Special Topics from Asmar's Textbook, Chapter 1

- The Wronskian Determinant
- Quadrature, Arbitrary Constants and Arbitrary Functions
- Application: Change of variables
- Making a Filmstrip with Maple: The Advection Equation
- Method of Characteristics
- Application: the Method of Characteristics
- General Solution by the Method of Characteristics: The Proof
- d'Alembert's Solution to the Wave Equation

The Wronskian Determinant

Definition. The Wronskian Matrix of two functions $f_{1}(x), f_{2}(x)$ is

$$
W(x)=\left(\begin{array}{cc}
f_{1}(x) & f_{2}(x) \\
\frac{d}{d x} f_{1}(x) & \frac{d}{d x} f_{2}(x)
\end{array}\right)
$$

The Wronskian Determinant of two functions $f_{1}(x), f_{2}(x)$ is $\operatorname{det}(W(x))$. The determinant of a 2×2 matrix is defined by

$$
\operatorname{det}\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

1 Example (Compute a Wronskian Determinant) Find the Wronskian determinant of the two function $\boldsymbol{x}^{2}, \boldsymbol{x}^{5}$. Answer:

$$
W(x)=\left|\begin{array}{cc}
x^{2} & x^{5} \\
2 x & 5 x^{4}
\end{array}\right|=3 x^{6}
$$

The Pattern: For the Wronskian matrix of \boldsymbol{n} functions f_{1}, \ldots, f_{n}, construct the first row of $\boldsymbol{W}(\boldsymbol{x})$ as the \boldsymbol{n} values $\boldsymbol{f}_{1}(\boldsymbol{x})$ to $\boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{x})$. Then differentiate row 1 successively to obtain the other rows of $\boldsymbol{W}(\boldsymbol{x})$. The last row is $\frac{d^{n-1}}{d x^{n-1}}$ applied to row 1 .

Quadrature, Arbitrary Constants and Arbitrary Functions

The linear ordinary differential equation $\boldsymbol{y}^{\prime \prime}=-32$ has general solution $\boldsymbol{y}(\boldsymbol{x})=$ $-16 x^{2}+c_{1} x+c_{2}$, where c_{1}, c_{2} are arbitrary constants. This is typical:

The order of a linear ordinary differential equation determines the number of arbitrary constants in the general solution.

The analog for partial differential equations is this:
The order of the partial differential equation determines the number of arbitrary functions appearing in the general solution.

Theorem 1 (Quadrature for Partial Differential Equations)

Let $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})$ satisfy the partial differential equation

$$
\frac{\partial u}{\partial x}=0
$$

Then $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{f}(\boldsymbol{y})$ where f is an arbitrary function of one variable.
Proof: Apply the method of quadrature to the equation $\frac{\partial u}{\partial \boldsymbol{x}}=0$, as follows:

$$
\begin{array}{ll}
\int_{0}^{x} \frac{\partial u(x, y)}{\partial x} d x=\int_{0}^{x} 0 d x & \text { Multiply by } d x \text { and integrate } \\
u(x, y)-u(0, y)=0 & \text { Fundamental Theorem of Calculus } \\
u(x, y)=u(0, y) & \text { Function } u(0, y) \text { depends only on } y \\
u(x, y)=f(y) & \text { Where } f \text { is an arbitrary function. }
\end{array}
$$

Remark. In general, \boldsymbol{u} is an arbitrary function of all variables other than \boldsymbol{x}.

Application: Change of variables

We'll solve the advection equation $\boldsymbol{u}_{t}+\mathbf{1 5} \boldsymbol{u}_{\boldsymbol{x}}=\mathbf{0}$ by an invertible change of variables $r=a t+b \boldsymbol{x}, \boldsymbol{s}=\boldsymbol{c t}+\boldsymbol{d x}$. The answer is $\boldsymbol{u}=\boldsymbol{f}(\boldsymbol{x}-\mathbf{1 5 t})$ where $\boldsymbol{f}(\boldsymbol{w})$ is an arbitrary differentiable real-valued function of scalar variable \boldsymbol{w}.

The Plan. The change of variables transforms (t, x) into (r, s), to obtain the new differential equation $\partial u / \partial r=0$. Then u is a constant for each fixed s, hence $u=f(s)$ for some arbitrary function f.

