\qquad
Partial Differential Equations 3150
Sample Final Exam
Final Exam Date: Thursday, 2 May 2013

Instructions: This exam is timed for 120 minutes. You will be given 30 extra minutes to complete the exam. No calculators, notes, tables or books. Problems use only chapters 1, 2, 3, 4, 7 of the textbook. No answer check is expected. Details count 3/4, answers count $1 / 4$.
Problems 1,2,3: Selected problem types from the first two midterm exams. See the sample exams and exam solutions for midterms 1 and 2, for specific examples.
4. (CH4. Poisson Problem)

Solve for $u(x, y)$ in the Poisson problem

$$
\left\{\begin{array}{lll}
u_{x x}+u_{y y}=\sin (\pi x) \sin (\pi y), & 0<x<1, \quad 0<y<1 \\
u(x, 0) & =4 \sin (\pi x), & \\
u(x, y) & =0 & \\
\text { on the other } 3 \text { boundary edges. }
\end{array}\right.
$$

This problem is studied in Asmar section 4.6 for the disk and vi Section 3.9 for a rectangular plate. Both wise the method of elgon functions and the Helmholtz 2 equation $\nabla^{2} \phi=-\lambda \phi$
Sub-divide. Let $u=u_{1}+u_{2}$, where

$$
u_{1} \text { solves }\left\{\begin{array}{l}
u_{x x}+u_{y y}=f(x, y) \\
u(x, y)=0 \text { on bounding; } ; \quad u_{2} \text { solves }\left\{\begin{array}{l}
u_{x x}+u_{y y}=0 \\
u(x, 0)=4 \sin (\pi x) \\
u=0 \text { on } 3 \text { edges }
\end{array} \text { Nd } u_{2}\right. \text { on }
\end{array}\right.
$$

$\begin{aligned} & \text { Find } u_{2} \\ & u_{2}=\sum_{1}^{\infty} A_{n} \operatorname{tin}\left(\frac{n \pi x}{a}\right) \sinh \left(\frac{n \pi}{a}(b-y)\right) \text { where } a=b=1\end{aligned}$

$$
\begin{array}{ll}
A_{n}=\frac{2}{\sinh (n \pi)} \int_{0}^{1} 4 \sin (\pi x) \sin (n \pi x) d x \\
A_{n}=0 \quad \text { except for } n=1, \quad A_{1}=\frac{4}{\sinh (\pi)},
\end{array} \quad \begin{aligned}
& u_{2}=\frac{4 \sin (\pi x)}{\sinh (\pi)} \sinh (\pi(1-y))
\end{aligned}
$$

Find $u_{1} \infty \infty$

$$
\begin{aligned}
& u_{1}=\sum_{1}^{\infty} \sum_{1}^{\infty} E_{m n} \underbrace{\sin \left(\frac{n \pi}{a} x\right) \sin \left(\frac{m \pi}{b} y\right)}_{\text {product solutions }} \begin{array}{l}
f(x, y)=\sum \sum-E_{m n} \lambda_{m n} \sin (n \pi x) \sin (m \pi y), \quad \lambda_{m n}=(m \pi)^{2}+(n \pi)^{2}
\end{array},=b=1
\end{aligned}
$$

By or Thogonality and $f(x, y)=\sin (\pi x) \sin (\pi y)$, only $m=n=1$ produce a nonzero answer $-E_{m n} \lambda_{m n}$. Than $-E_{11} \lambda_{11}=1$ and

$$
u_{1}=\frac{-1}{2 \pi^{2}} \sin (\pi x) \sin (\pi y)
$$

Use this page to stat yoursotution. "Attach extra pages as needed, then staple.
then $\quad u=u_{1}+u_{2}$
answer check: u_{2} cheats becural $(\sin (\pi x))^{\prime \prime}=-\pi^{2} \sin \pi x$ and $(\sinh (\pi(1-y)))^{\prime \prime}=\pi^{2} \operatorname{Arin}(\pi(1-y))$. To check u_{1}, take end Qevivativios and add to $=\left(-\pi^{2} u_{1}-\pi^{2} u_{1}\right)=f(x, y)$. The BC of each are checked also.
\qquad
5. (CH7. Fourier Transform: Infinite Rod)

Let $f(x)=\operatorname{pulse}(x,-2,2)$, that is, $f(x)=1$ for $|x|<2$ and $f(x)=0$ elsewhere on $-\infty<$ $x<\infty$.
(a) $[75 \%$] Solve the insulated rod heat conduction problem

$$
\begin{cases}u_{t}(x, t)=u_{x x}(x, t), & -\infty<x<\infty, \quad t>0 \\ u(x, 0)=f(x), & -\infty<x<\infty\end{cases}
$$

