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The differential equation

(1 + x2)y′′ + (1 + x+ x2 + x3)y′ + (x3 − 1)y = 0(1)

has polynomial coefficients. While it is not true that such differential
equations have polynomial solutions, it will be shown in this chapter
that for graphical purposes it is almost true: the general solution y
can be written as

y(x) ≈ c1p1(x) + c2p2(x),

where p1 and p2 are polynomials, which depend on the graph window,
pixel resolution and a maximum value for |c1|+ |c2|.
In particular, graphs of solutions can be made with a graphing hand cal-
culator, a computer algebra system or a numerical laboratory by entering
two polynomials p1, p2. For (1), the polynomials

p1(x) = 1 +
1

2
x2 − 1

6
x3 − 1

12
x4 − 1

60
x5,

p2(x) = x− 1

2
x2 +

1

6
x3 − 1

15
x5
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can be used to plot solutions within a reasonable range of initial condi-
tions.

The theory will show that (1) has a basis of solutions y1(x), y2(x), each
represented as a convergent power series

y(x) =
∞∑
n=0

anx
n.

Truncation of the two power series gives two polynomials p1, p2 (ap-
proximate solutions) suitable for graphing solutions of the differential
equation by the approximation formula y(x) ≈ c1p1(x) + c2p2(x).

12.1 Review of Calculus Topics

A power series in the variable x is a formal sum

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · · .(2)

It is called convergent at x provided the limit below exists:

lim
N→∞

N∑
n=0

cnx
n = L.

The value L is a finite number called the sum of the series, written usu-
ally as L =

∑∞
n=0 cnx

n. Otherwise, the power series is called divergent.
Convergence of the power series for every x in some interval J is called
convergence on J . Similarly, divergence on J means the power series
fails to have a limit at each point x of J . The series is said to converge
absolutely if the series of absolute values

∑∞
n=0 |cn||x|n converges.

Given a power series
∑∞
n=0 cnx

n, define the radius of convergence R
by the equation

R = lim
n→∞

∣∣∣∣ cncn+1

∣∣∣∣ .(3)

The radius of convergence R is undefined if the limit does not exist.

Theorem 1 (Maclaurin Expansion)
If f(x) =

∑∞
n=0 cnx

n converges for |x| < R, and R > 0, then f has
infinitely many derivatives on |x| < R and its coefficients {cn} are given by
the Maclaurin formula

cn =
f (n)(0)

n!
.(4)

The example f(x) = e−1/x
2

shows the theorem has no converse. The
following basic result summarizes what appears in typical calculus texts.
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Theorem 2 (Convergence of power series)
Let the power series

∑∞
n=0 cnx

n have radius of convergence R. If R = 0,
then the series converges for x = 0 only. If R =∞, then the series converges
for all x. If 0 < R <∞, then

1. The series
∑∞
n=0 cnx

n converges absolutely if |x| < R.

2. The series
∑∞
n=0 cnx

n diverges if |x| > R.

3. The series
∑∞
n=0 cnx

n may converge or diverge if |x| = R. The
interval of convergence may be of the form −R < x < R, −R ≤
x < R, −R < x ≤ R or −R ≤ x ≤ R.

Library of Maclaurin Series. Below we record the key Maclaurin
series formulas used in applications.

Geometric Series:
1

1− x
=
∞∑
n=0

xn Converges for
−1 < x < 1.

Log Series: ln(1 + x) =
∞∑
n=1

(−1)n+1xn

n
Converges for
−1 < x ≤ 1.

Exponential Series: ex =
∞∑
n=0

xn

n!
Converges for all x.

Cosine Series: cosx =
∞∑
n=0

(−1)nx2n

(2n)!
Converges for all x.

Sine Series: sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
Converges for all x.

Theorem 3 (Properties of power series)
Given two power series

∑∞
n=0 bnx

n and
∑∞
n=0 cnx

n with radii of convergence
R1, R2, respectively, define R = min(R1, R2), so that both series converge
for |x| < R. The power series have these properties:

1.
∑∞
n=0 bnx

n =
∑∞
n=0 cnx

n for |x| < R implies bn = cn for all n.

3.
∑∞
n=0 bnx

n +
∑∞
n=0 cnx

n =
∑∞
n=0(bn + cn)xn for |x| < R.

4. k
∑∞
n=0 bnx

n =
∑∞
n=0 kbnx

n for all constants k, |x| < R1.

5. d
dx

∑∞
n=0 bnx

n =
∑∞
n=1 nbnx

n−1 for |x| < R1.

6.
∫ b
a (
∑∞
n=0 bnx

n) dx =
∑∞
n=0 bn

∫ b
a x

ndx for −R1 < a < b < R1.



12.2 Algebraic Techniques 701

Taylor Series. A series expansion of the form

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n

is called a Taylor series expansion of f(x) about x = x0. If valid, then
the series converges and represents f(x) for an interval of convergence
|x− x0| < R. Taylor expansions are general-use extensions of Maclaurin
expansions, obtained by translation x→ x−x0. If a Taylor series exists,
then f(x) has infinitely many derivatives. Therefore, |x| and xα (0 <
α < 1) fail to have Taylor expansions about x = 0. On the other hand,
e−1/x

2
has infinitely many derivatives, but no Taylor expansion at x = 0.

12.2 Algebraic Techniques

Derivative Formulas. Differential equations are solved with series
techniques by assuming a trial solution of the form

y(x) =
∞∑
n=0

cn(x− x0)n.

The trial solution is thought to have undetermined coefficients {cn},
to be found explicitly by the method of undetermined coefficients, i.e.,
substitute the trial solution and its derivatives into the differential equa-
tion and resolve the constants. The various derivatives of y(x) can be
written as power series. Recorded here are the mostly commonly used
derivative formulas.

y(x) =
∞∑
n=0

cn(x− x0)n,

y′(x) =
∞∑
n=1

ncn(x− x0)n−1,

y′′(x) =
∞∑
n=2

n(n− 1)cn(x− x0)n−2,

y′′′(x) =
∞∑
n=3

n(n− 1)(n− 2)cn(x− x0)n−3.

The summations are over a different subscript range in each case, because
differentiation eliminates the constant term each time it is applied.

Changing Subscripts. A change of variable t = x − a changes an
integral

∫∞
a f(x)dx into

∫∞
0 f(t + a)dt. This change of variable is in-

dicated when several integrals are added, because then the interval of
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integration is [0,∞), allowing the various integrals to be collected on
one integral sign. For instance,

∫ ∞
2

f(x)dx+

∫ ∞
π

g(x)dx =

∫ ∞
0

(f(t+ 2) + g(t+ π))dt.

A similar change of variable technique is possible for summations, al-
lowing several summation signs with different limits of summation to be
collected under one summation sign. The rule:

n=a+h∑
n=a

xn =
h∑
k=0

xk+a.

It is remembered via the change of variable k = n− a, which is formally
applied to the summation just as it is applied in integration theory. If
h =∞, then the rule reads as follows:

∞∑
n=a

xn =
∞∑
k=0

xk+a.

An illustration, in which LHS refers to the substitution of a trial solution
into the left hand side of some differential equation,

LHS =
∞∑
n=2

n(n− 1)cnx
n−2 + 2x

∞∑
n=0

cnx
n

=
∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
n=0

2cnx
n+1

= 2c0 +
∞∑
k=1

(k + 2)(k + 1)ck+2x
k +

∞∑
k=1

2ck−1x
k

= 2c0 +
∞∑
k=1

((k + 2)(k + 1)ck+2 + 2ck−1)x
k.

To document the steps: Step 1 is the result of substitution of the trial
solution into the differential equation y′′ + 2xy; Step 2 makes a change
of index variable k = n − 2; Step 3 makes a change of index variable
k = n+ 1; Step 4 adds the two series, which now have the same range
of summation and equal powers of x. The change of index variable in
each case was dictated by attempting to match the powers of x, e.g.,
xn−2 = xk in Step 2 and xn+1 = xk in Step 3.

The formulas for derivatives a trial solution y(x) can all be written with
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the same index of summation, if desired:

y(x) =
∞∑
n=0

cn(x− x0)n,

y′(x) =
∞∑
n=0

(n+ 1)cn+1(x− x0)n,

y′′(x) =
∞∑
n=0

(n+ 2)(n+ 1)cn+2(x− x0)n,

y′′′(x) =
∞∑
n=0

(n+ 3)(n+ 2)(n+ 1)cn+3(x− x0)n.

Linearity and Power Series. The set of all power series conver-
gent for |x| < R form a vector space under function addition and scalar
multiplication. This means:

1. The sum of two power series is a power series.

2. A scalar multiple of a power series is a power series.

3. The zero power series is the zero function: all coefficients are zero.

4. The negative of a power series is (−1) times the power series.

Cauchy Product. Multiplication and division of power series is pos-
sible and the result is again a power series convergent on some interval
|x| < R. The Cauchy product of two series is defined by the relations( ∞∑

n=0

anx
n

)( ∞∑
m=0

bmx
m

)
=
∞∑
k=0

ckx
k, ck =

k∑
n=0

anbk−n.

Division of two series can be defined by its equivalent Cauchy product
formula, which determines the coefficients of the quotient series.

To illustrate, we compute the coefficients {cn} in the formula

∞∑
n=0

cnx
n =

( ∞∑
k=0

xk

k + 1

)
/

( ∞∑
m=0

xm
)
.

Limitations exist: the division is allowed only when the denominator is
nonzero. In the present example, the denominator sums to 1/(1 − x),
which is never zero. The equivalent Cauchy product relation is( ∞∑

n=0

cnx
n

)( ∞∑
m=0

xm
)

=
∞∑
k=0

xk

k + 1
.
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This relation implies the formula

k∑
n=0

(cn)(1) =
1

k + 1
.

Therefore, back-substitution implies c0 = 1, c1 = −1/2, c2 = −1/6.
More coefficients can be found and perhaps also a general formula can
be written for cn. Such a formula is needed infrequently, so we spend no
time discussing how to find it.

Power Series Expansions of Rational Functions. A rational
function f(x) is a quotient of two polynomials, therefore it is a quotient
of two power series, hence also a power series. Sometimes the easiest
method known to find the coefficients cn of the power series of f is to
apply Maclaurin’s formula

cn =
f (n)(0)

n!
.

In a number of limited cases, in which the polynomials have low degree, it
is possible to use Cauchy’s product formula to find {cn}. An illustration:

x+ 1

x2 + 1
=
∞∑
n=0

cnx
n, c2k+1 = c2k = (−1)k.

To derive this formula, write the quotient as a Cauchy product:

x+ 1 = (1 + x2)
∞∑
n=0

cnx
n

=
∞∑
n=0

cnx
n +

∞∑
m=0

cmx
m+2

= c0 + c1x+
∞∑
n=2

cnx
n +

∞∑
k=2

ck−2x
k

= c0 + c1x+
∞∑
k=2

(ck + ck−2)x
k

The third step uses variable change k = m + 2. The series then have
the same index range, allowing the addition of the final step. To match
coefficients on each side of the equation, we require c0 = 1, c1 = 1,
ck + ck−2 = 0. Solving, c2 = −c0, c3 = −c1, c4 = −c2 = (−1)2c0,
c5 = −c3 = (−1)2c1. By induction, c2k = (−1)k and c2k+1 = (−1)k.
This gives the series reported earlier.