Details. Compute \boldsymbol{u}_{t} by the chain rule, then $\boldsymbol{u}_{t}=\boldsymbol{u}_{r} \boldsymbol{r}_{t}+\boldsymbol{u}_{s} \boldsymbol{s}_{t}=\boldsymbol{a} \boldsymbol{u}_{r}+\boldsymbol{c} \boldsymbol{u}_{s}$. Similarly, $\boldsymbol{u}_{\boldsymbol{x}}=\boldsymbol{b} \boldsymbol{u}_{r}+\boldsymbol{d} \boldsymbol{u}_{s}$. Then $\boldsymbol{u}_{\boldsymbol{t}}+\mathbf{1 5} \boldsymbol{u}_{\boldsymbol{x}}=\mathbf{0}$ becomes upon substitution the new equation $(a+15 b) u_{r}+(c+15 d) u_{s}=0$. The choices $a+15 b=1$ and $c+15 d=0$ will make the new equation into $\boldsymbol{u}_{r}=0$, as required. The constants a, b, c, d are selected as $a=-14, b=1, c=-15, d=1$ in order to make the change of variables invertible (nonzero determinant). Then $s=-15 t+x$ and $u=f(s)=f(x-15 t)$.

Making a Filmstrip with Maple: The Advection Equation

Consider $\frac{\partial u}{\partial t}+2 \frac{\partial u}{\partial x}=0, \boldsymbol{u}(0, t)=e^{-2 t^{2}}$. The solution is easily checked to be $u(t, x)=e^{-2(x-2 t)^{2}}$. We will make a filmstrip of 5 graphics at $x=0,1,2,3,4$. Each graphic is a plot of \boldsymbol{t} against \boldsymbol{u} on interval $-1<\boldsymbol{t}<\mathbf{5}$.

```
u:=(x,t) ->exp (-2*(x-2*t)^2);
mycolor:=[black,red,yellow,orange,green]:
xval:=[0,1,2,3,4]:
myplots:=[seq(plot(u(xval[i],t),t=-1..2,color=mycolor[i]),i = 1..5)]:
plots[display](myplots,insequence=true); # Animation
for i from 1 to 5 do myplots[i]; end do; # Make 5 individual plots
```


Method of Characteristics

Definition. A first order partial differential equation

$$
\begin{equation*}
v_{1}(x, y) \frac{\partial u(x, y)}{\partial x}+v_{2}(x, y) \frac{\partial u(x, y)}{\partial y}=0 \tag{1}
\end{equation*}
$$

has characteristic curves defined by the implicit solution

$$
w(x, y)=c
$$

of the associated characteristic differential equation

$$
-v_{2}(x, y) d x+v_{1}(x, y) d y=0
$$

Theorem 2 (General Solution)

Let $\boldsymbol{f}(\boldsymbol{w})$ denote an arbitrary function. Then the general solution of (1) is given by

$$
u(x, y)=f(w(x, y))
$$

Application: the Method of Characteristics

We solve the equation $-\boldsymbol{x} \boldsymbol{u}_{\boldsymbol{x}}+\boldsymbol{y} \boldsymbol{u}_{\boldsymbol{y}}=\mathbf{0}$ by the method of characteristics. The answer is $\boldsymbol{u}=\boldsymbol{f}(\boldsymbol{x} \boldsymbol{y})$ where $\boldsymbol{f}(\boldsymbol{w})$ is a real-valued arbitrary differentiable function of scalar variable \boldsymbol{w}.

Solution: First we construct the characteristic equation, by the formal replacement process $\boldsymbol{u}_{x} \rightarrow-\boldsymbol{d} \boldsymbol{y}$ and $\boldsymbol{u}_{y} \rightarrow \boldsymbol{d} \boldsymbol{x}$. The ODE is $\boldsymbol{x}(-\boldsymbol{d y})+\boldsymbol{y} \boldsymbol{d} \boldsymbol{x}=\mathbf{0}$ or equivalently $\boldsymbol{y}^{\prime}=-\boldsymbol{y} / \boldsymbol{x}$. This is a first order linear homogeneous ODE with solution $\boldsymbol{y}=$ constant/integrating factor $=\boldsymbol{c} / \boldsymbol{x}$. We solve $\boldsymbol{y}=\boldsymbol{c} / \boldsymbol{x}$ for \boldsymbol{c} to get the implicit equation $\boldsymbol{x} \boldsymbol{y}=\boldsymbol{c}$. Then $\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x} \boldsymbol{y}$ in the Theorem (see the previous slide) and we have general solution $\boldsymbol{u}=\boldsymbol{f}(\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y}))$, reported as $\boldsymbol{u}=\boldsymbol{f}(\boldsymbol{x} \boldsymbol{y})$.

Answer check: Compute LHS $=-\boldsymbol{x} u_{x}+y u_{y}=-\boldsymbol{x} \partial_{x}(f(x y))+y \partial_{y}(f(x y))=$ $-\boldsymbol{x} f^{\prime}(\boldsymbol{x y}) \boldsymbol{y}+\boldsymbol{y} f^{\prime}(\boldsymbol{x y}) \boldsymbol{x}=\mathbf{0}$, and RHS $=0$, therefore LHS $=$ RHS for all symbols.