See Asmar Ex, Section 7.4.
(b) [25\%] Evaluate the limit of $u(x, t)$ at $x=\infty$ and $x=-\infty$.
(a) Let $y(t)=F T[u(x, t)]$. Ten Fourier transform Mules give

$$
\begin{aligned}
& F T\left[u_{t}\right]=F T\left[u_{x x}\right] \\
& \frac{d}{d t} F T[u]=(i \omega)^{2} F T[u] \\
&\left\{\begin{array}{l}
d \\
d t \\
t
\end{array}(t)\right.=-\omega^{2} y(t) \\
& y(0)=F(\omega)=\text { Fourier trans form of } f(x)
\end{aligned}
$$

By the mite grating factor shortcut, $y(t)=\frac{c}{e^{\omega^{2} t}}$ and $c=F(\omega)$, which implies $y(t)=F(\omega) e^{-\omega^{2} t}$. This monad $e^{\omega^{2} t}$ continues, writing $e^{-\omega^{2} t}=F T[g]$ and hen $y^{\prime}(t)=F(\omega) G(\omega)=F T[f * g]$. (Details left out
(a) Heat Kernel method

$$
\begin{gathered}
g_{t}=\frac{1}{\sqrt{2 t}} e^{-x^{2} /(4 t)} \text { and } u(x, t)=\left(f * g_{t}\right)(x) \\
u(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(s) g_{t}(x-s) d s=\frac{1}{\sqrt{2 \pi}} \int_{-2}^{2} 1 \cdot g_{t}(x-s) d s \\
=\frac{1}{\sqrt{2} \pi}\left(\int_{-2}^{2} e^{\left.-\frac{(x-s)^{2}}{4 t}\right)} d s\right) \cdot \frac{1}{\sqrt{2 t}}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{r f e}{\operatorname{vans}} \\
& z^{2}=\frac{\sqrt{x}-s)^{2}}{4 t} \text { or } z=(x-s) /(2 \sqrt{t}), d z=-d s /(2 \sqrt{t}) \\
& u(x, t)=\frac{1}{2 \sqrt{\pi t}}\left(\int_{z_{1}}^{z_{2}} e^{-z^{2}} d z\right)(2 \sqrt{t})=\frac{\sqrt{\pi}}{2} \frac{1}{\sqrt{\pi}}\left(\operatorname{erf}\left(z_{2}\right)-\operatorname{elf}\left(z_{1}\right)\right)
\end{aligned}
$$

where $z_{1}=\frac{x-2}{2 \sqrt{t}}, \quad z_{2}=\frac{x+2}{2 \sqrt{t}}$
Use this page to start your solution. Attach extra pages as needed, then staple.
(b) Limit Because $\operatorname{erf}(\infty)=1$ and $\operatorname{erf}(-\infty)=-1$

Ten $u(\infty, t)=0=u(-\infty, t)$.
\qquad
6. (CH4. Heat Equation and Gauss' Heat Kernel)

Solve the insulated rod heat conduction problem

$$
\left\{\begin{array}{lll}
u_{t}(x, t) & =\frac{1}{4} u_{x x}(x, t), & -\infty<x<\infty, \quad t>0 \\
u(x, 0) & =f(x) \\
f(x) & = \begin{cases}20 & |x|<1, \\
0 & \text { otherwise }\end{cases}
\end{array}\right.
$$

Hint: Use convolutions, the heat kernel, the error function $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$, and Fourier transform rules to solve the problem. The answer is expressed in terms of the error function.
The heat kunel is $g_{t}=\sqrt{\frac{2}{t}} e^{-x^{2} / t}$ because $c^{2}=\frac{1}{4}, c=\frac{1}{2}$
Then $u(x, t)=\left(f * g_{t}\right)(x)$

$$
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(s) g_{t}(x-s) d s
$$

$=\frac{20}{\sqrt{2 \pi}} \int_{-1}^{1} g_{t}(x-s) d s \quad$ use def of $f(x)$

$$
=\frac{20}{\sqrt{2 \pi}} \sqrt{\frac{2}{t}} \int_{-1}^{1} e^{-(x-s)^{2} / t} d s
$$

$=\frac{20}{\sqrt{\pi t}}\left(\int_{z_{1}}^{q_{2}} e^{-z^{2}} d z\right) \sqrt{t} \cdot$ Let $z=\frac{x-5}{\sqrt{t}}, \begin{aligned} & d z=-\frac{d s}{\sqrt{t}}\end{aligned}$

$$
=\frac{20}{\sqrt{\pi}}\left(e n f\left(z_{2}\right)-\operatorname{en}\left(z_{1}\right)\right) \quad z_{1}=\frac{x-1}{\sqrt{t}}, z_{2}=\frac{x+1}{\sqrt{t}}
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