The same series expansion can be obtained in a more intuitive manner,
as follows. The idea depends upon substitution of r = −x2 into the
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geometric series expansion (1− r)−1 = 1 + r+ r2 + · · ·, which is valid for
|r| < 1.

x+ 1

x2 + 1
= (1 + x)

∞∑
n=0

rn where r = −x2

=
∞∑
n=0

(−x2)n + x
∞∑
n=0

(−x2)n

=
∞∑
n=0

(−1)nx2n +
∞∑
n=0

(−1)nx2n+1

=
∞∑
k=0

ckx
k,

where c2k = (−1)k and c2k+1 = (−1)k. The latter method is preferred
to discover a useful formula. The method is a shortcut to the expansion
of 1/(x2 + 1) as a Maclaurin series, followed by series properties to write
the indicated Cauchy product as a single power series.

Instances exist where neither the Cauchy product method nor other
methods are easy, for instance, the expansion of f(x) = 1/(x2 + x+ 1).
Here, we might find a formula from cn = f (n)(0)/n!, or equally unpleas-
ant, find {cn} from the formula 1 = (x2 + x+ 1)

∑∞
n=0 cnx

n.

Recursion Relations. The relations

c0 = 1, c1 = 1, ck + ck−2 = 0 for k ≥ 2

are called recursion relations. They are often solved by ad hoc alge-
braic methods. Developed here is a systematic method for solving such
recursions.

First order recursions. Given x0 and sequences of constants {an}∞n=0,
{bn}∞n=0, consider the abstract problem of finding a formula for xk in the
recursion relation

xk+1 = akxk + bk, k ≥ 0.

For k = 0 the formula gives x1 = a0x0 + b0. Similarly, x2 = a1x1 + b1 =
a1a0x0 + a1b0 + b1, x3 = a2x2 + b2 = a2a1a0x0 + a2a1b0 + a2b1 + b2. By
induction, the unique solution is

xk+1 =
(
Πk
r=0ar

)
x0 +

k∑
n=0

(
Πk
r=n+1ar

)
bn.

Two-termed second order recursions. Given c0, c1 and sequences
{ak}∞k=0, {bk}∞k=0, consider the problem of solving for ck+2 in the two-
termed second order recursion

ck+2 = akck + bk, k ≥ 0.
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The idea to solve it comes from splitting the problem into even and odd
subscripts. For even subscripts, let k = 2n. For odd subscripts, let
k = 2n+ 1. Then the two-termed second order recursion splits into two
first order recursions

c2n+2 = a2nc2n + b2n, n ≥ 0,
c2n+3 = a2n+1c2n+1 + b2n+1, n ≥ 0.

Define xn = c2n or xn = c2n+1 and apply the general theory for first
order recursions to solve the above recursions:

c2n+2 = (Πn
r=0a2r) c0 +

n∑
k=0

(
Πn
r=k+1a2r

)
b2r, n ≥ 0,

c2n+3 = (Πn
r=0a2r+1) c1 +

n∑
k=0

(
Πn
r=k+1a2r+1

)
b2r+1, n ≥ 0.

Two-termed third order recursions. Given c0, c1, c2, {ak}∞k=0,
{bk}∞k=0, consider the problem of solving for ck+3 in the two-termed third
order recursion

ck+3 = akck + bk, k ≥ 0.

The subscripts are split into three groups by the equations k = 3n,
k = 3n+ 1, k = 3n+ 2. Then the third order recursion splits into three
first order recursions, each of which is solved by the theory of first order
recursions. The solution for n ≥ 0:

c3n+3 = (Πn
r=0a3r) c0 +

n∑
k=0

(
Πn
r=k+1a3r

)
b3r,

c3n+4 = (Πn
r=0a3r+1) c1 +

n∑
k=0

(
Πn
r=k+1a3r+1

)
b3r+1,

c3n+5 = (Πn
r=0a3r+2) c2 +

n∑
k=0

(
Πn
r=k+1a3r+2

)
b3r+2.
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12.3 Power Series Methods

A Series Method for First Order. Illustrated here is a method
to solve the differential equation y′ − 2y = 0 for a power series solution.
Assume a power series trial solution

y(x) =
∞∑
n=0

cnx
n.

Let LHS stand for the left hand side of y′ − 2y = 0. Substitute the trial
series solution into the left side to obtain:

LHS = y′ − 2y(1)

=
∞∑
n=1

ncnx
n−1 − 2

∞∑
n=0

cnx
n

=
∞∑
k=0

(k + 1)ck+1x
k +

∞∑
n=0

(−2)cnx
n

=
∞∑
k=0

((k + 1)ck+1 − 2ck)x
k

(2)

The change of variable k = n−1 was used in the third step, the objective
being to add on like powers of x. Because LHS = 0, and the zero function
is represented by the series of all zero coefficients, then all coefficients in
the series for LHS must be zero, which gives the recursion relation

(k + 1)ck+1 − 2ck = 0, k ≥ 0.

This first order two-termed recursion is solved by back-substitution or by
using the general theory for first order recursions which appears above.
Then

ck+1 =

(
Πk
r=0

2

r + 1

)
c0

=
2k+1

(k + 1)!
c0.

The trial solution becomes a power series solution:

y(x) = c0 +
∞∑
k=0

ck+1x
k+1 Re-index the trial solution.

= c0 +
∞∑
k=0

2k+1

(k + 1)!
c0 x

k+1 Substitute the recursion answer.

= c0 +

( ∞∑
n=1

2n

(n)!
xn
)
c0 Change index n = k + 1.
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=

( ∞∑
n=0

(2x)n

(n)!

)
c0 Compress c0 into sum.

= e2xc0. Maclaurin expansion library.

The solution y(x) = c0e
2x agrees with the growth-decay theory formula

for the first order differential equation y′ = ky (k = 2 in this case).

A Series Method for Second Order. Shown here are the details
for finding two independent power series solutions

y1(x) = 1 +
1

6
x3 +

1

180
x6 +

1

12960
x9 +

1

1710720
x12 + · · ·

y2(x) = x+
1

12
x4 +

1

504
x7 +

1

45360
x10 +

1

7076160
x13 + · · ·

for Airy’s airfoil differential equation

y′′ = xy.

The two independent solutions give the general solution as

y(x) = c1y1(x) + c2y2(x).

The solutions are related to the classical Airy wave functions, denoted
AiryAi and AiryBi in the literature, and documented for example in the
computer algebra system maple. The wave functions AiryAi, AiryBi are
special linear combinations of y1, y2.

The trial solution in the second order power series method is generally
a Taylor series. In this case, it is a Maclaurin series

y(x) =
∞∑
n=0

cnx
n.

Write Airy’s differential equation in standard form y′′ − xy = 0 and let
LHS stand for the left hand side of this equation. Then substitution of
the trial solution into LHS gives:

LHS = y′′ − xy

=
∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n − x

∞∑
k=0

ckx
k

=
∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n −

∞∑
k=0

ckx
k+1

= 2c2 +
∞∑
n=1

(n+ 2)(n+ 1)cn+2x
n −

∞∑
n=1

cn−1x
n

= 2c2 +
∞∑
n=1

((n+ 2)(n+ 1)cn+2 − cn−1)xn
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The steps: (1) Substitute the trial solution into LHS using derivative
formulas; (2) Move x inside the summation by linearity; (3) Index change
n = k+ 1 to match powers of x; (4) Match summation index ranges and
collect on powers of x.

Because LHS = 0 = RHS and the power series for the zero function has
zero coefficients, all coefficients in the series LHS must be zero. This
implies the relations

c2 = 0, (n+ 2)(n+ 1)cn+2 − cn−1 = 0, n ≥ 1.

Replace n by k + 1. Then the relations above become the two-termed
third order recursion

ck+3 =
1

(k + 2)(k + 3)
ck, k ≥ 0.

The answers from page 706, taking bk = 0:

c3n+3 =

(
Πn
r=0

1

(3r + 2)(3r + 3)

)
c0,

c3n+4 =

(
Πn
r=0

1

(3r + 3)(3r + 4)

)
c1,

c3n+5 =

(
Πn
r=0

1

(3r + 4)(3r + 5)

)
c2

= 0 (because c2 = 0).

Taking c0 = 1, c1 = 0 gives one solution

y1(x) = 1 +
∞∑
n=0

(
Πn
r=0

1

(3r + 2)(3r + 3)

)
x3n+3.

Taking c0 = 0, c1 = 1 gives a second independent solution

y2(x) = x+
∞∑
n=0

(
Πn
r=0

1

(3r + 3)(3r + 4)

)
x3n+4

= x

(
1 +

∞∑
n=0

(
Πn
r=0

1

(3r + 3)(3r + 4)

)
x3n+3

)
.

Power Series Maple Code. It is possible to reproduce the first
few terms (below, up to x20) of the power series solutions y1, y2 using
the computer algebra system maple. Here’s how:

de1:=diff(y1(x),x,x)-x*y1(x)=0; Order:=20;

dsolve({de1,y1(0)=1,D(y1)(0)=0},y1(x),type=series);

de2:=diff(y2(x),x,x)-x*y2(x)=0;

dsolve({de2,y2(0)=0,D(y2)(0)=1},y2(x),type=series);
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The maple global variable Order assigns the number of terms to compute
in the series method of dsolve().

The Airy wave functions are defined so that

√
3 AiryAi(0) = AiryBi(0) ≈ 0.6149266276,

−
√

3 AiryAi′(0) = AiryBAi′(0) ≈ 0.4482883572.

They are not identical to y1, y2, in particular.

A Taylor Polynomial Method. The first power series solution

y(x) = 1 +
1

6
x3 +

1

180
x6 +

1

12960
x9 +

1

1710720
x12 + · · ·

for Airy’s airfoil differential equation y′′ = xy can be found without
knowing anything about recursion relations or properties of infinite se-
ries. Shown here is a Taylor polynomial method which requires only a
calculus background. The computation reproduces the answer given by
the maple code below.

de:=diff(y(x),x,x)-x*y(x)=0; Order:=10;

dsolve({de,y(0)=1,D(y)(0)=0},y(x),type=series);

The calculus background:

Theorem 4 (Taylor Polynomials)
Let f(x) have n+ 1 continuous derivatives on a < x < b and assume given
x0, a < x0 < b. Then

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)
(x− x0)n

n!
+Rn(3)

where the remainder Rn has the form

Rn = f (n+1)(x1)
(x− x0)n+1

(n+ 1)!

for some point x1 between a and b.

The polynomial on the right in (3) is called the Taylor polynomial of
degree n for f(x) at x = x0. If f is infinitely differentiable, then it has
Taylor polynomials of all orders. The Taylor series of f is the infinite
series obtained formally by letting n =∞ and Rn = 0.

For the Airy differential equation problem, x0 = 0. We assume that y(x)
is determined by initial conditions y(0) = 1, y′(0) = 0. The method is a
simple one:
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Differentiate the differential equation formally several times,
then set x = x0 in all these equations. Resolve from the sev-
eral equations the values of y′′(x0), y

′′′(x0), y
iv(x0), . . . and

then write out the Taylor polynomial approximation

y(x) ≈ y(x0) + y′(x0)(x− x0) + y′′(x0)
(x− x0)

2

2
+ · · ·

The successive derivatives of Airy’s differential equation are

y′′ = xy,
y′′′ = y + xy′,
yiv = 2y′ + xy′′,
yv = 3y′′ + xy′′′,

...

Set x = x0 = 0 in the above equations. Then

y(0) = 1 Given.

y′(0) = 0 Given.

y′′(0) = xy|x=0

= 0
Use Airy’s equation y′′ = xy.

y′′′(0) = (y + xy′)|x=0

= 1
Use y′′′ = y + xy′.

yiv(0) = (2y′ + xy′′)|x=0

= 0
Use yiv = 2y′ + xy′′.

yv(0) = (3y′′ + xy′′′)|x=0

= 0
Use yv = 3y′′ + xy′′′.

yvi(0) = (4y′′′ + xyiv)|x=0

= 4
Use yvi = 4y′′′ + xyiv.

