Welding Torch Problem Nyquist-Shannon Sampling Theorem

- Welding Torch Problem

Model
Solution
Example 1
Example 2

- Nyquist-Shannon Sampling Theorem

Statement
Whittaker-Shannon Interpolation Formula

Welding Torch Problem

Consider a long welding rod insulated laterally by a sheath. At position $\boldsymbol{x}=\mathbf{0}$ a small hole is drilled into the sheath, then a torch injects energy into the hole, which spreads into the rod. The hole is closed, and we call this time $\boldsymbol{t}=\mathbf{0}$. The problem is to determine the temperature $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$ at location \boldsymbol{x} along the rod and time $\boldsymbol{t}>\boldsymbol{0}$.

Modeling.

$$
\begin{array}{ll}
u_{t} & =c^{2} u_{x x}, \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0) & =\boldsymbol{f}(\boldsymbol{x}), \quad-\infty<x<\infty, \\
\boldsymbol{f}(\boldsymbol{x}) & =\boldsymbol{\delta}(\boldsymbol{x}) \quad \text { (Dirac delta) }
\end{array}
$$

Solving the Welding Torch Problem

We will use the Heat Kernel to write the answer as

$$
\begin{aligned}
u(x, t) & =g_{t} * f \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g_{t}(x-s) \delta(s) d s \\
& =\frac{1}{2 c \sqrt{\pi t}} e^{-x^{2} /\left(4 c^{2} t\right)}
\end{aligned}
$$

The solution $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$ can be checked to work in the PDE by direct differentiation. The mystery remaining is how to interpret the boundary condition $\boldsymbol{u}(\boldsymbol{x}, 0)=\boldsymbol{\delta}(\boldsymbol{x})$. This turns out to be an adventure into the theory of distributions (section 7.8, Asmar). The answer obtained is called a weak solution because of this technical difficulty.

Example 1. Cutting torch held for all time $\boldsymbol{t}>0$.

The physical model changes: the torch is applied at $\boldsymbol{x}=\mathbf{0}$ for all time, and we never remove the torch or cover the hole drilled in the sheath. In addition, we assume the temperature at $\boldsymbol{t}=\mathbf{0}$ is zero. We are adding energy constantly, so it is expected that the temperature $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$ approaches infinity as \boldsymbol{t} approaches infinity.

$$
\begin{aligned}
& u_{t} \quad=\frac{1}{4} u_{x x}+\delta(x), \quad-\infty<x<\infty, \quad t>0 \\
& u(x, 0)=0, \quad-\infty<x<\infty \\
& u(x, t)=\frac{2 \sqrt{t}}{\sqrt{\pi}} e^{-x^{2} / t}-\frac{2|x|}{\sqrt{\pi}} \Gamma\left(0.5, x^{2} / t\right)
\end{aligned}
$$

Asmar shows that $u(0, t)=2 \sqrt{t / \pi}$ which means the temperature at $\boldsymbol{x}=0$ blows up like $\sqrt{\boldsymbol{t}}$.

Example 2. Cutting torch held for 1 second.

The physical model: the torch is applied at $\boldsymbol{x}=\mathbf{0}$ for one second and then we remove the torch and cover the hole that was drilled in the sheath. In addition, we assume the temperature at $\boldsymbol{t}=\mathbf{0}$ is zero. We are adding energy only briefly, so it is expected that the temperature $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$ is bounded.

$$
\begin{aligned}
& u_{t}=\frac{1}{4} u_{x x}+\delta(x) \text { pulse }(t, 0,1), \quad-\infty<x<\infty, \quad t>0 \\
& u(x, 0)=0, \quad-\infty<x<\infty
\end{aligned}
$$

The solution $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$ has to agree with the solution $\boldsymbol{u}_{1}(\boldsymbol{x}, \boldsymbol{t})$ of the previous example until time $t=1$. After this time, the temperature is $u(x, t)=u_{1}(x, t)-u_{1}(x, t-1)$ (a calculation is required to see this result). Then

$$
u(x, t)= \begin{cases}u_{1}(x, t) & 0<t<1 \\ u_{1}(x, t)-u_{1}(x, t-1) & t>1\end{cases}
$$

Nyquist-Shannon Sampling Theorem.

THEOREM. If a signal $\boldsymbol{x}(\boldsymbol{t})$ contains no frequencies higher than \boldsymbol{W} hertz, then the signal is completely determined from values $\boldsymbol{x}\left(\boldsymbol{t}_{i}\right)$ sampled at uniform spacing $\Delta \boldsymbol{t}_{\boldsymbol{i}}=\boldsymbol{t}_{\boldsymbol{i}}-\boldsymbol{t}_{\boldsymbol{i - 1}}$ less than $\frac{1}{2 \boldsymbol{W}}$.

Bandlimited signals are perfectly reconstructed from infinitely man samples provided the bandwidth W is not greater than half the sampling rate (means $\Delta t<\frac{1}{2 W}$).

Whittaker-Shannon Interpolation Formula

$$
x(t)=\sum_{n=-\infty}^{\infty} x(n T) \operatorname{sinc}\left(\frac{t-n T}{T}\right)
$$

