1}, b_{1}, a_{2}, b_{2}, \ldots$ are called the Fourier coefficients of the function. on $[-\pi, \pi]$. The fact that the orthogonal projection p is the element of \mathcal{T}_{N} clc to f means that the Fourier coefficients of f minimize the mean square error

$$
\|f-p\|^{2}=\int_{-\pi}^{\pi}\left\{f(x)-a_{0}-\sum_{n=1}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right)\right\}^{2} d x
$$

This is the sense in which the trigonometric polynomial $p(x)$ is the "best squares approximation" (in \mathcal{T}_{N}) to the given continuous function $f(x)$.

Finally, we remark that $p(x)$ in (26) is a (finite) partial sum of the series

$$
a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

With the coefficients given in (23)-(25), this infinite series is known as the] series of f on $[-\pi, \pi]$.

Example 4
 Given $f(x)=x$ on $|-\pi, \pi|$, find the orthogonal projection p of f into \mathcal{T}_{4}.

Solvion The formula in (23) yields

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x d x=\frac{1}{2 \pi}\left[\frac{1}{2} x^{2}\right]_{-\pi}^{\pi}=0 .
$$

To find a_{n} and b_{n} for $n>0$ we need the integral formulas

$$
\int u \cos u d u=\cos u+u \sin u+C
$$

and

$$
\int u \sin u d u=\sin u-u \cos u+C .
$$

Then the formula in (24) yields

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} x \cos n x d x=\frac{1}{n^{2} \pi} \int_{n \pi}^{n \pi} u \cos u d u \quad(u=n x) \\
& =\frac{1}{n^{2} \pi}[\cos u+u \sin u]_{n \pi}^{n \pi}=0
\end{aligned}
$$

for all positive integers n. And the formula in (25) yields

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin n x d x=\frac{1}{n^{2} \pi} \int_{-n \pi}^{n \pi} u \sin u d u \quad(u=n x) \\
& =\frac{1}{n^{2} \pi}[\sin u-u \cos u]_{-n \pi}^{n \pi}=-\frac{2}{n} \cos n \pi=\frac{2}{n}(-1)^{n+1}
\end{aligned}
$$

for all positive integers n. Substituting these values for $n \leq 4$ in (26), we: desired orthogonal projection

$$
p(x)=2\left(\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x-\frac{1}{4} \sin 4 x\right)
$$

This is the "trigonometric polynomial of degree 4 " that (in the least squares best approximates $f(x)=x$ on the interval $[-\pi, \pi]$.

4.10 Problems

For each 2×2 matrix A given in Problems $1-6$, show that $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{7}$ A \mathbf{v} is an inner product on \mathbf{R}^{2}. Given $\mathbf{u}=(x, y)$, write \mathbf{u}^{T} Au as a smm of squares as in Example 1.

1. $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$
2. $\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right]$
3. $\left[\begin{array}{rr}2 & -2 \\ -2 & 3\end{array}\right]$
4. $\left[\begin{array}{rr}1 & 3 \\ 3 & 10\end{array}\right]$
5. $\left[\begin{array}{rr}4 & 6 \\ 6 & 11\end{array}\right]$
6. $\left[\begin{array}{rr}9 & -3 \\ -3 & 2\end{array}\right]$

In each of Problems 7-10, apply the Gram-Schmidt algorithm to the vectors $e_{1}=(1,0)$ and $e_{2}=(0,1)$ to obtain vectors u_{1} and u_{2} that are orthogonal with respect to the inner product $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{T} A \mathbf{v}$.
7. A is the matrix of Problem 3.
8. A is the matrix of Problem 4.
9. A is the matrix of Problem 5.
10. A is the matrix of Problem 6.