Finally, we write out the Taylor polynomial approximation of y:

y(x) ≈ y(0) + y′(0)x+ y′′(0)
x2

2
+ · · ·

= 1 + 0 + 0 +
x3

6
+ 0 + 0 +

4x6

6!
+ · · ·

= 1 +
x3

6
+

x6

180
+ · · ·

Computer algebra systems can replace the hand work, finding the Taylor
polynomial directly.



712 Series Methods and Approximations

12.4 Ordinary Points

Developed here is the mathematical theory for second order differential
equations and their Taylor series solutions. We assume a differential
equation

a(x)y′′ + b(x)y′ + c(x)y = 0, a(x) 6= 0.(1)

Such an equation can always be converted to the standard form

y′′ + p(x)y′ + q(x)y = 0.(2)

The conversion from (1) to (2) is made from the formulas

p(x) = b(x)/a(x), q(x) = c(x)/a(x).

A point x = x0 is called an ordinary point of equation (2) provided
both p(x) and q(x) have Taylor series expansions valid in an interval
|x− x0| < R, R > 0. Any point that is not an ordinary point is called a
singular point. For equation (1), x = x0 is an ordinary point provided
a(x) 6= 0 at x = x0 and each of a(x), b(x), c(x) has a Taylor series
expansion valid in some interval about x = x0.

Theorem 5 (Power series solutions)
Let a(x)y′′ + b(x)y′ + c(x)y = 0, a(x) 6= 0, be given and assume that
x = x0 is an ordinary point. If the Taylor series of both p(x) = b(x)/a(x)
and q(x) = c(x)/a(x) are convergent in |x− x0| < R, then the differential
equation has two independent Taylor series solutions

y1(x) =
∞∑
n=0

an(x− x0)n, y2(x) =
∞∑
n=0

bn(x− x0)n,

convergent in |x− x0| < R. Any solution y(x) defined in |x− x0| < R can
be written as y(x) = c1y1(x) + c2y2(x) for a unique set of constants c2, c2.

A proof of this result can be found in Birkhoff-Rota [?]. The maximum
allowed value of R is the distance from x0 to the nearest singular point.

Ordinary Point Illustration. We will determine the two indepen-
dent solutions y1, y2 of Theorem 5 for the second order differential equa-
tion

y′′ − 2xy′ + y = 0.

Let LHS stand for the left side of the differential equation. Assume a trial
solution y =

∑∞
n=0 cnx

n. Then formulas on pages 701 and 702 imply

LHS = y′′ − 2xy′ + y

=
∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n − 2x

∞∑
n=1

ncnx
n−1 +

∞∑
n=0

cnx
n
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=
∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n +

∞∑
n=1

(−2)ncnx
n +

∞∑
n=0

cnx
n

= 2c2 + c0 +
∞∑
n=1

((n+ 1)(n+ 2)cn+2 − 2ncn + cn)xn

= 2c2 + c0 +
∞∑
n=1

((n+ 1)(n+ 2)cn+2 − (2n− 1)cn)xn

The power series LHS equals the zero power series, which gives rise to
the recursion relations 2c2 + c0 = 0, (n+ 1)(n+ 2)cn+2− (2n− 1)cn = 0,
n ≥ 1, or more succinctly the two-termed second order recursion

cn+2 =
2n− 1

(n+ 1)(n+ 2)
cn, n ≥ 0.

Using the formulas on page 706, we obtain the recursion answers

c2k+2 =

(
Πk
r=0

4r − 1

(2r + 1)(2r + 2)

)
c0,

c2k+3 =

(
Πk
r=0

4r + 1

(2r + 2)(2r + 3)

)
c1.

Taking c0 = 1, c1 = 0 gives y1 and taking c0 = 0, c1 = 1 gives y2:

y1(x) = 1 +
∞∑
k=0

(
Πk
r=0

4r − 1

(2r + 1)(2r + 2)

)
x2k+2,

y2(x) = x+
∞∑
k=0

(
Πk
r=0

4r + 1

(2r + 2)(2r + 3)

)
x2k+3.

These solutions have Wronskian 1 at x = 0, hence they are independent
and they form a basis for the solution space of the differential equation.

Some maple Code. It is possible to directly program the basis y1, y2
in maple, ready for plotting and computation of solutions to initial value
problems. At the same time, we can check the series formulas against
the maple engine, which is able to solve for the series solutions y1, y2 to
any order of accuracy.

f:=t->(2*t-1)/((t+1)*(t+2)):

c1:=k->product(f(2*r),r=0..k):

c2:=k->product(f(2*r+1),r=0..k):

y1:=(x,N)->1+sum(c1(k)*x^(2*k+2),k=0..N);

y2:=(x,N)->x+sum(c2(k)*x^(2*k+3),k=0..N);

de:=diff(y(x),x,x)-2*x*diff(y(x),x)+y(x)=0: Order:=10:

dsolve({de,y(0)=1,D(y)(0)=0},y(x),type=series); # find y1

’y1’=y1(x,5);
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dsolve({de,y(0)=0,D(y)(0)=1},y(x),type=series); # find y2

’y2’=y2(x,5);

plot(2*y1(x,infinity)+3*y2(x,infinity),x=0..1);

The maple formulas are

y1(x) = 1− 1

2
x2 − 1

8
x4 − 7

240
x6 − 11

1920
x8 + · · ·

y2(x) = x+
1

6
x3 +

1

24
x5 +

1

112
x7 +

13

8064
x9 + · · ·

The maple approximation of 2y1 + 3y2 to order 20 agrees with the exact
solution for the first 8 digits. Often the infinity required for the exact
solution can be replaced by an integer N = 10 or smaller, to produce
exactly the same plot.
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12.5 Regular Singular Points

The model differential equation for Frobenius singular point theory is
the Cauchy-Euler differential equation

ax2y′′ + bxy′ + cy = 0.(1)

The Frobenius theory treats a perturbation of the Cauchy-Euler equa-
tion obtained by replacement of the constants a, b, c by Maclaurin power
series. Such a Frobenius differential equation has the special form

x2a(x)y′′ + xb(x)y′ + c(x)y = 0

where a(x) 6= 0, b(x), c(x) have Maclaurin expansions.

The Cauchy-Euler differential equation (1) gives some intuition about
the possible kinds of solutions for Frobenius equations. It is known that
the Cauchy-Euler differential equation can be transformed to a constant-
coefficient differential equation

a
d2z

dt2
+ (b− a)

dz

dt
+ cz = 0(2)

via the change of variables

z(t) = y(et), x = et.

By the constant-coefficient formulas, Theorem 1 in Chapter 6, equation
(1) has three kinds of possible solutions, organized by the character of
the roots r1, r2 of the characteristic equation ar2 + (b − a)r + c = 0 of
(2). The three kinds are (r1 = r2 = α+ iβ in case 3):

Case 1: Discriminant positive y = c1x
r1 + c2x

r2

Case 2: Discriminant zero y = c1x
r1 + c2x

r1 ln |x|
Case 3: Discriminant negative y = c1x

α cos(β ln |x|)
+ c2x

α sin(β ln |x|)

The last solution is singular at x = 0, the location where the leading
coefficient in (1) is zero. The second solution is singular at x = 0 when
c2 6= 0. The other solutions involve powers xr; they can be singular
solutions at x = 0 if r < 0.

The Cauchy-Euler conjecture. This conjecture about solutions of
Frobenius equations is often made by differential equation rookies:

Isn’t it true that a Frobenius differential equation has a
general solution obtained from the general solution of the
Cauchy-Euler differential equation

x2a(0)y′′ + xb(0)y′ + c(0)y = 0

by replacement of the the constants c1, c2 by Maclaurin
power series?
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As a tribute to this intuitive conjecturing, we can say in hindsight that
the Cauchy-Euler conjecture is almost correct! Perhaps it is a good
way to remember the results of the Frobenius theory, to follow.

Frobenius theory. A Frobenius differential equation singular
at x = x0 has the form

(x− x0)2A(x)y′′ + (x− x0)B(x)y′ + C(x)y = 0(3)

where A(x0) 6= 0 and A(x), B(x), C(x) have Taylor series expansions at
x = x0 valid in an interval |x − x0| < R, R > 0. Such a point x = x0
is called a regular singular point of (3). Any other point x = x0 is
called an irregular singular point.

A Frobenius regular singular point differential equation generalizes the
Cauchy-Euler differential equation, because if the Taylor series are con-
stants and the translation x → x − x0 is made, then the Frobenius
equation reduces to a Cauchy-Euler equation.

The indicial equation of (3) is the quadratic equation

A(x0)r
2 + (B(x0)−A(x0))r + C(x0) = 0.

More precisely, the indicial equation is obtained logically in two steps:

(1) Transform the Cauchy-Euler differential equation

(x− x0)2A(x0)y
′′ + (x− x0)B(x0)y

′ + C(x0)y = 0

by the change of variables x− x0 = et, z(t) = y(x0 + et) to obtain
the constant-coefficient differential equation

t2A(0)
d2z

dt2
+ t((B(0)−A(0))

dz

dt
+ C(0)z = 0.

(2) Determine the characteristic equation of the constant-coefficient
differential equation.

The indicial equation can be used to directly solve Cauchy-Euler differ-
ential equations. The roots of the indicial equation plus the constant-
coefficient formulas, Theorem 1 in Chapter 6, provide answers which
directly transcribe the general solution of the Cauchy-Euler equation.

The Frobenius theory analyzes the Frobenius differential equation only
in the case when the roots of the indicial equation are real, which cor-
responds to the discriminant positive or zero in the discriminant table,
page 715.
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The cases in which the discriminant is non-negative have their own com-
plications. Expected from the Cauchy-Euler conjecture is a so-called
Frobenius solution

y(x) = (x− x0)r
(
c0 + c1(x− x0) + c2(x− x0)2 + · · ·

)
,

in which r is a root of the indicial equation. Two independent Frobenius
solutions may or may not exist, therefore the Cauchy-Euler conjecture
turns out to be partly correct, but false, in general.

The last case, in which the discriminant of the indicial equation is neg-
ative, is not treated here.

Theorem 6 (Frobenius solutions)
Let x = x0 be a regular singular point of the Frobenius equation

(x− x0)2A(x)y′′ + (x− x0)B(x)y′ + C(x)y = 0.(4)

Let the indicial equation A(x0)r
2 + (B(x0) − A(x0))r + C(x0) = 0 have

real roots r1, r2 with r1 ≥ r2. Then equation (4) always has one Frobenius
series solution y1 of the form

y1(x) = (x− x0)r1
∞∑
n=0

cn(x− x0)n, c0 6= 0.

The root r1 has to be the larger root: the equation can fail for the smaller
root r2.

Equation (4) has a second independent solution y2 in the following cases.

(a) If r1 6= r2 and r1 − r2 is not an integer, then, for some coefficients
{dn} with d0 6= 0,

y2(x) = (x− x0)r2
∞∑
n=0

dn(x− x0)n.

(b) If r1 6= r2 and r1− r2 is a positive integer, then, for some coefficients
{dn} with d0 6= 0 and either C = 0 or C = 1,

y2(x) = Cy1(x) ln |x− x0|+ (x− x0)r2
∞∑
n=0

dn(x− x0)n.

(c) If r1 = r2, then, for some coefficients {dn} with d0 = 0,

y2(x) = y1(x) ln |x− x0|+ (x− x0)r1
∞∑
n=0

dn(x− x0)n.
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A proof of the Frobenius theorem can be found in Birkhoff-Rota [?].

Independent proofs of the independence of y1, y2 plus some details about
how to calculate y1, y2 appear below in the examples. In part (b) of
the theorem, the formula compresses two trial solutions into one, but
the intent is that they be tried separately, in order C = 0, then C = 1.
Sometimes it is possible to combine the two trials into one complicated
computation, but that is not for the faint of heart.

