Special Topics from Asmar's Textbook, Chapter 1

- The Wronskian Determinant
- Quadrature, Arbitrary Constants and Arbitrary Functions
- Application: Change of variables
- Making a Filmstrip with Maple: The Advection Equation
- Method of Characteristics
- Application: the Method of Characteristics
- General Solution by the Method of Characteristics: The Proof
- d'Alembert's Solution to the Wave Equation

The Wronskian Determinant

Definition. The Wronskian Matrix of two functions $f_1(x), f_2(x)$ is

$$W(x)=\left(egin{array}{cc} f_1(x) & f_2(x)\ rac{d}{dx}f_1(x) & rac{d}{dx}f_2(x) \end{array}
ight).$$

The Wronskian Determinant of two functions $f_1(x), f_2(x)$ is $\det(W(x))$. The determinant of a 2×2 matrix is defined by

$$\det \left(egin{array}{c} a & b \ c & d \end{array}
ight) = ad - bc.$$

1 Example (Compute a Wronskian Determinant) Find the Wronskian determinant of the two function x^2, x^5 . Answer:

$$W(x)=\left|egin{array}{cc} x^2 & x^5\ 2x & 5x^4 \end{array}
ight|=3x^6.$$

The Pattern: For the Wronskian matrix of n functions f_1, \ldots, f_n , construct the first row of W(x) as the n values $f_1(x)$ to $f_n(x)$. Then differentiate row 1 successively to obtain the other rows of W(x). The last row is $\frac{d^{n-1}}{dx^{n-1}}$ applied to row 1.

Quadrature, Arbitrary Constants and Arbitrary Functions

The linear ordinary differential equation y'' = -32 has general solution $y(x) = -16x^2 + c_1x + c_2$, where c_1, c_2 are arbitrary constants. This is typical:

The order of a linear ordinary differential equation determines the number of arbitrary **constants** in the general solution.

The analog for **partial differential equations** is this:

The order of the partial differential equation determines the number of arbitrary **functions** appearing in the general solution.

Theorem 1 (Quadrature for Partial Differential Equations) Let u(x, y) satisfy the partial differential equation

$$rac{\partial u}{\partial x}=0$$

Then u(x,y) = f(y) where f is an arbitrary function of one variable. ∂u

Proof: Apply the method of quadrature to the equation $\frac{\partial u}{\partial x} = 0$, as follows:

$$\int_{0}^{x} \frac{\partial u(x, y)}{\partial x} dx = \int_{0}^{x} 0 dx$$
 Multiply by dx and integrate
 $u(x, y) - u(0, y) = 0$ Fundamental Theorem of Calculus
 $u(x, y) = u(0, y)$ Function $u(0, y)$ depends only on y
 $u(x, y) = f(y)$ Where f is an arbitrary function.

Remark. In general, \boldsymbol{u} is an arbitrary function of all variables other than \boldsymbol{x} .

Application: Change of variables

We'll solve the advection equation $u_t + 15u_x = 0$ by an invertible change of variables r = at + bx, s = ct + dx. The answer is u = f(x - 15t) where f(w) is an arbitrary differentiable real-valued function of scalar variable w.

The Plan. The change of variables transforms (t, x) into (r, s), to obtain the new differential equation $\partial u/\partial r = 0$. Then u is a constant for each fixed s, hence u = f(s) for some arbitrary function f.

Details. Compute u_t by the chain rule, then $u_t = u_r r_t + u_s s_t = a u_r + c u_s$. Similarly, $u_x = b u_r + d u_s$. Then $u_t + 15 u_x = 0$ becomes upon substitution the new equation $(a+15b)u_r + (c+15d)u_s = 0$. The choices a+15b = 1 and c+15d = 0 will make the new equation into $u_r = 0$, as required. The constants a, b, c, d are selected as a = -14, b = 1, c = -15, d = 1 in order to make the change of variables invertible (nonzero determinant). Then s = -15t + x and u = f(s) = f(x - 15t).

Making a Filmstrip with Maple: The Advection Equation

Consider $\frac{\partial u}{\partial t} + 2\frac{\partial u}{\partial x} = 0$, $u(0,t) = e^{-2t^2}$. The solution is easily checked to be $u(t,x) = e^{-2(x-2t)^2}$. We will make a filmstrip of 5 graphics at x = 0, 1, 2, 3, 4. Each graphic is a plot of t against u on interval -1 < t < 5.

```
u:=(x,t)->exp(-2*(x-2*t)^2);
mycolor:=[black,red,yellow,orange,green]:
xval:=[0,1,2,3,4]:
myplots:=[seq(plot(u(xval[i],t),t=-1..2,color=mycolor[i]),i = 1..5)]:
plots[display](myplots,insequence=true); # Animation
for i from 1 to 5 do myplots[i]; end do; # Make 5 individual plots
```

