Periodic Functions and Orthogonal Systems

- Periodic Functions
- Even and Odd Functions
- Properties of Even and Odd Functions
- Properties of Periodic Functions
- Piecewise-Defined Functions
- Representations of Even and Odd Extensions
- Integration and Differentiation of Piecewise-Defined Functions
- Inner Product
- Orthogonal Functions
- Trigonometric System Details

Periodic Functions

Definition. A function f is T-periodic if and only if $f(t+T)=f(t)$ for all t.
Definition. The floor function is defined by
floor $(x)=$ greatest integer not exceeding x.
Theorem. Every function \boldsymbol{g} defined on $\mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{T}$ has a \boldsymbol{T}-periodic extension f defined on the whole real line by the formula

$$
f(x)=g(x-T \text { floor }(x / T)) .
$$

Even and Odd Functions

Definition. A function $f(x)$ is said to be even provided

$$
f(-x)=f(x), \quad \text { for all } x
$$

A function $\boldsymbol{g}(\boldsymbol{x})$ is said to be odd provided

$$
\boldsymbol{g}(-\boldsymbol{x})=-\boldsymbol{g}(\boldsymbol{x}), \quad \text { for all } \boldsymbol{x}
$$

Definition. Let $\boldsymbol{h}(\boldsymbol{x})$ be defined on $[\mathbf{0}, \boldsymbol{T}]$.
The even extension f of \boldsymbol{h} to $[-T, T]$ is defined by

$$
f(x)=\left\{\begin{array}{lc}
h(x) & 0 \leq x \leq T \\
h(-x) & -T \leq x<0
\end{array}\right.
$$

Assume $\boldsymbol{h}(\mathbf{0})=\mathbf{0}$. The odd extension \boldsymbol{g} of \boldsymbol{h} to $[-\boldsymbol{T}, \boldsymbol{T}]$ is defined by

$$
g(x)= \begin{cases}h(x) & 0 \leq x \leq T \\ -h(-x) & -T \leq x<0\end{cases}
$$

Properties of Even and Odd Functions

Theorem. Even and odd functions have the following properties.

- The product and quotient of an even and an odd function is odd.
- The product and quotient of two even functions is even.
- The product and quotient of two odd functions is even.
- Linear combinations of odd functions are odd.
- Linear combinations of even functions are even.

Theorem. Among the trigonometric functions, the cosine and secant are even and the sine and cosecant, tangent and cotangent are odd.

Properties of Periodic Functions

Theorem. If \boldsymbol{f} is \boldsymbol{T}-periodic and continuous, and \boldsymbol{a} is any real number, then

$$
\int_{0}^{T} f(x) d x=\int_{a}^{a+T} f(x) d x
$$

Theorem. If \boldsymbol{f} and \boldsymbol{g} are \boldsymbol{T}-periodic, then

- $\boldsymbol{c}_{1} f(\boldsymbol{x})+\boldsymbol{c}_{2} \boldsymbol{g}(\boldsymbol{x})$ is \boldsymbol{T}-periodic for any constants $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}$
- $\boldsymbol{f}(\boldsymbol{x}) \boldsymbol{g}(\boldsymbol{x})$ is \boldsymbol{T}-periodic
- $\boldsymbol{f}(\boldsymbol{x}) / \boldsymbol{g}(\boldsymbol{x})$ is \boldsymbol{T}-periodic
- $\boldsymbol{h}(\boldsymbol{f}(\boldsymbol{x}))$ is \boldsymbol{T}-periodic for any function \boldsymbol{h}

Piecewise-Defined Functions

\qquad
Definition. For $a \leq b$, define pulse $(x, a, b)= \begin{cases}1 & a \leq x<b, \\ 0 & \text { otherwise }\end{cases}$
Definition. Assume that $a \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n+1} \leq b$. Let $f_{1}, f_{2}, \ldots, f_{n}$ be continuous functions defined on $-\infty<\boldsymbol{x}<\infty$. A piecewise continuous function f on a closed interval $[\boldsymbol{a}, \boldsymbol{b}]$ is a sum

$$
f(x)=\sum_{j=1}^{n} f_{j}(x) \text { pulse }\left(x, x_{j}, x_{j+1}\right)
$$

If additionally f_{1}, \ldots, f_{n} are continuously differentiable on $-\infty<\boldsymbol{x}<\infty$, then sum f is called a piecewise continuously differentiable function.

Representations of Even and Odd Extensions

Theorem. The following formulas are valid.