1 Example (Case (a)) Use the Frobenius theory to solve for y1, y2 in the
differential equation 2x2y′′ + xy′ + xy = 0.

Solution: The indicial equation is 2r2 + (1− 2)r + 0 = 0 with roots r1 = 1/2,
r2 = 0. The roots do not differ by an integer, therefore two independent
Frobenius solutions y1, y2 exist, according to Theorem 6(a). The answers are

y1(x) = x1/2
(

1− 1

3
x+

1

30
x2 − 1

630
x3 +

1

22680
x4 + · · ·

)
,

y2(x) = x0
(

1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 + · · ·

)
.

The method. Let r be a variable, to eventually be set to either root r = r1
or r = r2. We expect to compute two solutions y1(x, y1), y2(x, r2) from

y(x, r) = xr
∞∑
n=0

c(n, r)xn.

The symbol c(n, r) plays the role of cn during the computation, but emphasizes
the dependence of the coefficient on the root r.

Independence of y1, y2. To test independence, let c1y1(x) + c2y2(x) = 0 for
all x. Proving c1 = c2 = 0 implies y1, y2 are independent. Divide the equation
c1y1 + c2y2 = 0 by xr2 . The series representations of y1, y2 contain a factor xr2

which divides out, leaving two Maclaurin series and a factor of xr1−r2 on the
y1-series. This factor equals zero at x = 0, because r1 − r2 > 0. Substitution
of x = 0 shows that c2 = 0. Hence also c1 = 0. The test is complete.

A formula for c(n, r). The method applied is substitution of the series y(x, r)
into the differential equation in order to resolve the coefficients. At certain
steps, series indexed from zero to infinity are split into the n = 0 term plus the
rest of the series, in order to match summation ranges. Index changes are used
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to match powers of x. The details:

x2A(x)y′′ = 2x2y′′(x, r)

= 2x2
∞∑
n=0

(n+ r)(n+ r − 1)c(n, r)xn+r−2

= 2r(r − 1)c(0, r)xr +

∞∑
n=1

2(n+ r)(n+ r − 1)c(n, r)xn+r,

xB(x)y′ = xy′(x, r)

=

∞∑
n=0

(n+ r)c(n, r)xn+r

= rc(0, r)xr +

∞∑
n=1

(n+ r)c(n, r)xn+r

C(x)y = xy(x, r)

=

∞∑
n=0

c(n, r)xn+r+1

=

∞∑
n=1

c(n− 1, r)xn+r.

Recursion. Let p(r) = 2r(r − 1) + r + 0 be the indicial polynomial. Let LHS
stand for the left hand side of the Frobenius differential equation. Add the
preceding equations. Then

LHS = 2x2y′′(x, r) + xy′(x, r) + xy(x, r)

= p(r)c(0, r)xr +

∞∑
n=1

(p(n+ r)c(n, r) + c(n− 1, r))xn+r.

Because LHS equals the zero series, all coefficients are zero, which implies p(r) =
0, c(0, r) 6= 0, and the recursion relation

p(n+ r)c(n, r) + c(n− 1, r) = 0, n ≥ 1.

Solution of the recursion. The recursion answers on page 706 imply for
c0 = c(0, r) = 1 the relations

c(n+ 1, r) = (−1)n+1

(
Πn
k=0

1

p(k + 1 + r)

)
c(n+ 1, r1) = (−1)n+1

(
Πn
k=0

1

p(k + 3/2)

)
c(n+ 1, r2) = (−1)n+1

(
Πn
k=0

1

p(k + 1)

)
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Then y1(x) = y(x, r1), y2(x) = y(x, r2) imply

y1(x) = x1/2

(
1 +

∞∑
n=0

(−1)n+1

(
Πn
k=0

1

(2k + 3)(k + 1)

)
xn+1

)

= x1/2

(
1 +

∞∑
n=0

(−1)n+1 2n+1

(2n+ 3)!
xn+1

)
,

y2(x) = x0

(
1 +

∞∑
n=0

(−1)n+1

(
Πn
k=0

1

(k + 1)(2k + 1)

)
xn+1

)

= x0

(
1 +

∞∑
n=0

(−1)n+1 2n

(n+ 1)(2n+ 1)!
xn+1

)
.

Answer checks. It is possible to verify the answers using maple, as follows.

de:=2*x^2*diff(y(x),x,x)+x*diff(y(x),x)+x*y(x)=0;

Order:=5;dsolve(de,y(x),series);

c:=n->(-1)^(n+1)*product(1/((2*k+3)*(k+1)),k=0..n);

d:=n->(-1)^(n+1)*product(1/((2*k+1)*(k+1)),k=0..n);

1+sum(c(n)*x^(n+1),n=0..6);

1+sum((-1)^(n+1)*2^(n+1)/((2*n+3)!)*x^(n+1),n=0..6);

1+sum(d(n)*x^(n+1),n=0..6);

1+sum((-1)^(n+1)*2^(n)/((n+1)*(2*n+1)!)*x^(n+1),n=0..6);

Verified by maple is an exact solution formula y(x) = c1 cos(
√

2x)+c2 sin(
√

2x)
in terms of elementary functions. The code details:

de:=2*x^2*diff(y(x),x,x)+x*diff(y(x),x)+x*y(x)=0;

dsolve(de,y(x));

2 Example (Case (b)) Use the Frobenius theory to solve for y1, y2 in the
differential equation x2y′′ + x(3 + x)y′ − 3y = 0.

Solution: The indicial equation is r2 + (3 − 1)r − 3 = 0 with roots r1 = 1,
r2 = −3. The roots differ by an integer, therefore one Frobenius solution y1
exists and the second independent solution y2 must be computed according to
Theorem 6(b). The answers are

y1(x) = x

(
1− 1

5
x+

1

30
x2 − 1

210
x3 +

1

1680
x4 + · · ·

)
,

y2(x) = x−3
(

1− x+
1

2
x2 − 1

6
x3
)
.

Let r denote either root r1 or r2. We expect to compute solutions y1, y2 by the
following scheme.

y(x, r) = xr
∞∑
n=0

c(n, r)xn,

y1(x) = y(x, r1),

y2(x) = Cy1(x) ln(x) + xr2
∞∑
n=0

dnx
n.
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The constant C is either zero or one, but the value cannot be decided until the
end of the computation. Likewise, d0 6= 0 is known, but little else about the
sequence {dn} is known.

Finding a formula for c(n, r). The method substitutes the series y(x, r) into
the differential equation and then solves for the undetermined coefficients. The
details:

x2A(x)y′′ = x2y′′(x, r)

= x2
∞∑
n=0

(n+ r)(n+ r − 1)c(n, r)xn+r−2

= r(r − 1)c(0, r)xr +

∞∑
n=1

(n+ r)(n+ r − 1)c(n, r)xn+r,

xB(x)y′ = (3 + x)xy′(x, r)

= (3 + x)x
∞∑
n=0

(n+ r)c(n, r)xn+r−1

=

∞∑
n=0

3(n+ r)c(n, r)xn+r +

∞∑
n=0

(n+ r)c(n, r)xn+r+1

= 3rc(0, r)xr +

∞∑
n=1

3(n+ r)c(n, r)xn+r

+

∞∑
n=1

(n+ r − 1)c(n− 1, r)xn+r,

C(x)y = −3y(x, r)

= −3c(0, r)xr +

∞∑
n=1

−3c(n, r)xn+r.

Finding the recursions. Let p(r) = r(r−1)+3r−3 be the indicial polynomial.
Let LHS denote the left hand side of x2y′′+x(3 +x)y′− 3y = 0. Add the three
equations above. Then

LHS = x2y′′(x, r) + (3 + x)xy′(x, r)− 3y(x, r)

= p(r)c(0, r)xr +

∞∑
n=1

(p(n+ r)c(n, r) + (n+ r − 1)c(n− 1, r))xn+r.

Symbol LHS equals the zero series, therefore all the coefficients are zero. Given
c(0, r) 6= 0, then p(r) = 0 and we have the recursion relation

p(n+ r)c(n, r) + (n+ r − 1)c(n− 1, r) = 0, n ≥ 1.

Solving the recursion. Using c(0, r) = 1 and the recursion answers on page
706 gives

c(n+ 1, r) = (−1)n+1

(
Πn
k=0

k + r

p(k + 1 + r)

)
c(n+ 1, 1) = (−1)n+1

(
Πn
k=0

k + 1

(k + 1)(k + 5)

)
= (−1)n+1 24

(n+ 5)!

Therefore, the first few coefficients cn = c(n, 1) of y1 are given by

c0 = 1, c1 =
−1

5
, c2 =

1

30
, c3 =

−1

210
, c4 =

1

1680
.
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This agrees with the reported solution y1, whose general definition is

y1(x) = 1 +

∞∑
n=0

(−1)n+1 24

(n+ 5)!
xn+1.

Finding the second solution y2. Let’s assume that C = 0 in the trial solution
y2. Let dn = c(n, r2). Then the preceding formulas give the recursion relations

p(r2)d0 = 0, p(n+ r2)dn + (n+ r2 − 1)dn−1 = 0, n ≥ 1.

We require r2 = −3 and d0 6= 0. The recursions reduce to

p(n− 3)dn + (n− 4)dn−1 = 0, n ≥ 1.

The solution for 0 ≤ n ≤ 3 is found from dn = − n− 4

p(n− 3)
dn−1:

d0 6= 0, d1 = −d0, d2 =
1

2
d0, d3 = −1

6
d0.

There is no condition at n = 4, leaving d4 arbitrary. This gives the recursion

p(n+ 2)dn+5 + (n+ 1)dn+4 = 0, n ≥ 0.

The solution of this recursion is

dn+5 = (−1)n+1

(
Πn
k=0

k + 1

p(k + 2)

)
d4

= (−1)n+1

(
Πn
k=0

k + 1

(k + 1)(k + 5)

)
d4

= (−1)n+1 24

(n+ 5)!
d4.

Momentarily let d4 = 1. Then

d4 = 1, d5 = −1

5
, d6 =

1

30
, d7 = − 1

210
,

and then the series terms for n = 4 and higher equal

x−3
(
x4 − 1

5
x5 +

1

30
x6 − 1

210
x7 + · · ·

)
= y1(x).

This implies

y2(x) = x−3
(
d0 + d1x+ d2x

2 + d3x
3
)

+ d4y1(x)

= x−3
(

1− x+
1

2
x2 − 1

6
x3
)
d0 + d4y1(x).

By superposition, y1 can be dropped from the formula for y2. The conclusion
for case C = 0 is

y2(x) = x−3
(

1− x+
1

2
x2 − 1

6
x3
)
.

False path for C = 1. We take C = 1 and repeat the derivation of y2, just
to see why this path leads to no solution with a ln(x)-term. We have a 50%
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chance in Frobenius series problems of taking the wrong path to the solution.
We will see details for success and also the signal for failure.

Decompose y2 = A + B where A = y1(x) ln(x) and B = xr2
∑∞
n=1 dnx

n. Let
L(y) = x2y′′ + x(3 + x)y′ − 3y denote the left hand side of the Frobenius
differential equation. Then L(y2) = 0 becomes L(B) = −L(A).

Compute L(B). The substitution of B into the differential equation to obtain
LHS has been done above. Let dn = c(n, r2), r2 = −3. The equation p(r2) = 0
eliminates the extra term p(r2)c(0, r2)xr2 . Split the summation into 1 ≤ n ≤ 4
and 5 ≤ n <∞. Change index n = m+ 4 to obtain:

L(B) =

∞∑
n=1

(p(n+ r2)c(n, r2) + (n+ r2 − 1)c(n− 1, r2))xn+r2

=
3∑

n=1

(p(n− 3)dn + (n− 4)dn−1)xn−3 + (p(1)d4 + (0)d3)x

+

∞∑
m=1

(p(m+ 1)dm+4 + (m)dm+3)xm+1.

