\qquad KEY

Partial Differential Equations 3150
Sample Midterm Exam 2
Exam Date: Monday, 22 April 2013
Instructions: This exam is timed for 50 minutes. You will be given double time to complete the exam. No calculators, notes, tables or books. Problems use only chapters 1 to 4 of the textbook. No answer check is expected. Details count 3/4, answers count $1 / 4$.
la. (CH3. Finite String: Fourier Series Solution)
(a) [75\%] Display the series formula without derivation details for the finite string problem

$$
\left\{\begin{array}{lll}
u_{t t}(x, t)=c^{2} u_{x x}(x, t), & 0<x<L, & t>0 \\
u(0, t)=0, & t>0 \\
u(L, t)=0, & t>0 \\
u(x, 0)=0, & 0<x<L, & \\
u_{t}(x, 0)=g(x), & 0<x<L . &
\end{array}\right.
$$

(b) [25\%] Display an explicit formula for the Fourier coefficients which contains the symbols L, $g(x)$.
(a) The normal modes are $\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right), \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right)$ but $u(x, 0)=0$, which implies no cosine terms. Then

$$
\begin{aligned}
& x, 0)=0 \text {, what in plies no cosine terns. Th } \\
& u(x, t)=\sum_{n=1}^{c o} b_{n}^{*} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n c t}{L}\right)
\end{aligned}
$$

(b) Find $\frac{d}{d t}$ of This ${ }^{n}=1$ equation, substitute $t=0$, then

$$
g(x)=\sum_{n=1}^{\infty} \frac{n \pi c}{L} b_{n}^{*} \sin \left(\frac{n \pi x}{L}\right) \cos (0)
$$

The right sick is a mme series. Use orthogonality of The fine terms to obtain

$$
\begin{aligned}
\frac{n \pi c}{L} b_{n}^{*} & =\int_{0}^{L} g(x) \sin \left(\frac{n \pi x}{L}\right) d x / \int_{0}^{L} \sin ^{2}\left(\frac{n \pi x}{2}\right) d x \\
b_{n}^{*} & =\frac{2}{L} \int_{0}^{L} g(x) \sin \left(\frac{n \pi x}{L}\right) d x /\left(\frac{n \pi c}{L}\right)
\end{aligned}
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

Name. \qquad KEY
db. (CH3. d'Alembert's Solution: Finite String)
Let $f(x)=\left\{\begin{array}{ll}0.3 x & 0 \leq x \leq 0 / 5, \\ 0.3(1-x) & 0.5<x \leq 1 .\end{array}\right.$ and define $g(x)=0$ on $0 \leq x \leq 1$. Assumed is d'Alembert's solution to the vibrating string problem on $0<x<1, t>0$, which is the formula

$$
u(x, t)=\frac{1}{2}\left(f^{*}(x-c t)+f^{*}(x+c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} \frac{g^{*}(s) d s .}{\sim} \text { error }
$$

Assume $L=1$ and $c=1 / \pi$.
(a) $[25 \%]$ Define f^{*}, g^{*} as appropriate periodic extensions of f and g, respectively.
(b) [75\%] Display a piecewise-defined formula for $u(x, \pi / 3)$ on $0<x<1$.
(a) f^{*}, g^{*} are The odd 2-periodic extensions of f, g, res p.

$$
\text { DEF. } \quad f^{*}(x)= \begin{cases}f(x) & 0 \leq x \leq 1 \\ -f(-x) & -1 \leq x \leq 0\end{cases}
$$

$$
f^{*}(x+2)=f^{*}(x)
$$

DEF: $g_{\text {Then }}^{*}$ defingodimilarly, odd and 2-poriodic.
(b)

$$
\begin{aligned}
& x(x, t)=\frac{1}{2}\left(f^{*}(x-c t)+f^{*}(x+c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} g^{*}(s) d s \\
&=\frac{1}{2}\left(f^{*}(x-c t)+f^{*}(x+c t)\right) \quad \text { became } g=0 \\
& u\left(x, \frac{\pi}{3}\right)\left.=\frac{1}{2} f^{*}\left(x-\frac{c \pi}{3}\right)+f^{*}\left(x+\frac{c \pi}{3}\right)\right) \\
&=\frac{1}{2}\left(f^{*}\left(x-\frac{1}{3}\right)+f^{*}\left(x+\frac{1}{3}\right)\right) \quad b \text { comes } \\
& \text { For ocxe1, Tea }-\frac{1}{3}<x-1 / \pi<2 / 3 \quad \text { and } \quad \frac{1}{3}<x+\frac{1}{3}<1+\frac{1}{3}
\end{aligned}
$$ This is perhaps the best formula, without fur then attempts to simplify.