General Solution by the Method of Characteristics: The Proof

Proof: Let $\boldsymbol{f}(\boldsymbol{w})$ denote an arbitrary function. We prove that the general solution of (1) is given by $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{f}(\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y}))$. First, suppose that $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ is a point of the characteristic curve $\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{c}$ and \boldsymbol{y} is locally determined as a function of \boldsymbol{x}, e.g., $\boldsymbol{v}_{1}(\boldsymbol{x}, \boldsymbol{y}) \neq 0$ and $\boldsymbol{y}=\boldsymbol{y}(\boldsymbol{x})$. Then $\boldsymbol{y}(\boldsymbol{x})$ is differentiable and $\boldsymbol{y}^{\prime}=\boldsymbol{v}_{2} / \boldsymbol{v}_{1}$. Assume $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})$ is a solution of (1), then we compute

$$
\begin{aligned}
\frac{d}{d x} u(x, y(x)) & =\frac{\partial u}{\partial x}+y^{\prime}(x) \frac{\partial u}{\partial y} \\
& =\frac{1}{v_{1}(x, y)}\left(v_{1}(x, y) \frac{\partial u}{\partial x}+v_{2}(x, y) \frac{\partial u}{\partial y}\right) \\
& =0
\end{aligned}
$$

If the derivative is zero, then $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y}(\boldsymbol{x}))$ must be a constant which depends only on $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$, or ultimately on the constant \boldsymbol{c} in the equation $\boldsymbol{w}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=\boldsymbol{c}$. Therefore, $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y}(\boldsymbol{x}))=\boldsymbol{f}(\boldsymbol{c})$ for some function $\boldsymbol{f}(\boldsymbol{w})$. Using the implicit solution, then $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y}(\boldsymbol{x}))=\boldsymbol{f}(\boldsymbol{c})=\boldsymbol{f}(\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y}(\boldsymbol{x}))$ or simply $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{f}(\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y}))$. The proof is completed by showing directly that this solution satisfies the partial differential equation.

d'Alembert's Solution to the Wave Equation

\qquad
The wave equation for an infinite string is $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$, where $-\infty<x<\infty$ and $t \geq 0$ is time.

Theorem 3 (d'Alembert's Solution)

The infinite string equation has general solution

$$
u(x, t)=F(x+c t)+G(x-c t)
$$

where \boldsymbol{F} and \boldsymbol{G} are twice continuously differentiable functions of one variable.
Proof: The change of variables $\boldsymbol{r}=\boldsymbol{x}+\boldsymbol{c t}, \boldsymbol{s}=\boldsymbol{x}-\boldsymbol{c t}$ from $(\boldsymbol{x}, \boldsymbol{t})$ into $(\boldsymbol{r}, \boldsymbol{s})$ implies the partial differential equation $\frac{\partial}{\partial s} \frac{\partial}{\partial r} u((r+s) / 2,(r-s) /(2 c))=0$. This equation is solved by quadrature to obtain the result.

Application: d'Alembert's Solution

We solve the wave equation for an infinite string, $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x_{1}^{2}}$, where $-\infty<x<$ ∞ and $t \geq 0$ is time. The initial conditions are $\boldsymbol{u}(\boldsymbol{x}, 0)=\frac{1}{4+x^{2}}, \boldsymbol{u}_{t}(x, 0)=0$.

Solution. The method is d'Alembert's solution $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})=\boldsymbol{F}(\boldsymbol{x}+\boldsymbol{c t})+\boldsymbol{G}(\boldsymbol{x}-\boldsymbol{c t})$ where \boldsymbol{F} and \boldsymbol{G} are twice continuously differentiable functions of one variable. Let $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{u}(x, 0)=\frac{1}{4+x^{2}}$. We get from setting $t=0$ in the conditions the two equations $\boldsymbol{F}(x)+G(x)=h(x), c F^{\prime}(x)-c G^{\prime}(x)=0$. The second equation implies $\boldsymbol{G}(\boldsymbol{x})=\boldsymbol{F}(\boldsymbol{x})+\boldsymbol{d}$ for some constant \boldsymbol{d}. Then $\boldsymbol{F}(\boldsymbol{x})+\boldsymbol{F}(\boldsymbol{x})+\boldsymbol{d}=\boldsymbol{u}(\boldsymbol{x}, \mathbf{0})$ determines \boldsymbol{F}. Re-label $f(x)=F(x)+d / 2$. Then $F(x)+G(x)=f(x)-d / 2+f(x)+d / 2=2 f(x)$, or $f(x)=(1 / 2) h(x)$. Finally, $u(x, t)=f(x+c t)-d / 2+f(x-c t)+d / 2=f(x+c t)+f(x-c t)$. Then

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}(h(x+c t)+h(x-c t)) \\
& =\frac{1 / 2}{4+(x+c t)^{2}}+\frac{1 / 2}{4+(x-c t)^{2}}
\end{aligned}
$$