Compute L(A). Use L(y1) = 0 in the third step and r1 = 1 in the last step,
below.

L(A) = x2(y′′1 ln(x) + 2x−1y′1 − x−2y1)
+(3 + x)x(y′1 ln(x) + x−1y1)− 3y1 ln(x)

= L(y1) ln(x) + (2 + x)y1 + 2xy′1
= (2 + x)y1 + 2xy′1

=

∞∑
n=0

2cnx
n+r1 +

∞∑
n=1

cn−1x
n+r1 +

∞∑
n=0

2(n+ r1)cnx
n+r1

= 4c0x+

∞∑
n=1

((2n+ 4)cn + cn−1)xn+1.

Find {dn}. The equation L(B) = −L(A) produces recursion relations by
matching corresponding powers of x on each side of the equality. We are given
d0 6= 0. For 1 ≤ n ≤ 3, the left side matches zero coefficients on the right side,
therefore as we saw in the case C = 0,

d0 6= 0, d1 = −d0, d2 =
1

2
d0, d3 = −1

6
d0.

The term for n = 4 on the left is (p(1)d4 + (0)d3)x, which is always zero,
regardless of the values of d3, d4. On the other hand, there is the nonzero
term 4c0x on the right. We can never match terms, therefore there is no
solution with C = 1. This is the only signal for failure.

Independence of y1, y2. Two functions y1, y2 are called independent provided
c1y1(x) + c2y2(x) = 0 for all x implies c1 = c2 = 0. For the given solutions, we
test independence by solving for c1, c2 in the equation

c1x

(
1− 1

5
x+

1

30
x2 − 1

210
x3 + · · ·

)
+ c2x

−3
(

1− x+
1

2
x2 − 1

6
x3
)

= 0.

Divide the equation by xr2 , then set x = 0. We get c2 = 0. Substitute c2 = 0 in
the above equation. Divide by xr1 , then set x = 0 to obtain c1 = 0. Therefore,
c1 = c2 = 0 and the test is complete.
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Answer checks. The simplest check uses maple as follows. It is interesting
that both y1 and y2 are expressible in terms of elementary functions, seen
by executing the code below, and detected as a matter of course by maple

dsolve().

de:=x^2*diff(y(x),x,x)+x*(3+x)*diff(y(x),x)+(-3)*y(x)=0;

Order:=5;dsolve({de},y(x),type=series);

c:=n->(-1)^(n+1)*product((k+1)/((k+5)*(k+1)),k=0..n);

y1:=x+sum(c(n)*x^(n+2),n=0..5);

x+sum(c(n)*x^(n+2),n=0..infinity);

y2:=x->x^(-3)*( 1-x + x^2/2 -(1/6)*x^3);

simplify(subs(y(x)=y2(x),de));

dsolve(de,y(x));

3 Example (Case (c)) Use the Frobenius theory to solve for y1, y2 in the
differential equation x2y′′ + x(3 + x)y′ + y = 0.

Solution: The indicial equation is r2 + (3 − 1)r + 1 = 0 with roots r1 = −1,
r2 = −1. The roots are equal, therefore one Frobenius solution y1 exists and
the second independent solution y2 must be computed according to Theorem
6. The answers:

y1(x) = x−1(1 + x),

y2(x) = x−1
(
−3x− 1

4
x2 +

1

36
x3 − 1

288
x4 +

1

2400
x5 + · · ·

)
Trial solution formulas for y1, y2. Based upon the proof details of the
Frobenius theorem, we expect to compute the solutions as follows.

y(x, r) = xr
∞∑
n=0

c(n, r)xn,

y1(x) = y(x, r1),

y2(x) =
∂y(x, r)

∂r

∣∣∣∣
r=r1

=

(
y(x, r) ln(x) + xr

∞∑
n=0

∂c(n, r)

∂r
xn

)∣∣∣∣∣
r=r1

= y(x, r1) ln(x) + xr1
∞∑
n=1

dnx
n

for some constants d1, d2, d3, . . . . In some applications, it seems easier to use
the partial derivative formula, in others, the final expression in symbols {dn} is
more tractable. Finally, we might reject both methods in favor of the reduction
of order formula for y2.

Independence of y1, y2. To test independence, let c1y1(x) + c2y2(x) = 0 for
all x. Proving c1 = c2 = 0 implies y1, y2 are independent. Divide the equation
c1y1 + c2y2 = 0 by xr1 . The series representations of y1, y2 contain a factor
xr1 which divides out, leaving two Maclaurin series and a ln(x)-term. Then
ln(0) = −∞, c(0, r1) 6= 0 and the finiteness of the series shows that c2 = 0.
Hence also c1 = 0. This completes the test.
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Finding a formula for c(n, r). The method is to substitute the series y(x, r)
into the differential equation and then resolve the coefficients. The details:

x2A(x)y′′ = x2y′′(x, r)

= x2
∞∑
n=0

(n+ r)(n+ r − 1)c(n, r)xn+r−2

= r(r − 1)c(0, r)xr +

∞∑
n=1

(n+ r)(n+ r − 1)c(n, r)xn+r,

xB(x)y′ = (3 + x)xy′(x, r)

= (3 + x)x

∞∑
n=0

(n+ r)c(n, r)xn+r−1

=

∞∑
n=0

3(n+ r)c(n, r)xn+r +

∞∑
n=0

(n+ r)c(n, r)xn+r+1

= 3rc(0, r)xr +

∞∑
n=1

3(n+ r)c(n, r)xn+r

+

∞∑
n=1

(n+ r − 1)c(n− 1, r)xn+r,

C(x)y = y(x, r)

= c(0, r)xr +

∞∑
n=1

c(n, r)xn+r.

Finding the recursions. Let p(r) = r(r−1)+3r+1 be the indicial polynomial.
Let LHS stand for the left hand side of the Frobenius differential equation. Add
the above equations. Then

LHS = x2y′′(x, r) + (3 + x)xy′(x, r) + y(x, r)

= p(r)c(0, r)xr +

∞∑
n=1

(p(n+ r)c(n, r) + (n+ r − 1)c(n− 1, r))xn+r.

Because LHS equals the zero series, all coefficients are zero, which implies p(r) =
0 for c(0, r) 6= 0, plus the recursion relation

p(n+ r)c(n, r) + (n+ r − 1)c(n− 1, r) = 0, n ≥ 1.

Solving the recursions. Using the recursion answers on page 706 gives

c(n+ 1, r) = (−1)n+1

(
Πn
k=0

k + r

p(k + 1 + r)

)
c(0, r)

c(n+ 1,−1) = (−1)n+1

(
Πn
k=0

k − 1

(k + 1)2

)
c(0, r).

Therefore, c(0,−1) 6= 0, c(1,−1) = c(0,−1), c(n+ 1,−1) = 0 for n ≥ 1.

A formula for y1. Choose c(0,−1) = 1. Then the formula for y(x, r) and the
requirement y1(x) = y(x, r1) gives

y1(x) = x−1(1 + x).

A formula for y2. Of the various expressions for the solution, we choose

y2(x) = y1(x) ln(x) + xr1
∞∑
n=1

dnx
n.
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Let us put the trial solution y2 into the differential equation left hand side
L(y) = x2y′′+x(3+x)y′+y in order to determine the undetermined coefficients
{dn}. Arrange the computation as y2 = A + B where A = y1(x) ln(x) and
B = xr1

∑∞
n=1 dnx

n. Then L(y2) = L(A) + L(B) = 0, or L(B) = −L(A). The
work has already been done for series B, because of the work with y(x, r) and
LHS. We define d0 = c(0, r1) = 0, dn = c(n, r1) for n ≥ 1. Then

L(B) = 0 +

∞∑
n=1

(p(n+ r)dn + (n+ r − 1)dn−1)xn+r1 .

A direct computation, tedious and routine, gives

L(A) = 3 + x.

Comparing terms in the equation L(B) = −L(A) results in the recursion rela-
tions

d1 = −3, d2 = −1

4
, dn+1 = − n− 1

(n+ 1)2
dn (n ≥ 2).

Solving for the first few terms duplicates the coefficients reported earlier:

d1 = −3, d2 = −1

4
, d3 =

1

36
, d4 =

−1

288
, d5 =

1

2400
.

A complete formula:

y2(x) = x−1

(
(1 + x) ln(x)− 3x− 1

4
x2 +

1

4

∞∑
n=2

(−1)n
(

Πn
k=2

k − 1

p(k)

)
xn+1

)

= x−1

(
(1 + x) ln(x)− 3x− 1

4
x2 +

∞∑
n=2

(−1)n
(n− 1)!

((n+ 1)!)2
xn+1

)

= x−1

(
(1 + x) ln(x)− 3x− 1

4
x2 +

∞∑
n=2

(−1)n

n(n+ 1)

xn+1

(n+ 1)!

)
.

Answer check. The solutions displayed here can be checked in maple as
follows.

de:=x^2*diff(y(x),x,x)+x*(3+x)*diff(y(x),x)+y(x);

y1:=((1+x)/x)*ln(x);

eqA:=simplify(subs(y(x)=y1,de));

dsolve(de=0,y(x),series);

d:=n->(-1)^(n-1)/((n-1)*n*(n!));

y2:=x^(-1)*((1+x)*ln(x)-3*x-x^2/4+sum(d(n+1)*x^(n+1),n=2..6));
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12.6 Bessel Functions

The work of Friedrich W. Bessel (1784-1846) on planetary orbits led to
his 1824 derivation of the equation known in this century as the Bessel
differential equation or order p:

x2y′′ + xy′ + (x2 − p2)y = 0.

This equation appears in a 1733 work on hanging cables, by Daniel
Bernoulli (1700-1782). A particular solution y is called a Bessel func-
tion. While any real or complex value of p may be considered, we restrict
the case here to p ≥ 0 an integer.

Frobenius theory applies directly to Bessel’s equation, which has a regu-
lar singular point at x = 0. The indicial equation is r2−p2 = 0 with roots
r1 = p and r2 = −p. The assumptions imply that cases (b) and (c) of the
Frobenius theorem apply: either r1 − r2 = positive integer [case (b)] or
else r1 = r2 = 0 and p = 0 [case (c)]. In both cases there is a Frobenius
series solution for the larger root. This solution is referenced as Jp(x) in
the literature, and called a Bessel function of nonnegative integral
order p. The formulas most often used appear below.

Jp(x) =
∞∑
n=0

(−1)n(x/2)p+2n

n!(p+ n)!
,

J0(x) = 1− (x/2)2 +
(x/2)4

42
− (x/2)6

62
+ · · ·

J1(x) =
x

2
− (x/2)3

(1)(2)
+

(x/2)5

(2)(6)
− (x/2)7

(6)(24)
+ · · ·

The derivation of the formula for Jp is obtained by substitution of the
trial solution y = xr

∑∞
n=0 cnx

n into Bessel’s equation. Let Q(r) =
r(r − 1)− p2 be the indicial polynomial. The result is

∞∑
n=0

Q(n+ r)cnx
n+r +

∞∑
n=0

cnx
n+p+2 = 0.

Matching terms on the left to the zero coefficients on the right gives the
recursion relations

Q(r)c0 = 0, Q(r + 1)c1 = 0, Q(n+ r)cn + cn−2 = 0, n ≥ 2.