- If \boldsymbol{f} is the even extension on $[-\boldsymbol{T}, \boldsymbol{T}]$ of a function \boldsymbol{g} defined on $[0, \boldsymbol{T}]$, then

$$
f(x)=g(x) \text { pulse }(x, 0, T)+g(-x) \text { pulse }(x,-T, 0)
$$

- If \boldsymbol{f} is the odd extension on $[-\boldsymbol{T}, \boldsymbol{T}]$ of a function \boldsymbol{h} defined on $[0, \boldsymbol{T}]$, then

$$
f(x)=h(x) \operatorname{pulse}(x, 0, T)-h(-x) \text { pulse }(x,-T, 0)
$$

- The $\mathbf{2 T}$-periodic extension \boldsymbol{F} of \boldsymbol{f} is given by

$$
F(x)=f(x-2 T \text { floor }(x /(2 T)))
$$

Integration and Differentiation of Piecewise-Defined Functions

\qquad
Theorem. Assume the piecewise-defined function is given on $[\boldsymbol{a}, \boldsymbol{b}]$ by the pulse formula

$$
f(x)=\sum_{j=1}^{n} f_{j}(x) \text { pulse }\left(x, x_{j}, x_{j+1}\right)
$$

Then

$$
\int_{a}^{b} f(x) d x=\sum_{j=1}^{n} \int_{x_{j}}^{x_{j+1}} f_{j}(x) d x
$$

If \boldsymbol{x} is not a division point $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n+1}$, and each \boldsymbol{f}_{j} is differentiable, then

$$
f^{\prime}(x)=\sum_{j=1}^{n} f_{j}^{\prime}(x) \text { pulse }\left(x, x_{j}, x_{j+1}\right)
$$

Inner Product

Definition. Define the inner product symbol $\langle\boldsymbol{f}, \boldsymbol{g}\rangle$ by the formula

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

If the interval $[\boldsymbol{a}, \boldsymbol{b}]$ is important, then we write $\langle\boldsymbol{f}, \boldsymbol{g}\rangle_{[a, b]}$. The inner product $\langle\cdot, \cdot\rangle$ has the following properties:

- $\langle f, f\rangle \geq \mathbf{0}$ and for continuous $f,\langle f, f\rangle=\mathbf{0}$ implies $f=\mathbf{0}$.
- $\left\langle f, g_{1}+g_{2}\right\rangle=\left\langle f, g_{1}\right\rangle+\left\langle f, g_{2}\right\rangle$
- $c\langle f, g\rangle=\langle c f, g\rangle$
- $\langle\boldsymbol{f}, \boldsymbol{g}\rangle=\langle\boldsymbol{g}, \boldsymbol{f}\rangle$

Orthogonal Functions

\qquad
Definition. Two nonzero functions $\boldsymbol{f}, \boldsymbol{g}$ defined on $\boldsymbol{a} \leq \boldsymbol{x} \leq \boldsymbol{b}$ are said to be orthogonal provided $\langle f, g\rangle=0$.

Definition. Functions f_{1}, \ldots, f_{n} are called an orthogonal system provided

- $\left\langle f_{j}, f_{j}\right\rangle>0$ for $j=1, \ldots, n$
- $\left\langle f_{i}, f_{j}\right\rangle=0$ for $i \neq j$

Theorem. An orthogonal system f_{1}, \ldots, f_{n} on $[a, b]$ is linearly independent on $[a, b]$.
Theorem. The first three Legendre polynomials $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=$ $\frac{1}{2}\left(x^{2}-1\right)$ are an orthogonal system on $[-1,1]$. In general, the system $\left\{P_{j}(x)\right\}_{j=0}^{\infty}$ is orthogonal on $[-1,1]$.

Theorem. The trigonometric system $1, \cos x, \cos 2 x, \ldots, \sin x, \sin 2 x, \ldots$ is an or thogonal system on $[-\pi, \pi]$.

Trigonometric System Details

Theorem. The orthogonal trigonometric system $1, \cos x, \cos 2 x, \ldots, \sin x, \sin 2 x$, \ldots on $[-\boldsymbol{\pi}, \boldsymbol{\pi}]$ has the orthogonality relations
$\langle\sin n x, \sin m x\rangle=\int_{-\pi}^{\pi} \sin n x \sin m x d x= \begin{cases}0 & n \neq m \\ \pi & n=m\end{cases}$
$\langle\cos n x, \cos m x\rangle=\int_{-\pi}^{\pi} \cos n x \cos m x d x= \begin{cases}0 & n \neq m \\ \pi & n=m>0 \\ 2 \pi & n=m=0\end{cases}$ $\langle\sin n x, \cos m x\rangle=\int_{-\pi}^{\pi} \sin n x \cos m x d x=0$.