For each 3×3 matrix A given in Problems $1 /$ and 12, show that $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{7} A \mathbf{v}$ is an inner product on R^{3}. Given $a=(x, y, z)$, write u^{7} Au as a sum of squares.
11. $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 1\end{array}\right]$
12. $\left[\begin{array}{lll}2 & 2 & 0 \\ 2 & 5 & 2 \\ 0 & 2 & 4\end{array}\right]$

In Problems 1.3 and 14, apply the Gram-Schmidt algorithm to the vectors $e_{1}=(1,0,0), e_{2}=(0,1,0)$, and $e_{3}=(0,0,1)$ to obtain vectors u_{1}, \mathbf{u}_{2}, and u_{3} that are mutually orthogonal with respect to the inmer product $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{7} \mathrm{~A} \mathbf{v}$.
13. A is the matrix of Problem 11 .
14. A is the matrix of Problem 12.
15. Show that

$$
\langle p, q\rangle=p(0) q(0)+p(1) q(1)+p(2) q(2)
$$

defines an inner product on the space \mathcal{P}_{2} of polynomials of degree al most 2 .
16. Apply the Gram-Schmidt algorithm to the basis $\left\{1, x, x^{2}\right\}$ for \mathcal{P}_{2} to construct a basis $\left\{p_{0}, p_{1}, p_{2}\right\}$ that is orthogonal with respect to the inner product of Problem 15.
17. Show that the symmetric 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is positive definite if both $a>0$ and $a c-b^{2}>0$. gestion: Write $a x^{2}+2 b x y+c y^{2}$ as a sum of squares in form $a(x+\alpha y)^{2}+\beta y^{2}$.
18. If the nonzero vectors $v_{1}, v_{2}, \ldots, v_{l n}$ in an inner pro space V are mutually orthogonal, prove that they are early independent.
19. Translate the proof of Theorem 1 in Section 5.1 ir proof of the Cauchy-Schwarz inequality for an arbi inner product space.
20. Let p be the orthogonal projection (defined in Equi (10)) of b into the subspace W spanned by the orthog vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$. Show that $\mathbf{q}=\mathbf{b}-\mathbf{p}$ is orthog to W.
21. Let \mathcal{W} be the subspace of $C\{0,11$ consisting of all 1 tions of the form $f(x)=a+b e^{2}$. Apply the G Schmidt algorithm to the basis $\left\{1, e^{\prime}\right\}$ to obtain the thogonal basis $\left\{p_{1}, p_{2}\right\}$, where

$$
p_{1}(x)=1 \quad \text { and } \quad p_{2}(x)=e^{x}-e+1
$$

22. Show that the orthogonal projection of the fun $f(x)=x$ into the subspace \mathcal{W} of Problem 21 is

$$
p(x)=-\frac{1}{2}+\frac{e^{3}}{e-1} \approx(0.5820) e^{4}-0.5000
$$

This is the best (least squares) approximation to $f(x)$ by a function on $[0,1]$ of the form $a+b e^{2}$. Sugges The antiderivative of $x e^{2}$ is $(x-1) e^{2}+C$.
23. Continue the computations in Example 2 to derive the stant multiple

$$
p_{4}(x)=\frac{1}{35}\left(35 x^{4}-30 x^{2}+3\right)
$$

of the Legendre polynomial of degree 4.
24. The orthogonal projection of $f(x)=x^{3}$ into \mathcal{P}_{3} i function f itself. Use this fact to express x^{3} as a 1 combination of the Legendre polynomials $P_{0}(x), P$ $P_{2}(x)$, and $P_{3}(x)$ listed in (19).
25. This problem deals with orthogonal polynomials [0, 1] rather than $\mathcal{C}[-1,1]$. Apply the Gram-Schmi gorithm to translorm the basis $\left\{1, x, x^{2}\right\}$ for \mathcal{P}_{2} int orthogonal basis $\left\{P_{0}, P_{1}, P_{2}\right\}$ where

$$
p_{0}(x)=1, \quad p_{1}(x)=\frac{1}{2}(2 x-1)
$$

and

$$
p_{3}(x)=\frac{1}{6}\left(6 x^{2}-6 x+1\right)
$$