To resolve the relations, let r = p (the larger root), c0 = 1, c1 = 0
(because Q(p+ 1) 6= 0), and

cn+2 =
−1

Q(n+ 2 + p)
cn.
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This is a two-termed second order recursion which can be solved with
formulas already developed to give

c2n+2 = (−1)n+1
(

Πn
k=0

1

(2k + 2 + p)2 − p2
)
c0

= (−1)n+1Πn
k=0

1

4(k + 1)(k + 1 + p)

=
(−1)n+1

4n+1

1

(n+ 1)!

p!

(n+ 1 + p)!

= (2pp!)
(−1)n+1

22n+2+p

1

(n+ 1)!

1

(n+ 1 + p)!

c2n+3 = (−1)n+1
(

Πn
k=0

1

(2k + 3 + p)2 − p2
)
c1

= 0.

The common factor (2pp!)xp can be factored out from each term except
the first, which is c0x

p or xp. Dividing the answer so obtained by (2pp!)
gives the series reported for Jp.

Properties of Bessel Functions. Sine and cosine identities from
trigonometry have direct analogs for Bessel functions. We would like to
say that cos(x) ↔ J0(x), and sin(x) ↔ J1(x), but that is not exactly
correct. There are asymptotic formulas

J0(x) ≈
√

2
πx cos

(
x− π

4

)
,

J1(x) ≈
√

2
πx sin

(
x− π

4

)
.

See the reference by G.N. Watson [?] for details about these asymptotic
formulas. At a basic level, based upon the series expressions for J0 and
J1, the following identities can be easily checked.

Bessel Functions Trig Functions

J0(0) = 1 cos(0) = 1
J ′0(0) = 0 (cos(x))′

∣∣
x=0 = 0

J1(0) = 0 sin(0) = 0
J ′1(0) = 1/2 (sin(x))′

∣∣
x=0 = 1

J0(−x) = J0(x) cos(−x) = cos(x)
J1(−x) = −J1(x) sin(−x) = − sin(x)

Some deeper relations exist, obtained by series expansion of both sides of
the identities. Suggestions for the derivations are in the exercises. The
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basic reference [?] can be consulted to find complete details.

J ′0(x) = −J1(x)

J ′1(x) = J0(x)− 1

x
J1(x)

(xpJp(x))′ = xpJp−1(x), p ≥ 1,(
x−pJp(x)

)′
= −x−pJp+1(x), p ≥ 0,

Jp+1 =
2p

x
Jp+1(x)− Jp−1(x), p ≥ 1,

Jp+1(x) = −2J ′p(x) + Jp−1(x), p ≥ 1.

The Zeros of Bessel Functions. It is a consequence of the second
order differential equation for Bessel functions that these functions have
infinitely many zeros on the positive x-axis. As seen from asymptotic
expansions, the zeros of J0 satisfy x− π/4 ≈ (2n− 1)π/2 and the zeros
of J1 satisfy x − π/4 ≈ nπ. These approximations are already accurate
to one decimal digit for the first five zeros, as seen from the following
table.

The positive zeros of J0 and J1

n J0(x) J1(x)
(
2n−1

2 + 1
4

)
π nπ + π

4

1 2.40482556 3.83170597 2.35619449 3.92699082
2 5.52007811 7.01558667 5.49778714 7.06858347
3 8.65372791 10.17346813 8.63937980 10.21017613
4 11.79153444 13.32369194 11.78097245 13.35176878
5 14.93091771 16.47063005 14.92256511 16.49336143

The values are conveniently obtained by the following maple code.

seq(evalf(BesselJZeros(0,n)),n=1..5);

seq(evalf(BesselJZeros(1,n)),n=1..5);

seq(evalf((2*n-1)*Pi/2+Pi/4),n=1..5);

seq(evalf((n)*Pi+Pi/4),n=1..5);

The Sturm theory of oscillations of second order differential equations
provides the theory which shows that Bessel functions oscillate on the
positive x-axis. Part of that theory translates to the following theorem
about the interlaced zero property. Trigonometric graphs verify the in-
terlaced zero property for sine and cosine. The theorem for p = 0 says
that the zeros of J0(x)↔ cos(x) and J1(x)↔ sin(x) are interlaced.

Theorem 7 (Interlaced Zeros)
Between pairs of zeros of Jp there is a zero of Jp+1 and between zeros of
Jp+1 there is a zero of Jp. In short, the zeros of Jp and Jp+1 are interlaced.
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Exercises 12.6

Values of J0 and J1. Compute us-
ing the series representations, identi-
ties and suggestions the decimal val-
ues of the following functions. Use a
computer algebra system to check the
answers.

1. J0(1)

2. J1(1)

3. J0(1/2)

4. J1(1/2)

Proofs of properties. Prove the fol-
lowing relations, using the suggestions

supplied.

5. J ′0(x) = −J1(x)

6. J ′1(x) = J0(x)− 1

x
J1(x)

7. (xpJp(x))
′

= xpJp−1(x),
p ≥ 1

8.
(
x−pJp(x)

)′
= −x−pJp+1(x),

p ≥ 0

9. Jp+1 =
2p

x
Jp+1(x)− Jp−1(x),

p ≥ 1

10. Jp+1(x) = −2J ′p(x) + Jp−1(x),
p ≥ 1
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12.7 Legendre Polynomials

The differential equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

is called the Legendre differential equation of order n, after the
French mathematician Adrien Marie Legendre (1752-1833), because of
his work on gravitation.1 The value of n is a nonnegative integer. For
each n, the corresponding Legendre equation is known to have a polyno-
mial solution Pn(x) of degree n, called the nth Legendre polynomial.
The first few of these are recorded below.

P0(x) = 1

P1(x) = x

P2(x) =
3

2
x2 − 1/2

P3(x) =
5

2
x3 − 3

2
x

P4(x) =
35

8
x4 − 15

4
x2 +

3

8

P5(x) =
63

8
x5 − 35

4
x3 +

15

8
x,

P6(x) =
231

16
x6 − 315

16
x4 +

105

16
x2 − 5

16
.

The general formula for Pn(x) is obtained by using ordinary point theory
on Legendre’s differential equation. The polynomial is normalized to
satisfy Pn(1) = 1. The Legendre polynomial of order n:

Pn(x) =
1

2n

N∑
k=0

(−1)k(2n− 2k)!

k!(n− 2k)!(n− k)!
xn−2k,(1)

where N =

{
n/2 n even,
(n− 1)/2 n odd.

.

There are alternative formulas available from which to compute Pn. The
most famous one is named after the French economist and mathematician
Olinde Rodrigues (1794-1851), known in the literature as Rodrigues’
formula:

Pn(x) =
1

2n n!

dn

dxn

(
x2 − 1

)n
.

Equally famous is Bonnet’s recursion

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x),

which was used to produce the table of Legendre polynomials above.
The derivation of Bonnet’s formula appears in the exercises.

1Legendre is recognized more often for his 40 years of work on elliptic integrals.
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Properties of Legendre Polynomials. The main relations known
for Legendre polynomials Pn are recorded here.

Pn(1) = 1

Pn(−1) = (−1)n

P2n+1(0) = 0

P ′2n(0) = 0

Pn(−x) = (−1)nPn(x)

(n+ 1)Pn+1(x) + nPn−1(x) = (2n+ 1)xPn(x)

P ′n+1(x)− P ′n−1(x) = (2n+ 1)Pn(x)

P ′n+1(x)− xP ′n(x) = (n+ 1)Pn(x)

(1− 2xt+ t2)−1/2 =
∞∑
n=0

Pn(x)tn

∫ 1

−1
|Pn(x)|2dx =

2

2n+ 1∫ 1

−1
Pn(x)Pm(x)dx = 0 (n 6= m)

Gaussian Quadrature. A high-speed low overhead numerical pro-
cedure, called Gaussian quadrature in the literature, is defined in
terms of the zeros {xk}nk=1 of Pn(x) = 0 in −1 < x < 1 and certain
constants {ak}nk=1 by the approximation formula∫ 1

−1
f(x)dx ≈

n∑
k=1

akf(xk).

The approximation is exact when f is a polynomial of degree less than
2n. This fact is enough to evaluate the sequence of numbers {ak}nk=1,
because we can replace f by the basis functions 1, x, . . . , xn−1 to get
an n × n system for the variables a1, . . . , an. The last critical element:
the sequence {xk}nk=1 is the set of n distinct roots of Pn(x) = 0 in
−1 < x < 1. Here we need some theory, that says that these roots
number n and are all real.

Theorem 8 (Roots of Legendre Polynomials)
The Legendre polynomial Pn has exactly n distinct real roots x1, . . . , xn
located in the interval −1 < x < 1.

The importance of the Gaussian quadrature formula lies in the ability to
make a table of values that generates the approximation, except for the
evaluations f(xk). This makes Gaussian quadrature a very high speed
method, because it is based upon function evaluation and a dot product
for a fixed number of vector entries. Vector parallel computers are known
for their ability to perform these operations at high speed.
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A question: How is Gaussian quadrature different than the rectangular
rule? They are similar methods in the arithmetic requirements of func-
tion evaluation and dot product. The rectangular rule has less accuracy
than Gaussian quadrature.

Gaussian quadrature can be compared with Simpson’s rule. For n = 3,
which uses three function evaluations, Gaussian quadrature becomes∫ 1

−1
f(x)dx ≈ 5f(

√
.6) + 8f(0) + 5f(−

√
.6)

9
,

whereas Simpson’s rule with one interval is∫ 1

−1
f(x)dx ≈ 1

3
f(−1) +

4

3
f(0) +

1

3
f(1).

The reader is invited to compare the two approximations using polyno-
mials f of degree higher than 4, or perhaps a smooth positive function
f on −1 < x < 1, say f(x) = cos(x).

Table generation. The pairs (xj , aj), 1 ≤ j ≤ n, required for the right
side of the Gaussian quadrature formula, can be generated just once for
a given n by the following maple procedure.

GaussQuadPairs:=proc(n)

local a,x,xx,ans,p,eqs;

xx:=fsolve(orthopoly[P](n,x)=0,x);

x:=array(1..n,[xx]);

eqs:=seq(sum(a[j]*x[j]^k,j=1..n)=int(t^k,t=-1..1),

k=0..n-1);

ans:=solve({eqs},{seq(a[j],j=1..n)});

assign(ans);

p:=[seq([x[j],a[j]],j=1..n)];

end proc;

For simple applications, the maple code above can be attached to the
application to generate the table on-the-fly. To generate tables, such as
the one below, run the procedure for a given n, e.g., to generate the
table for n = 5, load or type the procedure given above, then use the
command GaussQuadPairs(5); .

Table 1. Gaussian Quadrature Pairs for n = 5

j xj aj
1 −0.9061798459 0.2369268851
2 −0.5384693101 0.4786286705
3 0.0000000000 0.5688888887
4 0.5384693101 0.4786286705
5 0.9061798459 0.2369268851
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Derivation of the Legendre Polynomial Formula. Let us
start with the differential equation

(1− x2)y′′ − 2xy′ + λy = 0

where λ is a real constant. It will be shown that the differential equation
has a polynomial solution if and only if λ = n(n+1) for some nonnegative
integer n, in which case the polynomial solution Pn is given by equation
(1).

Proof: The trial solution is a Maclaurin series (x = 0 is an ordinary point)

y =

∞∑
n=0

cnx
n.

Then

(1− x2)y′′ =

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
n=2

n(n− 1)cnx
n,

−2xy′ =

∞∑
n=1

−2ncnx
n,

λy =

∞∑
n=0

λcnx
n.

Let L(y) = (1− x2)y′′ − 2xy′ + λy, then, adding the above equations,

L(y) = (1− x2)y′′ − 2xy′ + λy
= (2c2 + λc0) + (6c3 − 2c1 + λc1)x

+

∞∑
n=2

((n+ 2)(n+ 1)cn+2 + (−n(n− 1)− 2n+ λ)cn)xn.