Use this page to start your solution. Attach extra pages as needed, then staple.
\qquad
2. (CH3. Heat Conduction in a Bar)

Consider the heat conduction problem in a laterally insulated bar of length 1 with one end at zero Celsius and the other end at 100 Celsius. The initial temperature along the bar is given by function $f(x)$.
(3)

$$
\left\{\begin{array}{lll}
u_{t}=c^{2} u_{x x}, & 0<x<1, & t>0, \\
u(0, t)=0, & t>0, \\
u(1, t)=100, & t>0, \\
u(x, 0)=f(x), & 0<x<1 . &
\end{array}\right.
$$

(a) [25\%] Find the steady-state temperature $u_{1}(x)$.
(b) $[50 \%]$ Solve the bar problem with zero Celsius temperatures at both ends, but $f(x)$ replaced by $f(x)-u_{1}(x)$. Call the answer $u_{2}(x, t)$. The answer has Fourier coefficients in integral form, unevaluated, to save time.
(c) [25\%] Explain why $u(x, t)=u_{1}(x)+u_{2}(x, t)$.
(a) we solve $0=c^{2} u^{\prime \prime}$ on $u^{\prime \prime}=0$, Then $u=c_{1}+c_{2} x$ and $u(0)=0, u(1)=100$ unphes $c_{1}=0, c_{2}=100$. Tan $u_{1}=100 \mathrm{x}$
(b)

$$
\begin{aligned}
& u_{2}=\sum_{n=1}^{\infty} b_{n} e^{-(n \pi)^{2} t} \sin (n \pi x) \\
& b_{n}=(2) \int_{0}^{1}(f(x)-100 x) \sin (n \pi x) d x
\end{aligned}
$$

(c) Because u_{1} satistice (ll) and u_{2} fatitite (2),

$$
\text { (1) }\left\{\begin{array} { l }
{ u _ { t } = c ^ { 2 } u _ { x } x } \\
{ u (0 , t) = 0 } \\
{ u (1 , t) = 1 0 0 } \\
{ u (x , 0) = 0 }
\end{array} \quad (2) \left\{\begin{array}{l}
u_{t}=c^{2} u_{x} \\
u(0, t)=0 \\
u(1) t)=0 \\
u(x, 0)=f(x)-100 \times
\end{array}\right.\right.
$$

Then sinpeaposition unplis $u=u_{1}+u_{2}$ satiction th problem stated aborre(see (3)).

Use this page to start your solution. Attach extra pages as needed, then staple.
\qquad
3. (CH4. Rectangular Membrane)

Consider the general membrane problem

$$
\begin{cases}u_{t t}(x, y, t)=c^{2}\left(u_{x x}(x, y, t)+u_{y y}(x, y, t)\right), & 0<x<a, 0<y<b, \quad \text { on the boundary, } \\ u(x, y, t)=0, \\ u(x, y, 0)=f(x, y), & 0<x<a, 0<y<b, \\ u_{t}(x, y, 0)=g(x, y), & 0<x<a, 0<y<b .\end{cases}
$$

Solve the problem for $a=b=1, c=1 / \pi, f(x, y)=0, g(x, y)=1$.
Alternate problem type: Replace $f=0, g=1$ by $f=1, g=0$.
The Solution off This problem is in ASMAR, CRapoten 3.7. It is easier Than The ciuculan membwne problem a. The me Rods of 3.7 ane used to fore the drunibead probbm, cA 4.

The Solution is a superposition of Th nome modes, found by separation of variables, as

$$
\begin{aligned}
& \sin (m \pi x / a) \sin (n \pi y / b)\left(B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right)\right) \\
& \lambda_{m n}=c \pi \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}
\end{aligned}
$$

Then

$$
\text { Then } u(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sin (m \pi x) \sin (n \pi y)\left(B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{Y} \sin \left(\lambda_{\sin } t\right)\right)
$$

where $\lambda_{m n}=\sqrt{m^{2}+n^{2}}$. Te coefficients are found by orthogonality on $[0,1] \times[0,1]$.

$$
\begin{aligned}
B_{m n} & =4 \int_{0}^{1} \int_{0}^{1} f(x, y) \sin (m \pi x) \sin (n \pi y) d x d y \\
\lambda_{m n} B_{m n}^{y} & =4 \int_{0}^{1} \int_{0}^{1} g(x, y) \sin (m \pi x) \sin (n \pi y) d x x_{y}
\end{aligned}
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

4. (CH4. Steady-State Heat Conduction on a Disk)

Consider the problem

$$
\left\{\begin{array}{l}
u_{r r}(r, \theta)+\frac{1}{r} u_{r}(r, \theta)+\frac{1}{r^{2}} u_{\theta \theta}(r, \theta)=0, \quad 0<r<a, \quad 0<\theta<2 \pi, \\
u(a, \theta)=f(\theta), \quad 0<\theta<2 \pi .
\end{array}\right.
$$

Solve for $u(r, \theta)$ when $a=1$ and $f(\theta)=100$ pulse $(\theta, 0, \pi)$, that is, $f(\theta)=100$ on $0 \leq \theta<\pi$, $f(\theta)=0$ on $\pi \leq \theta<2 \pi$.
The problem is solved in ASMAR, chapter 4.4. separation of variables give product foluthenons

$$
\begin{aligned}
& \left(\frac{r}{a}\right)^{n} \cos (n \theta),\left(\frac{r}{a}\right)^{n} \sin (n \theta) \\
& n(r, a)=a_{0}+\sum_{n}^{\infty}\left(a_{n} \cos (\sin)+b_{n} \operatorname{dn}(n s)\right)\left(x^{n}\right)^{n} \\
& a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f d \theta \\
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \cos (n \theta) d \theta \\
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \sin (n \theta) d \theta
\end{aligned}
$$

Then

Expected in your folutian: separation of variables, explain why solution r^{-n} is ignored, solve $\theta^{\prime \prime}+n^{2} \theta=0$ for product solutions. Finally, explain how to get the formulas for $\mathfrak{k} 0, a_{n}, b_{n}$ from orthogonality.

Use this page to start your solution. Attach extra pages as needed, then staple.