Method of Characteristics

Definition. A first order partial differential equation

(1)
$$v_1(x,y) \frac{\partial u(x,y)}{\partial x} + v_2(x,y) \frac{\partial u(x,y)}{\partial y} = 0$$

has characteristic curves defined by the implicit solution

$$w(x,y)=c$$

of the associated characteristic differential equation

$$-v_2(x,y)dx+v_1(x,y)dy=0.$$

Theorem 2 (General Solution)

Let f(w) denote an arbitrary function. Then the general solution of (1) is given by

$$u(x,y) = f(w(x,y)).$$

Application: the Method of Characteristics

We solve the equation $-xu_x + yu_y = 0$ by the method of characteristics. The answer is u = f(xy) where f(w) is a real-valued arbitrary differentiable function of scalar variable w.

Solution: First we construct the characteristic equation, by the formal replacement process $u_x \to -dy$ and $u_y \to dx$. The ODE is -x(-dy) + ydx = 0 or equivalently y' = -y/x. This is a first order linear homogeneous ODE with solution y = constant/integrating factor = c/x. We solve y = c/x for c to get the implicit equation xy = c. Then w(x, y) = xy in the Theorem (see the previous slide) and we have general solution u = f(w(x, y)), reported as u = f(xy).

Answer check: Compute LHS = $-xu_x + yu_y = -x\partial_x(f(xy)) + y\partial_y(f(xy)) = -xf'(xy)y + yf'(xy)x = 0$, and RHS = 0, therefore LHS = RHS for all symbols.

General Solution by the Method of Characteristics: The Proof

Proof: Let f(w) denote an arbitrary function. We prove that the general solution of (1) is given by u(x, y) = f(w(x, y)). First, suppose that (x_0, y_0) is a point of the characteristic curve w(x, y) = c and y is locally determined as a function of x, e.g., $v_1(x, y) \neq 0$ and y = y(x). Then y(x) is differentiable and $y' = v_2/v_1$. Assume u(x, y) is a solution of (1), then we compute

$$egin{aligned} &rac{d}{dx}u(x,y(x))\ =\ rac{\partial u}{\partial x}+y'(x)rac{\partial u}{\partial y}\ &=\ rac{1}{v_1(x,y)}\left(v_1(x,y)rac{\partial u}{\partial x}+v_2(x,y)rac{\partial u}{\partial y}
ight)\ &=\ 0. \end{aligned}$$

If the derivative is zero, then u(x, y(x)) must be a constant which depends only on (x_0, y_0) , or ultimately on the constant c in the equation $w(x_0, y_0) = c$. Therefore, u(x, y(x)) = f(c) for some function f(w). Using the implicit solution, then u(x, y(x)) = f(c) = f(w(x, y(x)) or simply u(x, y) = f(w(x, y)). The proof is completed by showing directly that this solution satisfies the partial differential equation.

d'Alembert's Solution to the Wave Equation

The wave equation for an infinite string is $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$, where $-\infty < x < \infty$ and t > 0 is time.

Theorem 3 (d'Alembert's Solution)

The infinite string equation has general solution

$$u(x,t) = F(x+ct) + G(x-ct)$$

where F and G are twice continuously differentiable functions of one variable.

Proof: The change of variables r = x + ct, s = x - ct from (x, t) into (r, s) implies the partial differential equation $\frac{\partial}{\partial s} \frac{\partial}{\partial r} u((r+s)/2, (r-s)/(2c)) = 0$. This equation is solved by quadrature to obtain the result.

Application: d'Alembert's Solution

We solve the wave equation for an infinite string, $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x_1^2}$, where $-\infty < x < \infty$ and $t \ge 0$ is time. The initial conditions are $u(x, 0) = \frac{1}{4 + x^2}$, $u_t(x, 0) = 0$.

Solution. The method is d'Alembert's solution u(x,t) = F(x+ct) + G(x-ct) where F and G are twice continuously differentiable functions of one variable. Let $h(x) = u(x,0) = \frac{1}{4+x^2}$. We get from setting t = 0 in the conditions the two equations F(x) + G(x) = h(x), cF'(x) - cG'(x) = 0. The second equation implies G(x) = F(x) + d for some constant d. Then F(x) + F(x) + d = u(x,0) determines F. Re-label f(x) = F(x) + d/2. Then F(x) + G(x) = f(x) - d/2 + f(x) + d/2 = 2f(x), or f(x) = (1/2)h(x). Finally, u(x,t) = f(x+ct) - d/2 + f(x-ct) + d/2 = f(x+ct) + f(x-ct). Then

$$egin{array}{rll} u(x,t)&=&rac{1}{2}(h(x+ct)+h(x-ct))\ &=&rac{1/2}{4+(x+ct)^2}+rac{1/2}{4+(x-ct)^2}. \end{array}$$