The requirement L(y) = 0 makes the left side coefficients equal the coefficients
of the zero series, giving the relations

2c2 + λc0 = 0,
6c3 − 2c1 + λc1 = 0,
(n+ 2)(n+ 1)cn+2 + (−n(n− 1)− 2n+ λ)cn = 0 (n ≥ 2).

These compress to a single two-termed second order recursion

cn+2 =
n2 + n− λ

(n+ 2)(n+ 1)
cn = 0, (n ≥ 0),

whose solution is

c2n+2 =

(
Πn
k=0

2k(2k + 1)− λ
(2k + 1)(2k + 2)

)
c0,

c2n+3 =

(
Πn
k=0

(2k + 1)(2k + 2)− λ
(2k + 2)(2k + 3)

)
c1.

Let y1 be the series solution using c0 = 1, c1 = 0 and let y2 be the series solution
using c0 = 0, c1 = 1.
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From the product form of the coefficients, it is apparent that λ = n(n+ 1) for
some integer n ≥ 0 implies one of the two series solutions y1, y2 is a polynomial,
due to either c2j+2 = 0 or c2j+3 = 0 for j ≥ n.

If some solution y is a polynomial, then y = d1y1 + d2y2 and yr ≡ 0 for some
integer r. Then d1, d2 satisfy the 2× 2 linear system(

yr1(0) yr2(0)
yr+1
1 (0) yr+1

2 (0)

)(
d1
d2

)
=

(
0
0

)
.

If λ is not a product n(n + 1) for some integer n, then the determinant of
coefficients does not equal zero, because of the formula for the coefficients of
a Maclaurin series. Cramer’s rule applies and d1 = d2 = 0. Therefore, y 6= 0
implies λ = n(n+ 1) for some integer n.

It remains to simplify the coefficients in the polynomial Pn, where Pn = y1
for n even and Pn = y2 for n odd. Only the case of n even, n = 2N , will
be verified. The odd case is left as an exercise for the reader. Observe that
2r(2r+1)−n(n+1) = (2r−n)(n+2r+1), which implies the following relation
for the coefficients of y1:

c2p+2 = c0Πp
r=0

2r(2r + 1)− n(n+ 1)

(2r + 1)(2r + 2)

= c0Πp
r=0

(2r − n)(n+ 2r + 1)

(2r + 1)(2r + 2)
.

Choose

c0 =
(−1)N

2n(N !)2
(n = 2N even).

We will match coefficients in the reported formula for Pn against the series
solution. The constant terms match by the choice of c0. To match powers
xn−2k and x2p+2, we require n − 2k = 2p + 2. To match coefficients, we must
prove

c2p+2 =
1

2n
(−1)r(2n− 2k)!

k!(n− 2k)!(n− k)!
.

Solving n− 2k = 2p+ 2 for p when n = 2N gives p = N − k − 1 and then

c2p+2 = c0Πp
r=0

(−1)(n− 2r)(n+ 2r + 1)

(2r + 1)(2r + 2)

=
(−1)2N−k

2n(N !)2
ΠN−k−1
r=0

(n− 2r)(n+ 2r + 1)

(2r + 1)(2r + 2)
.

The product factor will be converted to powers and factorials.

1 = ΠN−k−1
r=0 (n− 2r)

= (2N)(2N − 2) · · · (2k + 2)

= 2N−k(N)(N − 1) · · · (k + 1)

= 2N−k
N !

k!
.
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2 = ΠN−k−1
r=0 (n+ 2r + 1)

= (2N + 1)(2N + 3) · · · (4N − 2k − 1)

=
(2N + 1)(2N + 2)(2N + 3)(2N + 4) · · · (4N − 2k − 1)(4N − 2k)

(2N + 2)(2N + 4) · · · (4N − 2k)

=
(4N − 2k)!

(2N)!(2N)(4N) · · · (4N − 2k)

=
(4N − 2k)!

(2N)!2N−k(N + 1)(N + 2) · · · (2N − k)

=
(4N − 2k)!N !

(2N)!2N−k(2N − k)!

=
(2n− 2k)!N !

(n)!2N−k(n− k)!
because n = 2N .

3 = ΠN−k−1
r=0 (2r + 1)(2r + 2)

= [1 · 2][3 · 4] · · · [(2N − 2k − 1)(2N − 2k)]

= (n− 2k)! because n = 2N .

Then

c2p+2 =
(−1)2N−k

2n(N !)2
1 2

3

=
(−1)2N−k

2n(N !)2

2N−k
N !

k!

(2n− 2k)!N !

(n)!2N−k(n− k)!

(n− 2k)!

=
(−1)k

2nk!(n− 2k)!(n− k)!
.

This completes the derivation of the Legendre polynomial formula.

Derivation of Rodrigues’ Formula. It must be shown that the
expression for Pn(x) is given by the expansion

Pn(x) =
1

2nn!

dn

dxn

(
(x2 − 1)n

)
.

Proof: Start with the binomial expansion (a + b)n =
∑n
k=0

(
n
k

)
akbn−k.

Substitute a = −1, b = x2 to obtain

(−1 + x2)n =

n∑
k=0

(
n
k

)
(−1)k(x2)n−k

=

n∑
k=0

(−1)kn!

k!(n− k)!
x2n−2k.

The plan is to differentiate this formula n times. The derivative (d/du)num

can be written as
m!

(m− n)!
um−n. Each differentiation annihilates the constant
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term. Therefore, there are N = n/2 terms for n even and N = (n− 1)/2 terms
for n odd, and we have

dn

dxn
(
(−1 + x2)n

)
=

N∑
k=0

(−1)kn!(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k

= 2nn!Pn(x).

The proof is complete.

Exercises 12.7

Equivalent equations. Show that the
given equation can be transformed to
Legendre’s differential equation.

1. ((1− x2)y′)′ + n(n+ 1)y = 0

2. Let x = cos θ, then sin θ
d2y

dθ2
+

cos θ
dy

dθ
+ n(n+ 1) sin θy = 0.

Properties. Establish the given iden-
tity using the series relation for Pn or
other identities.

3. Pn(1) = 1

4. Pn(−1) = (−1)n
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12.8 Orthogonality

The notion of orthogonality originates in R3, where nonzero vectors v1,
v2 are said to be orthogonal, written v1 ⊥ v2, provided v1 · v2 = 0.
The dot product in R3 is defined by

x · y =

 x1
x2
x3

 ·
 y1
y2
y3

 = x1y1 + x2y2 + x3y3.

Similarly, x ·y = x1y1 +x2y2 + · · ·+xnyn defines the dot product in Rn.
Literature uses the notation (x,y) as well as x · y. Modern terminology
uses inner product instead of dot product, to emphasize the use
of functions and abstract properties. The inner product satisfies the
following properties.

(x,x) ≥ 0 Non-negativity.

(x,x) = 0 implies x = 0 Uniqueness.

(x,y) = (y,x) Symmetry.

k(x,y) = (kx,y) Homogeneity.

(x + y, z) = (x, z) + (y, z) Additivity.

The storage system of choice for answers to differential equations is a
real vector space V of functions f . A real inner product space is a
vector space V with real-valued inner product function (x,y) defined for
each x, y in V , satisfying the preceding rules.

Dot Product for Functions. The extension of the notion of dot
product to functions replaces x·y by average value. Insight can be gained
from the approximation

1

b− a

∫ b

a
F (x)dx ≈ F (x1) + F (x2) + · · ·+ F (xn)

n

where b−a = nh and xk = a+kh. The left side of this approximation is
called the average value of F on [a, b]. The right side is the classical
average of F at n equally spaced values in [a, b]. If we replace F by a
product fg, then the average value formula reveals that

∫ b
a fgdx acts like

a dot product:

1

b− a

∫ b

a
f(x)g(x)dx ≈ x · y

n
, x =


f(x1)
f(x2)

...
f(xn)

 , y =


g(x1)
g(x2)

...
g(xn)

 .
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The formula says that
∫ b
a f(x)g(x)dx is approximately a constant multi-

ple of the dot product of samples of f , g at n points of [a, b].

Given functions f and g integrable on [a, b], the formula

(f, g) =

∫ b

a
f(x)g(x)dx

defines a dot product satisfying the abstract properties cited above.
When dealing with solutions to differential equations, this dot product,
along with the abstract properties of a dot product, provide the notions
of distance and orthogonality analogous to those in R3.

Orthogonality, Norm and Distance. Define nonzero functions f
and g to be orthogonal on [a, b] provided (f, g) = 0. Define the norm
or the distance from f to 0 to be the number ‖f‖ =

√
(f, f) and the

distance from f to g to be ‖f − g‖. The basic properties of the norm
‖ · ‖ are as follows.

‖f‖ ≥ 0 Non-negativity.

‖f‖ = 0 implies f = 0 Uniqueness.

‖f + g‖ ≤ ‖f‖+ ‖g‖ The triangle inequality.

‖cf‖ = |c|‖f‖ Homogeneity.

‖f‖ =
√

(f, f) Norm and the inner product.

Weighted Dot Product. In applications of Bessel functions, use is
made of the weighted dot product

(f, g) =

∫ b

a
f(x)g(x)ρ(x)dx,

where ρ(x) > 0 on a < x < b.

The possibility that ρ(x) = 0 at some set of points in (a, b) has been con-
sidered by researchers, as well as the possibility of singularity at x = a or
x = b. Finally, a = −∞ and/or b =∞ have also been considered. Prop-
erties we advertise here mostly hold in these extended cases, provided
appropriate additional assumptions are invoked.

Theorem 9 (Orthogonality of Legendre Polynomials)
The Legendre polynomials {Pn}∞n=0 satisfy the orthogonality relation∫ 1

−1
Pn(x)Pm(x)dx = 0, n 6= m.

The relation means that Pn and Pm (n 6= m) are orthogonal on [−1, 1]
relative to the dot product (f, g) =

∫ 1
−1 f(x)g(x)dx.
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Proof: The details use only the Legendre differential equation (1 − x2)y′′ −
2xy′ + n(n + 1)y = 0 in the form ((1 − x2)y′)′ + n(n + 1)y = 0 and the fact
that a(x) = 1 − x2 is zero at x = ±1. From the definition of the Legendre
polynomials, the following differential equations are satisfied:

(aP ′n)′ + n(n+ 1)Pn = 0,

(aP ′m)′ +m(m+ 1)Pm = 0.

Multiply the first by Pm and the second by Pn, then subtract to obtain

(m(m+ 1)− n(n+ 1))PnPm = (aP ′n)′Pm − (aP ′m)′Pn.

Re-write the right side of this equation as (aP ′nPm − aP ′mPn)′. Then integrate
over −1 < x < 1 to obtain

LHS = (m(m+ 1)− n(n+ 1))

∫ 1

−1
Pn(x)Pm(x)dx

= (a(x)P ′n(x)Pm(x)− a(x)P ′m(x)Pn(x))|x=1
x=−1

= 0.

The result is zero because a(x) = 1− x2 is zero at x = 1 and x = −1. The dot
product of Pn and Pm is zero, because m(m+ 1)− n(n+ 1) 6= 0. The proof is
complete.

Theorem 10 (Orthogonality of Bessel Functions)
Let the Bessel function Jn have positive zeros {bmn}∞m=1. Given R > 0,
define fm(r) = Jn(bmnr/R). Then the following weighted orthogonality
relation holds. ∫ R

0
fi(r)fj(r)rdr = 0, i 6= j.

The relation means that fi and fj (i 6= j) are orthogonal on [0, R] relative

to the weighted dot product (f, g) =
∫ R
0 f(r)g(r)ρ(r)dr, where ρ(r) = r.

Proof: The details depend entirely upon the Bessel differential equation of
order n, x2y′′+xy′+ (x2−n2)y = 0, and the condition y(bmn) = 0, valid when
y = Jn. Let λ = bmn/R and change variables by x = λr, w(r) = y(λr). Then
w satisfies dw/dr = y′(x)λ, d2w/dr2 = y′′(x)λ2 and the differential equation
for y implies the equation

r2
d2w

dr2
(r) + r

dw

dr
(r) + (λ2r2 − n2)w(r) = 0.

Apply this change of variables to Bessel’s equation or orders i and j. Then

r2f ′′i (r) + rf ′i(r) + (b2inr
2R−2 − n2)fi(r) = 0,

r2f ′′j (r) + rf ′j(r) + (b2jnr
2R−2 − n2)fj(r) = 0.

Multiply the first equation by fj(r) and the second by fi(r), then subtract and
divide by r to obtain

rf ′′i fj − rf ′′j fi + f ′ifj − f ′jfi + (b2in − b2jn)rR−2fifj = 0.
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Because of the calculus identities rw′′ + w′ = (rw′)′ and (rw′1w2 − rw′2w2)′ =
(rw′1)′w2 − (rw′2)′w1, this equation can be re-written in the form

(b2jn − b2in)R−2rfifj = (rf ′ifj − rf ′jfi)′.

Integrate this equation over 0 < r < R. Then the right side evaluates to zero,
because of the conditions fi(R) = fj(R) = 0. The left side evaluates to a

nonzero multiple of
∫ R
0
fi(r)fj(r)rdr. Therefore, the weighted dot product of

fi and fj is zero. This completes the proof.

Series of Orthogonal Functions. Let (f, g) denote a dot product
defined for functions f , g. Especially, we include (f, g) =

∫ b
a fgdx and

a weighted dot product (f, g) =
∫ b
a fgρdx. Let {fn} be a sequence of

nonzero functions orthogonal with respect to the dot product (f, g), that
is,

(fi, fj) = 0, i 6= j, (fi, fi) > 0.

A generalized Fourier series is a convergent series of functions

F (x) =
∞∑
n=1

cnfn(x).

The coefficients {cn} are called the Fourier coefficients of F . Conver-
gence is taken in the sense of the norm ‖g‖ =

√
(g, g):

F =
∞∑
n=1

cnfn means lim
N→∞

∥∥∥∥∥
N∑
n=1

cnfn − F
∥∥∥∥∥ = 0.

For example, when ‖g‖ =
√

(g, g) and (f, g) =
∫ b
a fgdx, then series

convergence is called mean-square convergence and it is defined by

lim
N→∞

√√√√√∫ b

a

∣∣∣∣∣
N∑
n=1

cnfn(x)− F (x)

∣∣∣∣∣
2

dx = 0.

Orthogonal series method. The coefficients {cn} in an orthogo-
nal series are determined by a technique called the orthogonal series
method, described in words as follows.

The coefficient cn in an orthogonal series is found by taking
the dot product of the equation with the orthogonal function
that multiplies cn.

The details of the method:

(F, fn) =

( ∞∑
k=1

ckfk, fn

)
Dot product the equation with fn.
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(F, fn) =
∞∑
k=1

ck(fk, fn) Apply dot product properties.

(F, fn) = cn(fn, fn) By orthogonality, just one term re-
mains from the series on the right.

Division after the last step leads to the Fourier coefficient formula

cn =
(F, fn)

(fn, fn)
.

Bessel inequality and Parseval equality. Assume given a dot
product (f, g) for an orthogonal series expansion

F (x) =
∞∑
n=1

cnfn(x).

Bessel’s inequality

N∑
n=1

|(F, fn)|2

‖fn‖2
≤ ‖F‖2

is proved as follows. Let N ≥ 1 be given and let SN =
∑N
n=1 cnfn. Then

(SN , SN ) =

(
N∑
n=1

cnfn,
N∑
k=1

ckfk

)
Definition of SN .

=
N∑
n=1

N∑
k=1

cnck(fn, fk) Linearity properties of the dot
product.

=
N∑
n=1

cncn(fn, fn) Because (fn, fk) = 0 for n 6= k.

=
N∑
n=1

|cn|2‖fn‖2 Because ‖g‖2 = (g, g).

(F, SN ) =
N∑
n=1

cn(F, fn) Linearity of the dot product.

=
N∑
n=1

|cn|2‖fn‖2 Fourier coefficient formula.

Then

0 ≤ ‖F − SN‖2 The norm is non-negative.

= (F − SN , F − SN ) Use ‖g‖2 = (g, g).

= (F, F ) + (SN , SN )− 2(F, SN ) Dot product properties.
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= (F, F )−
∑N
n=1 |cn|2‖fn‖2 Apply previous formulas.

This proves
N∑
n=1

|cn|2‖fn‖2 ≤ (F, F ),

or what is the same, because of the Fourier coefficient formula,

N∑
n=1

|(F, fn)|2

‖fn‖2
≤ (F, F ).

Letting N →∞ gives Bessel’s inequality
∑∞
n=1

|(F,fn)|2
‖fn‖2 ≤ (F, F ).

Parseval’s equality is equality in Bessel’s inequality:

‖F‖2 =
N∑
n=1

|(F, fn)|2

‖fn‖2
.

There is a fundamental relationship between Parseval’s equality and the
possibility to expand a function F as an infinite orthogonal series in the
functions {fn}. In literature, the relationship is known as completeness
of the orthogonal sequence {fn}. The definition: {fn} is complete if and
only if each function F has a series expansion F =

∑∞
n=1 cnfn for some

set of coefficients {cn}. When equality holds, the coefficients cn are given
by Fourier’s coefficient formula.

Theorem 11 (Parseval)
A sequence {fn} is a complete orthogonal sequence if and only if Parseval’s
equality holds.

Therefore, the equation F =
∑∞
n=1

(F,fn)
(fn,fn)

fn holds for every F if and only
if Parseval’s equality holds for every F .

Legendre series. A convergent series of the form

F (x) =
∞∑
n=0

cnPn(x)

is called a Legendre series. The orthogonal system {Pn} on [−1, 1]
under the dot product (f, g) =

∫ 1
−1 f(x)g(x)dx together with Fourier’s

coefficient formula gives

cn =

∫ 1
−1 F (x)Pn(x)dx∫ 1
−1 |Pn(x)|2dx

.

The denominator in this fraction can be evaluated for all values of n:∫ 1

−1
|Pn(x)|2dx =

2

2n+ 1
.
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Theorem 12 (Legendre expansion)
Let F be defined on −1 ≤ x ≤ 1 and assume F and F ′ are piecewise
continuous. Then the Legendre series expansion of F converges and equals
F (x) at each point of continuity of F . At other points, the series converges
to 1

2(F (x+) + F (x−)).

Bessel series. A convergent infinite series of the form

F (r) =
∞∑
n=1

cnJm(bnmr/R), 0 < r < R,

is called a Bessel series. The index m, assumed here to be a non-
negative integer, is fixed throughout the series terms. The sequence
{bnm}∞n=1 is an ordered list of the positive zeros of Jm.

The weighted dot product (f, g) =
∫ R
0 f(r)g(r)rdr is used. It is known

that the sequence of functions fn(r) = Jm(bnmr/R) is orthogonal relative
to the weighted dot product (·, ·). Then Fourier’s coefficient formula
implies

cn =

∫ R
0 F (r)Jm(bnmr/R)rdr∫ R
0 |Jm(bnmr/R)|2rdr

.

To evaluate the denominator of the above fraction, let’s denote ′ = d/dr,
y(r) = fn(r) = Jm(bnmr/R). Use r(ry′)′ + (b2nmr

2R−2 − n2)y = 0, the
equation used to prove orthogonality of Bessel functions. Multiply this
equation by 2y′. Re-write the resulting equation as

[(ry′)2]′ + (b2nmr
2R−2 − n2)[y2]′ = 0.

Integrate this last equation over [0, R]. Use parts on the term involving
r2[y2]′. Then use Jm(0) = 0, y′ = (bnm/R)J ′m(bnmr/R) and xJ ′m(x) =
mJm(x)− xJm+1(x) to obtain∫ R

0
|Jm(bnmr/R)|2rdr =

R2

2
|Jm+1(bnm)|2.

Theorem 13 (Bessel expansion)
Let F be defined on 0 ≤ x ≤ R and assume F and F ′ are piecewise
continuous. Then the Bessel series expansion of F converges and equals
F (x) at each point of continuity of F . At other points, the series converges
to 1

2(F (x+) + F (x−)).

Exercises 12.8

Legendre series. Establish the fol-
lowing results, using the supplied
hints.

1. Prove

∫ 1

−1
|Pn(x)|2dx =

2

2n+ 1
.

2.
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3.

4.

5. Let (f, g) =
∫ π
0
f(x)g(x) sin(x)dx.

Show that the sequence

{Pn(cosx)}

is orthogonal on 0 ≤ x ≤ π with
respect to inner product (f, g).

6. Let F (x) = sin3(x)−sin(x) cos(x).
Expand F as a Legendre series of
the form

F (x) =
∞∑
n=0

cnPn(cosx).

Chebyshev Polynomials. Define

Tn(x) = cos(n arccos(x)).

These are called Chebyshev polyno-
mials. Define

(f, g) =

∫ 1

−1
f(x)g(x)(1− x2)−1/2dx.

7. Show that T0(x) = 1, T1(x) = x,
T2(x) = 2x2 − 1.

8. Show that T3(x) = 4x3 − 3x.

9. Prove that (f, g) satisfies the ab-
stract properties of an inner prod-
uct.

10. Show that Tn is a solution of
the Chebyshev equation (1 −
x2)y′′ − xy′ + n2y = 0.

11. Prove that {Tn} is orthogonal rel-
ative to the weighted inner prod-
uct (f, g).

Hermite Polynomials. Define the
Hermite polynomials by H0(x) = 1
and inductively

Hn(x) = (−1)nex
2/2 d

n

dxn

(
e−x

2/2
)
.

Define the inner product

(f, g) =

∫ ∞
−∞

f(x)g(x)e−x
2/2dx.

12. Show that H1(x) = x, H2(x) =
x2 − 1.

13. Show that H3(x) = x3 − 3x,
H4(x) = x4 − 6x2 + 3.

14. Prove that H ′n(x) = nHn−1(x).

15. Prove that Hn+1(x) = xHn(x) −
H ′n(x).

16. Show that Hn is a polynomial
solution of Hermite’s equation
y′′ − xy′ + ny = 0.

17. Prove that (f, g) defines an inner
product.

18. Show that the sequence {Hn(x)}
is orthogonal with respect to
(f, g).

Laguerre Polynomials. Define the
Laguerre polynomials byL0(x) = 1
and inductively

Ln(x) =
ex

n!

dn

dxn
(
xne−x

)
.

Define the inner product

(f, g) =

∫ ∞
0

f(x)g(x)e−xdx.

19. Show that L1(x) = 1−x, L2(x) =
1− 2x+ x2/2.

20. Show that L3(x) = 1 − 3x +
3x2/2− x3/6.

21. Prove that (f, g) satisfies the ab-
stract properties for an inner
product.

22. Show that L0, L1, L2 are orthogo-
nal with respect to the inner prod-
uct (f, g), using direct integration
methods.

23. Show that Ln can be expressed by
the formula

Ln(x) =

n∑
k=0

n!

(n− k)!k!k!
(−x)n.

24. Show that {Ln} is an orthogonal
sequence with respect to (f, g).

25. Find an expression for a poly-
nomial solution to Laguerre’s
equation xy′′+(1−x)y′+ny = 0
using Frobenius theory.

26. Show that Laguerre’s equation
is satisfied for y = Ln.


